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Abstract

Organisms live in heterogeneous environments, so strategies that maximze fit-

ness in such environments will evolve. Variation in traits is important because

it is the raw material on which natural selection acts during evolution. Pheno-

typic variation is usually thought to be due to genetic variation and/or environ-

mentally induced effects. Therefore, genetically identical individuals in a

constant environment should have invariant traits. Clearly, genetically identical

individuals do differ phenotypically, usually thought to be due to stochastic

processes. It is now becoming clear, especially from studies of unicellular spe-

cies, that phenotypic variance among genetically identical individuals in a con-

stant environment can be genetically controlled and that therefore, in principle,

this can be subject to selection. However, there has been little investigation of

these phenomena in multicellular species. Here, we have studied the mean life-

time fecundity (thus a trait likely to be relevant to reproductive success), and

variance in lifetime fecundity, in recently-wild isolates of the model nematode

Caenorhabditis elegans. We found that these genotypes differed in their variance

in lifetime fecundity: some had high variance in fecundity, others very low vari-

ance. We find that this variance in lifetime fecundity was negatively related to

the mean lifetime fecundity of the lines, and that the variance of the lines was

positively correlated between environments. We suggest that the variance in

lifetime fecundity may be a bet-hedging strategy used by this species.

Introduction

Evolutionary success is achieved by maximizing fitness in

spatially and temporally variable environments. Key to this

is phenotypic variation, which can be due to genetic differ-

ences among individuals and/or due to environmentally

induced effects, i.e. phenotypic plasticity. However, in a

constant environment genetically identical individuals are

assumed to be phenotypically constant. Phenotypic differ-

ences among such individuals are usually attributed to sto-

chastic events that would generally result in equal degrees

of phenotypic variance among different genotypes. Impor-

tantly, implicit in the assumption of stochasticity underly-

ing phenotypic variance among genetically identical

individuals is that the phenotypic variance is not genetically

controlled, not subject to selection, and thus not adaptive.

Contrary to this assumption, phenotypic variance in

isogenic populations in constant environments is observed

(Viney and Reece 2013). Beyond stochastically generated

differences, microenvironmental differences among indi-

viduals, such that each individual is in effect in its own

microenvironment, could also cause such phenotypic var-

iance. However, the relative roles of stochasticity and

microenvironmental differences in causing phenotypic

variance are not known.

One adaptive explanation of the phenomenon of

phenotypic variance in isogenic populations is the evolu-

tion of bet-hedging or risk-spreading strategies, which
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makes the link between environmental variability, fitness

variance and mean fitness (Gillespie 1974). Bet-hedging

strategies are those that minimize fitness variation across

generations in the face of environmental variation. Thus,

when comparing phenotypically invariant and variant

genotypes, an invariant genotype would have a certain fit-

ness in one environment to which it was adapted, but a

potentially steep fitness decline outside of that environ-

ment. In contrast, a phenotypically variant genotype

could have a comparatively greater fitness in heteroge-

neous environments because its fitness would not decline

so quickly as the environment changed. Therefore, pheno-

typic variance increases the fit phenotypic space of a

genotype. The repeated observation of microorganismal

phenotypic variance within a clone has been interpreted

as maximizing fitness in variable environments (Dubnau

and Losick 2006). Other, related approaches to under-

standing phenotypic variance center around the concept

of canlization of phenotypic traits, defined as the robust-

ness of phenotypes to perturbation (Flatt 2005). Despite

much working demonstrating different degrees of canali-

zation of different phenotypes, the significance of differ-

ent degrees of phenotypic variation among genotypes has

largely not been considered (Gibson and Dworkin 2004).

Theoretical studies have shown how selection can

change phenotypic variance (e.g. Gillespie 1974; Hill and

Zhang 2004) and mechanistically phenotypic variance can

be genetically controlled, changing the phenotypic robust-

ness of a population (Hermisson and Wagner 2004).

Much of the empirical work describing the molecular and

genetic mechanism of phenotypic variance of genetically

identical individuals in constant environments has

focused on unicellular systems (Davidson and Surette

2008; Viney and Reece 2013). In many of these systems

there is variability in gene expression (Maamar et al.

2007), often affecting whole gene networks, which if man-

ifest as phenotypic variance may allow selection to act on

trait variance (Viney and Reece 2013). The effect of muta-

tions on trait variance (as well as on trait values) has been

observed in multicellular organisms too (Dunn and Fraser

1958). For example, wild-type mice have 18–19 whiskers,

but the Tabby mutation results in fewer whiskers (mean

12) and a greater variance in whisker number (range 8–
16) (Dunn and Fraser 1958). There are also empirical

data showing the genetic control of phenotypic variance

among genetically identical individuals in a constant envi-

ronment. For example, Caenorhabditis elegans mutations

that affect the developmental cell lineage (which in wild-

type is essentially invariant among individuals) are

incompletely penetrant, i.e. genetically identical individu-

als vary phenotypically (Horvitz and Sulston 1980; Braen-

dle and F�elix 2008; Braendle et al. 2010). In this system,

there is a molecular understanding of how incomplete

penetrance of C. elegans phenotypes occurs in certain

traits. The specification of gut cells is controlled by a

small transcription network and variation in gene expres-

sion near a threshold alters the phenotype of individuals,

thereby altering penetrance (Raj et al. 2010). Trait vari-

ance is of increasing interest in animal breeding settings

where low trait variance can be desirable as a means to

maximize production gains and agricultural efficiency.

The study of trait variance has extended to studies in

humans, for example looking at the genetic control of

variability in body mass index (Yang et al. 2012).

Laboratory studies of unicellular species show that

among genetically identically individuals there is pheno-

typic variation that can be genetically controlled and that

can be adaptive (Viney and Reece 2013). For multicellular

species, though, there has been much less investigation of

these phenomena. Also, empirical data supporting the idea

that phenotypic variance amongst genetically identical indi-

viduals in a constant environment may contribute to repro-

ductive success is limited. Here, we quantified the

phenotypic variance among genetically identical individuals

in the model nematode system C. elegans. This system

allows accurate quantitation of many aspects of individuals’

phenotypes, crucially including lifetime fecundity. We have

therefore examined the lifetime fecundity of C. elegans and,

more particularly, how this varies among individuals. Spe-

cifically, we asked for an inbred line of C. elegans in one

environment how much phenotypic variance in lifetime

fecundity there was among individuals. We compared 20

recently wild isolates of C. elegans in this way and found

that the among individual variation in lifetime fecundity of

each line varied significantly among the C. elegans isolates.

This means that the C. elegans genotype – a genetic effect –
affects phenotypic variance. We then repeated this but

using different food environments, which tests how the

environment itself affects this phenotypic variance. These

different environments changed the phenotypic variance of

the lines. Also, within each food environment we found

that there was a negative relationship between the lifetime

fecundity and the among individual variance in lifetime

fecundity. Furthermore, we found that these variances in

lifetime fecundity correlated positively across the two food

environments. We suggest that these results may show that

these C. elegans isolates display a gradient of risk-spreading

strategies.

Materials and Methods

Worms and food

We used 20 recently wild (see Appendix 1) C. elegans iso-

lates and the standard N2 wild-type. For each isolate, one

isogenic line was made by single-worm inbreeding for at
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least 10 generations (inbreeding coefficient > 0.9) and

cryopreserved; hereafter these isogenic lines are referred to

as lines. Each experiment used a new cryopreserved stock

of the isogenic line. We used two food sources, Escherichia

coli OP50 and Bacillus pumilus B215 (see Appendix 1).

Assays

Lifetime fecundity was the total number of viable progeny

produced by individual hermaphrodites grown with

excess food at 19°C. To measure this, arrested first stage

larvae were generated by hypochlorite treatment from

which synchronized L1s hatched, and after 24 hours 10

individuals of each line were individually introduced to

food (day 0), with five individuals for each food source.

Worms grew into adult hermaphrodites, which were

transferred every other day to NGM fresh plates (Hope

1999) for their reproductive life. Egg-containing plates

(from which adult hermaphrodites had been removed)

were maintained for 48 hours, when the number of viable

progeny were counted. We conducted the observations in

three experimental blocks, and all lines and both food

sources were included in each block; thus, 3 blocks 9 21

lines 9 5 worm replicates = 315 individual observations per

food source (see Appendix 2: Tables A2 and A3). We found

no differences among the blocks (see below) and so the

block data for each food source was pooled.

Statistical models and analyses

Our objectives were to analyse how the (i) mean lifetime

fecundity (LF) and (ii) the variance in LF varied among

the C. elegans lines and between the two food sources.

We used a Bayesian modelling approach, using a hierar-

chical linear model, to compare different distributions of

the mean LF and the variance in LF. From this we then

concluded how the LF and variance in LF varied among

the lines and between the two food sources.

Our initial Model 1 was:

LFi �Nðl; r2Þ; (Model 1)

where LFi is the LF of the ith individual worm of all of

the observations that we made, N denotes a normal dis-

tribution, l is the mean LF across the i observations

(i = 315), and r2 is the variance across LF observations. l
has an N(0, 1e10) prior distribution and the precisions

s = 1/r2 has G (0.001, 0.001) prior (so the gamma distri-

bution has extremely large standard deviations). The rele-

vant computer code for these models is available in

Appendix 3.

The worms were grown in two different food environ-

ments so we applied Model 1 to the LF data from these

two food environments separately. This showed that the

mean LF of the lines differed significantly between

the two food environments, shown by the non overlap of

the credible intervals (CI) of the mean LF; mean LF on

B. pumilus 98.76, CI 91.31–106.3; mean LF on E. coli

244.9, CI 236.3–253.6. We therefore analysed the LF from

the two food environments separately.

We next extended Model 1 to make Model 2:

LFij �Nðlj; r2Þ; (Model 2)

which models the data such that each C. elegans line, j

(j = 1. . .21), has its own mean LF, denoted by lj, but all
lines have the same variance in LF, denoted by r2,
referred to as the residual variance. This model has a lj
with an N (h, r2among) prior distribution, where the hy-

perparameter h has a N (0, 1e10) hyperprior, and the pre-

cisions samong = 1/r2among and s = 1/r2 both have G

(0.001, 0.001) priors. h represents the mean LF among

lines, and r2among the among line variance which quanti-

fies how the mean LF varies among the lines. The relative

contributions (interclass correlation coefficient) that each

component contributes to the total variance are, for

example, r2among/(r
2
among + r2); these are presented

expressed as percentages. If Model 2 was a better model

than Model 1 then we concluded that the C. elegans lines

have different LF. We describe later in this section how

we compared models.

We then extended Model 2 to make Model 3:

LFij �Nðlj; r2within line jÞ; (Model 3)

which models the data such that each C. elegans line, j,

also has its own variance in LF, denoted by r2within line j.

This model had with an N (h, r2) prior distribution, a N

(0, 1e10) hyperprior and the precisions are swithin line

j = 1/r2within line j and s = 1/r2, both have G (0.001,

0.001) priors. If Model 3 was a better model than Model

2 then we concluded that the C. elegans lines have differ-

ent variances in LF.

We used the same approach to investigate whether there

were differences in LF among the different experimental

blocks. We did this by extending Model 3, making Model 4:

LFij �Nðlj þ ak; r
2
within line jÞ; (Model 4)

which accounts for the three experimental blocks by

including the term ak, where k is the number of experi-

mental blocks (k = 3), with a N (0, 1) prior. When we

used this model it was unable to converge on a solution

for this coefficient (i.e. an identifiability issue, Spiegelhal-

ter et al. 2002). This suggests either that the block effect

was negligible or that the dataset was too small to allow

for an analysis of block effects. We therefore reduced the

number of terms in the model to test for an effect of
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experimental block by extending Model 2 to include the

experimental block parameter, ak, making Model 5:

LFij �Nðlj þ ak; r
2Þ; (Model 5)

If Model 5 was a better model than Model 2 we con-

cluded that there are significant effects of the three exper-

imental blocks.

We compared models by calculating the differences in

deviance information criterion (DDIC) between two mod-

els. To choose the best model, a DDIC of less than 2 was

taken to indicate substantial support for the simpler model,

a DDIC of between 4 and 7 was taken to indicate consider-

ably less support for the simpler model, and a DDIC of

greater than 10 was taken to indicate essentially no support

for the simpler model (Spiegelhalter et al. 2002).

We constructed the models using WinBUGS, which is

a software package that uses Markov chain Monte Carlo

(MCMC) methods to fit Bayesian statistical models (Lunn

et al. 2000); this code is available in Appendix 3;

Table A1 presents the DIC values of models 1 – 3. For

the results, the reported parameters are after 10,000 itera-

tions, then followed by a further 10,000 updates for the

parameters. This produced a Monte Carlo error of less

than 5% of the posterior standard deviation. Throughout

the variance is described as standard deviations unless

otherwise stated; estimates are presented as the mean with

its respective 2.5 and 97.5% CI.

Results

We firstly consider whether there was any effect of the

experimental block. There was no effect of experimental

block on the mean LF of the lines, shown by the DDIC, on
the B. pumilus food source (DDIC Model 3 – Model 4 = 0.11;

DDIC Model 2 – Model 5 = �0.1) or on the E. coli food source

(DDIC Model 3 – Model 4 = 0.74; DDIC Model 2 – Model 5 =
0.53), and so data from all three blocks were analysed

together.

The mean LF varied between the two food sources with

those worms eating B. pumilius having approximately

two-fifths of the progeny of worms eating E. coli (see

Appendix 2 Table A1). The results from Model 1 showed

that the mean LF of the lines differed significantly

between the two food environments, shown by the non-

overlap of the credible intervals (CI) of the mean LF;

mean LF on B. pumilus 98.76, CI 91.31–106.3; mean LF

on E. coli 244.9, CI 236.3–253.6.
Considering the LF of worms when fed B. pumilius, the

mean LF of the isogenic lines ranged from 35–167
[Fig. 1A; Appendix 2 Table A1(A)]. The lines differed in

their LF in this food environment (difference in mean LF

among lines, DDICModel 1 – Model 2 = 86.7, Table 1,

Fig. 1A). Analysis of variance components showed that

the among line variance was greater than the residual

variance (108.4 [79.8–149.6 CI] and 57.5 [52.9–62.3 CI],

ramong and r, respectively, Model 2), suggesting that

c. 65% of the observed variance in LF was among lines,

and the remainder the residual variance.

We then further explored the differences among lines by

describing the variation within each line; specifically, we

wanted to test whether including an extra parameter to

describe the within line variance in LF for each line

improved the fit of the model. The analysis showed that

Model 3, which included the within line variance, was the

(A) (B)

Figure 1. (A) Mean lifetime fecundity (� 2SE) of C. elegans lines fed B. pumilus B215. 1 = N2, 2 = CB4853, 3 = JU1400, 4 = JU1401,

5 = JU1409, 6 = JU1410, 7 = JU1411, 8 = JU1416, 9 = JU1442, 10 = JU1494, 11 = JU262, 12 = JU319, 13 = JU345, 14 = JU362, 15 = JU393,

16 = JU400, 17 = MY1, 18 = MY16, 19 = MY2, 20 = PX174 and 21 = PX179. Open circles represent the individual observations, colored by

block (black, red and green, for block one, two and three respectively). (B) Relationship between a line’s mean lifetime fecundity and its

coefficient of variation (CV). A line’s mean and CV of lifetime fecundity are estimates across blocks’ pooled data.
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preferred model (DDICModel 2 – Model 3 = 53.1, Table 1),

consistent with the within line variance in LF varying signif-

icantly among the C. elegans lines. The within line variance

in LF ranged between 525.8 and 11310.0 [rwithin line line 3

and 7, respectively, Fig. 1A; Appendix 2 Table A1(A) and

Fig. A1]. Line 7 showed a variance 21 times higher than that

of line 3. Therefore, we conclude that in the B. pumilus food

source there were significant differences in the mean LF

among lines, and in the within line variance in LF. We also

found that the lines’ coefficient of variation (CV) and mean

lifetime fecundity were correlated (Spearman coefficient

r = �0.59, P < 0.01) (Fig. 1B). The lines did not differ in

their schedule of reproduction, all commenced reproduc-

tion on day 2 and had completed it by day 8.

The E. coli food environment was significantly better

than the B. pumilus environment, with the lines producing

an average of 151 more offspring (Fig. 2A). In this better

environment the mean LF [range 162–299, Fig. 2;

Appendix 2 Table A1(B)] was different among the lines

(DDICModel 1 – Model 2 = 91.7, Table 1). The analysis of var-

iance components showed that the among line variance

was greater than the residual variance (256.4 [189.8–251.2
CI] and 65.8 [60.7–71.5 CI], ramong and r, respectively,
Model 2), suggesting that c. 80% of the observed variance

in LF was among lines, and the remainder the residual vari-

ance. Also, Model 3, that included the within line variance,

was the preferred model (DDICModel 2 – Model 3 = 65.5,

Table 1), again consistent with the within line variance in

LF varying among the C. elegans lines. For example, line 6

showed the lowest variance (rwithin line = 473.6 [218–1019
95% CI]; Appendix 2 Table A1(B) and Fig. A2),

whereas line 18 showed a c. 28 times greater variance

(rwithin line = 13180.0 [6076–27480 CI]; Appendix 2

Table A1(B) and Fig. A2). Therefore, similarly to the

B. pumilus food environment, we conclude that in the E. coli

food environment there were significant differences in the

mean LF among lines and in the within line variance in LF.

In the E. coli environment there was a significant nega-

tive relationship between the mean and CV LF of the

lines (r = �0.88, P < 0.001) (Fig. 2B). Reproduction

occurred earlier on the E. coli food source (E. coli and

B. pumilus maximum daily fecundity on day 2 and 4

respectively).

The within line variance in LF was greater in the

poorer quality B. pumilus environment (shown by the CV

values in each environment) showing that within line var-

iance in LF is phenotypically plastic (Appendix 2

Fig. A3). There was a relationship in the CVs of the lines

in the two food environments (r = 0.62, P = 0.002)

(Fig. 3), but there was no such relationship between the

LF of the lines (r = 0.29, P = 0.20).

Table 1. DIC results of the models for B. pumilus B215 and E. coli

OP50. The results show Dbar, Dhat and pD. Dbar is �2 times the

sample average of the log-likelihoods; Dhat is �2 times the log-likeli-

hood evaluated at the posterior mean of the parameters; pD, calcu-

lated as Dbar � Dhat, is the effective number of parameters in the

model. The most parsimonious model according to DDIC is shown in

bold.

Dbar Dhat pD DIC

B. pumilus

Model

Model 1 3551.98 3549.9 2.0 3553.9

Model 2 3445.4 3423.7 21.7 3467.2

Model 3 3373.2 3332.3 40.9 3414.1

E. coli

Model

Model 1 3643.2 3641.2 1.9 3645.2

Model 2 3531.5 3509.5 22.0 3553.5

Model 3 3447.1 3406.3 40.9 3488.0

(A) (B)

Figure 2. (A) Mean lifetime fecundity (� 2SE) and (B) the relationship between mean and CV of lifetime fecundity of C. elegans lines fed E. coli

OP50; isogenic lines as Figure 1.
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Discussion

Our results show that variance in lifetime fecundity

within an isogenic line differs among C. elegans isogenic

lines, thus suggesting there is a genetic effect on pheno-

typic variance. Specifically, we demonstrate that in the

same environment, genetically identical individuals show

different levels of among individual phenotypic variation

depending on the genotype. There are genotypes with low

phenotypic variation and others with high phenotypic

variation. We therefore conclude that this phenotypic var-

iance is a property of a genotype.

These results show that the assumption of the equality

of phenotypic variance among genotypes is, in this case,

false. Furthermore, that we observed that this phenotypic

variance differed among recently wild genotypes suggests

that this variance may be due to the genotypes’ different

evolutionary histories. Consistent with this notion is the

fact that this phenotypic variance was plastic between the

two food environments (Viney and Diaz 2012). Specifi-

cally, we find that the absolute degree of phenotypic vari-

ance of each of the lines changes as the food environment

changes. However, each isogenic line’s among-individual

variation is similar in both of the two food environments

as shown by the positive correlation between CVs. This

suggests that although the environment affects the abso-

lute level of variation (i.e. higher in the poorer quality

environment) isogenic lines show a similar level of varia-

tion across environments.

We have also found that among the C. elegans

iosgenic lines the variance in lifetime fecundity is

negatively related to mean lifetime fecundity. Why

might this pattern exist? We suggest that this may be

evidence of different bet hedging strategies. Bet-hedging

strategies maximize geometric mean fitness, but at a

cost to arithmetic mean fitness. A detailed analysis of

bet-hedging strategies has shown that this can be

achieved (i) by reducing among individual variance in

fitness across generations and (ii) by reducing the cor-

relation in fitness among individuals within a gener-

ation (because this effectively decreases the variance in

fitness across generations) with these approaches being

considered conservative and diversified bet-hedging

strategies respectively (Starrfelt and Kokko 2012). Con-

servative and diversified bet-hedging strategies are

extremes along a continuum and both strategies can

occur together because they are not mutually exclusive

(Starrfelt and Kokko 2012).

To consider our observations with the perspective of

bet-hedging strategies, let us assume that the variance in

lifetime fecundity is a measure of the variance in the

quality of the worms. With this assumption, the C. ele-

gans lines then have different ranges of offspring quality.

Considering the negative relationship that we observed

between the mean and CV of lifetime fecundity, then

among the 21 lines there are a gradient of phenotypes

where the extremes are (i) lines of high fecundity, low

among individual variance-in-quality through to (ii)

lines of low fecundity, high among-individual variance-

in-quality.

With this assumption, the low variance lines may be

pursuing a conservative bet-hedging strategy, perhaps

adapted to a stable, benign environment, such that the

variance in fitness across generations is small. In con-

trast, the high variance lines may be using a diversified

bet-hedging strategy, perhaps adapted to a spatially vari-

able environment (Starrfelt and Kokko 2012) where

within a generation there is variance among individuals

in their fitness, but across generations the fitness vari-

ance is minimized, thereby maximizing geometric mean

fitness.

The existence of high variance, low fecundity, lines

might be puzzling because it would be seem to better

for these high variance lines to have a high fecundity

too. One reason for this may be that there is some

limit or trade-off among individual progeny, such

that if one individual offspring is high quality

(observed here as having a high lifetime fecundity)

other individuals have to be of low quality. This could

be achieved in C. elegans, for example, by adult her-

maphrodites differently allocating resources among off-

spring, which results in differences among individuals

in their quality, which we observe as differences in life-

time fecundity.

Figure 3. The relationship between the CV of lifetime fecundity of

the C. elegans lines fed B. pumilus and E. coli.
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There are caveats to interpreting the phenotypes of

these lines as bet-hedging strategies. Thus, it is possible

that in other environments the lines’ lifetime fecundity

and variance in lifetime fecundity will differ in other

ways, and present other patterns (or no pattern at all),

which might then argue against such a bet-hedging

strategy existing in this species. More needs to be

known about the natural environment of C. elegans,

which is a subject of current work (F�elix and Duveau

2012).

Our results can also be interpreted from the perspective

of trait canalization (Flatt 2005). We have found that the

lines differ in their variability in lifetime fecundity, which

is consistent with some lines being strongly canalized for

this trait whereas others are not (Baer 2008; Braendle

et al. 2010). This view is then tacit about the adaptive

value, if any, of this.

Other studies have shown how among individ-

ual, within genotype phenotypic variance can occur

(e.g. Horvitz and Sulston 1980; Braendle and F�elix

2008). A common understanding of the control of a

trait is that it is tightly genetically controlled, and that

relaxation of that control (for example by mutation)

degrades the trait, seen as developmental errors or

incomplete penetrance. Our results show that pheno-

typic variance in lifetime fecundity is a property of a

genotype.
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Appendix 1: Worm and food strains

C. elegans recently wild isolates were obtained from two

sources: JU1400, JU1401, JU1409, JU1410, JU1411,

JU1416, JU1442, JU1494 from Marie-Anne F�elix (Paris);

CB4853, MY1, MY2, MY16, JU262, JU319, JU345, JU362,

JU393, JU400, PX174, PX179 and the standard N2 wild-

type was obtained from the Caenorhabditis Genetics Cen-

tre (CGC). These isolates were collected in France in 2001

(JU262), 2002 (JU319, JU345, JU362, JU393, JU400) or

2008 (JU1494); Spain in 2008 (JU1400, JU1401, JU1409,

JU1410, JU1411, JU1416, JU1442); northwest Germany in

2002 (MY1, MY2, MY16); Oregon, USA in 2004 (PX174,

PX179) and California, USA in 1974 (CB4853). This

information is available at www.justbio.com/worms/index.

php and www.cgc.cbs.umn.edu. The single-worm inbreed-

ing was done on an E. coli OP50 food source. After

inbreeding worms were cryopreserved (Hope 1999) and

maintained at �80°C.
We wished to measure the lines’ lifetime fecundity

on two different food sources, E. coli OP50 and

B. pumilus B215. The E. coli OP50 (the standard labora-

tory C. elegans food source) was obtained from CGC;

the Bacillus pumilus B215 isolate which was obtained

from Robbie Rae and Ralf Sommer (T€ubingen) (Rae

et al. 2010). We chose the B. pumilus B215 because

pilot studies showed it to be not overtly pathological to

the C. elegans lines and not to induce behaviors which

would interfere with measurement of worms’ lifetime

fecundity. The E. coli OP50 and B. pumilus B215 were

cultured as described previously (Hope 1999; Rae et al.

2010).

We observed minimal sterile hermaphrodites through-

out out the experiment, specifically, on E. coli OP50

JU1409, JU1411, JU319, MY16 each had one; on B. pumi-

lus B215 N2, JU1442, JU319, JU393, JU400 each had one,

and JU1401, JU1411, JU1494, JU262, JU362, MY16, MY2,

and PX174 between two and five. These data were

included in the analyses. We use the following line codes

to report the statistics: 1 = N2, 2 = CB4853, 3 = JU1400,

4 = JU1401, 5 = JU1409, 6 = JU1410, 7 = JU1411, 8 =

JU1416, 9 = JU1442, 10 = JU1494, 11 = JU262, 12 =
JU319, 13 = JU345, 14 = JU362, 15 = JU393, 16 = JU400,

17 = MY1, 18 = MY16, 19 = MY2, 20 = PX174, and

21 = PX179.

Appendix 2

Model results: Table A1.

Table A1. Results of preferred Model 3 (see main text, Table 1). It

includes the mean, SD and the 2.5 and 97.5% credible intervals (CI)

of the posterior distribution for h (theta), l (mu), and rwithin line j (sig-

ma.with.line) of each line for (A) B. pumilus B215 and (B) E. coli

OP50. These results are of 30000 sampled values at 10001 post burn-

in.

Node Mean SD 2.5% CI 97.5% CI

(A) B. pumilus

Theta 97.64 9.20 79.71 116.00

mu[1] 126.50 18.95 88.37 162.90

mu[2] 86.50 10.22 66.49 107.00

mu[3] 52.48 5.86 41.03 64.34

mu[4] 111.90 18.38 75.10 148.10

mu[5] 83.39 14.86 54.16 112.90

mu[6] 139.80 8.55 122.20 156.20

mu[7] 124.60 22.56 79.17 168.40

mu[8] 107.80 15.83 75.98 138.60

mu[9] 48.57 7.96 33.23 64.78

mu[10] 167.30 19.26 126.30 202.30

mu[11] 35.16 8.09 19.78 51.80

mu[12] 105.00 17.32 70.98 139.40

mu[13] 126.10 13.23 99.02 151.90

mu[14] 65.02 13.14 39.53 92.04

mu[15] 80.99 9.42 62.40 99.70

mu[16] 120.80 13.78 92.75 147.60

mu[17] 116.10 10.51 94.86 136.80

mu[18] 59.88 15.37 30.43 91.21

mu[19] 68.13 21.11 27.12 110.70

mu[20] 91.59 12.53 67.13 116.80

mu[21] 132.50 9.40 113.40 150.90

sigma.residual 38.64 7.35 26.95 55.48

sigma.with.line[1] 6926.00 3091.00 3212.00 14760.00

sigma.with.line[2] 1714.00 748.70 801.90 3603.00

sigma.with.line[3] 525.80 234.90 242.90 1113.00

sigma.with.line[4] 6719.00 2957.00 3113.00 14240.00

sigma.with.line[5] 3986.00 1766.00 1848.00 8491.00

sigma.with.line[6] 1126.00 503.30 519.30 2427.00

sigma.with.line[7] 11310.00 4958.00 5224.00 23820.00

sigma.with.line[8] 4590.00 2026.00 2131.00 9615.00

sigma.with.line[9] 963.30 427.40 441.20 2039.00

sigma.with.line[10] 5765.00 2759.00 2528.00 12760.00

sigma.with.line[11] 984.90 446.10 449.70 2121.00
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Data summary: Table A2 and A3.Table A1. Continued.

Node Mean SD 2.5% CI 97.5% CI

sigma.with.line[12] 5870.00 2547.00 2731.00 12460.00

sigma.with.line[13] 2942.00 1307.00 1337.00 6272.00

sigma.with.line[14] 2932.00 1305.00 1341.00 6194.00

sigma.with.line[15] 1435.00 637.00 665.40 3023.00

sigma.with.line[16] 3253.00 1429.00 1505.00 6919.00

sigma.with.line[17] 1816.00 796.60 839.50 3817.00

sigma.with.line[18] 4120.00 1820.00 1882.00 8700.00

sigma.with.line[19] 9274.00 4025.00 4354.00 19330.00

sigma.with.line[20] 2728.00 1205.00 1251.00 5788.00

sigma.with.line[21] 1405.00 626.50 647.30 2980.00

(B) E. coli

Theta 248.50 10.50 227.30 268.90

mu[1] 284.80 10.41 263.80 305.00

mu[2] 229.20 13.43 203.00 256.20

mu[3] 276.40 8.19 259.90 292.50

mu[4] 236.30 20.35 196.20 276.90

mu[5] 175.00 20.33 136.90 217.80

mu[6] 292.60 5.61 281.20 303.50

mu[7] 215.60 20.44 176.10 256.90

mu[8] 299.30 10.62 277.50 319.70

mu[9] 272.20 9.69 252.60 291.20

mu[10] 275.80 14.45 246.40 303.70

mu[11] 233.50 14.97 204.20 263.60

mu[12] 247.40 21.46 205.30 290.00

mu[13] 232.70 16.58 200.00 266.10

mu[14] 162.60 25.75 116.50 218.20

mu[15] 260.50 10.77 238.80 281.50

mu[16] 267.20 21.51 223.70 309.10

mu[17] 298.20 12.51 272.40 322.30

mu[18] 222.70 24.52 174.80 271.60

mu[19] 211.30 21.02 170.50 254.00

mu[20] 295.50 7.34 280.80 310.00

mu[21] 228.20 18.98 191.30 266.50

sigma.residual 43.77 8.67 29.53 63.69

sigma.with.line[1] 1701.00 764.30 786.80 3625.00

sigma.with.line[2] 3035.00 1325.00 1419.00 6382.00

sigma.with.line[3] 1055.00 468.40 488.40 2243.00

sigma.with.line[4] 8152.00 3576.00 3768.00 17210.00

sigma.with.line[5] 6476.00 3057.00 2878.00 14270.00

sigma.with.line[6] 473.60 211.30 218.70 1019.00

sigma.with.line[7] 7855.00 3446.00 3620.00 16670.00

sigma.with.line[8] 1742.00 789.10 798.60 3703.00

sigma.with.line[9] 1464.00 644.80 672.60 3086.00

sigma.with.line[10] 3529.00 1564.00 1622.00 7536.00

sigma.with.line[11] 3856.00 1702.00 1778.00 8202.00

sigma.with.line[12] 9578.00 4147.00 4461.00 20310.00

sigma.with.line[13] 4882.00 2148.00 2235.00 10360.00

sigma.with.line[14] 9887.00 4963.00 4191.00 22680.00

sigma.with.line[15] 1883.00 833.00 872.40 3973.00

sigma.with.line[16] 9301.00 4038.00 4330.00 19590.00

sigma.with.line[17] 2513.00 1115.00 1152.00 5317.00

sigma.with.line[18] 13180.00 5713.00 6076.00 27480.00

sigma.with.line[19] 8282.00 3619.00 3874.00 17360.00

sigma.with.line[20] 840.70 376.40 383.50 1794.00

sigma.with.line[21] 6765.00 2974.00 3131.00 14230.00

Table A2. The mean and standard deviation (SD) lifetime fecundity

of the lines for each block on the B. pumilus B215 food source.

Line

Block 1 Block 2 Block 3

Mean SD Mean SD Mean SD

1. N2 97.80 66.34 206.60 38.55 103.00 74.68

2. CB4853 64.00 18.84 126.20 27.09 66.60 31.62

3. JU1400 43.40 27.08 60.00 17.39 50.60 19.19

4. JU1401 119.00 68.72 112.80 106.94 116.80 65.37

5. JU1409 60.60 52.69 120.40 64.53 61.20 46.66

6. JU1410 144.00 26.33 142.20 43.94 140.20 27.07

7. JU1411 185.20 78.71 38.00 53.57 191.40 78.75

8. JU1416 110.40 74.82 107.60 54.52 112.20 73.01

9. JU1442 37.00 22.86 65.00 38.88 37.00 13.62

10. JU1494 202.60 37.03 160.00 110.48 195.40 32.92

11. JU262 25.60 21.20 50.40 37.67 20.20 19.85

12. JU319 140.80 58.15 37.60 48.72 142.60 55.67

13. JU345 156.40 32.00 83.60 53.22 150.40 30.11

14. JU362 59.80 39.28 52.20 71.50 69.00 44.02

15. JU393 83.60 15.31 75.80 56.89 80.00 28.79

16. JU400 155.60 23.68 63.20 41.78 154.60 21.50

17. MY1 126.80 19.73 106.40 68.43 120.00 11.42

18. MY16 66.40 67.70 34.40 44.53 56.60 71.41

19. MY2 8.20 5.54 155.60 96.01 3.20 7.16

20. PX174 109.00 23.35 58.60 72.68 104.60 22.41

21. PX179 113.40 23.86 171.20 29.30 120.00 16.40

Table A3. The mean and standard deviation (SD) lifetime fecundity

of the lines for each block on the E. coli OP50 food source.

Line

Block 1 Block 2 Block 3

Mean SD Mean SD Mean SD

1. N2 325.40 32.54 278.80 5.50 257.40 31.63

2. CB4853 218.80 20.86 206.80 77.71 255.40 33.25

3. JU1400 295.00 29.78 254.60 27.28 283.00 21.64

4. JU1401 286.80 50.80 151.20 77.02 259.20 59.05

5. JU1409 212.20 20.10 153.00 99.19 107.00 33.08

6. JU1410 288.20 26.44 303.60 5.18 288.40 22.33

7. JU1411 224.60 51.93 186.40 78.71 207.40 117.48

8. JU1416 322.20 42.20 287.40 43.34 298.60 27.04

9. JU1442 284.40 17.98 276.40 24.61 260.00 55.49

10. JU1494 282.40 35.18 272.20 82.10 283.60 50.15

11. JU262 216.40 83.66 239.80 58.02 237.00 29.39

12. JU319 241.80 135.55 303.20 29.58 195.40 52.51

13. JU345 241.60 22.22 227.20 53.68 220.60 105.57

14. JU362 157.60 53.75 56.00 26.95 181.80 105.99

15. JU393 265.20 22.06 264.60 64.77 254.00 30.27

16. JU400 319.80 39.42 217.20 20.66 283.40 139.95

17. MY1 303.60 25.58 303.60 80.33 301.40 19.63

18. MY16 255.60 23.73 130.60 70.57 245.00 150.27

19. MY2 200.20 24.79 248.40 38.65 151.40 130.09

20. PX174 309.80 17.57 297.20 37.67 284.00 19.46

21. PX179 248.20 44.91 245.80 61.81 175.60 101.90
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Supporting figures: Figure A1, A2 and A3.

Appendix 3: WinBugs code

Model 1

# model’s likelihood

model{

for (i in 1:Nobs){

y[i]� dnorm(mu, tau)

}

#Priors

mu � dnorm(theta,tau.residual)

tau� dgamma(0.001,0.001)

sigma <- sqrt(1/tau)

theta � dnorm(0,1e10)

tau.residual � dgamma(0.001,0.001)

sigma.residual <- sqrt(1/tau.residual)

}

Model 2

# model’s likelihood

model{

for (i in 1:Nobs){

(A) (B)
Figure A1. Results of Model 3 (see main text,

Table 1) showing the posterior distributions of

(A) mean (lj) and (B) standard deviation (rwithin

line j) � CI (Credible Intervals, from Appendix 2

Table A1) of LF of lines fed B. pumilus B215.

The C. elegans line number is shown is shown

in brackets (Appendix 1). The vertical lines

represent the global mean of the posterior

means and standard deviations among lines,

shown in Appendix 2 Table A1.

(A) (B)

Figure A2. Results of Model 3 (see main text,

Table A1) showing the posterior distributions

of each (A) mean (lj) and (B) standard

deviation (r2
within line j) � CI of LF of lines fed

E. coli OP50. The C. elegans line number is

shown is shown in brackets (Appendix 1). The

vertical lines represent the global mean of the

posterior means and standard deviations

among lines, shown in Appendix 2 Table A1.

Figure A3. The CV in LF between the two food environments for

each C. elegans line.
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mu[i] <- muS[line[i]]

y[i]� dnorm(mu[i], tau.among)

}

#Priors

for(j in 1:Nline){

muS[j]� dnorm(theta, tau.residual)

}

tau.among � dgamma(0.001,0.001)

sigma.among <- sqrt(1/tau.among)

#Priors

theta � dnorm(0,1)

tau.residual � dgamma(0.1,0.1)

sigma.residual <- sqrt(1/tau.residual)

}

Model 3

# model’s likelihood

model{

for (i in 1:Nobs){

mu[i] <- muS[line[i]]

y[i]� dnorm(mu[i], tau.within.line[line[i]])

}

#Priors

for(j in 1:Nline){

muS[j]� dnorm(theta, tau.residual)

tau.within.line[j]� dgamma(0.001,0.001)

sigma.within.line[j]) <- (1/tau.within.line[j])

}

#Priors

theta � dnorm(0,1.0E-10)

tau.residual � dgamma(0.001,0.001)

sigma.residual <- sqrt(1/tau.residual)

}

Model 4

#model’s likelihood

model{

for (i in 1:Nobs){

mu[i] <- muS[line[i]] + alpha [exp1[i]]

y[i]� dnorm(mu[i], tau.within.line[line[i]])

}

#Priors

for(j in 1:Nline){

muS[j]� dnorm(theta, tau.residual)

tau.within.line[j]� dgamma(0.001,0.001)

sigma.within.line[j]<-sqrt(1/tau.within.line[j])

}

#Priors

theta � dnorm(0,1.0E-10)

tau.residual � dgamma(0.001,0.001)

sigma.residual <- sqrt(1/tau.residual)

#Priors

for(k in 1:Nexp){

alpha[k]� dnorm(0,1)

}

}

Model 5

#model’s likelihood

model{

for (i in 1:Nobs){

mu[i] <- muS[line[i]]+ alpha[exp1[i]]

y[i]� dnorm(mu[i], tau.among)

}

#Priors

for(j in 1:Nline){

muS[j]� dnorm(theta, tau.residual)

}

tau.among� dgamma(0.001,0.001)

sigma.among <- sqrt(1/tauS tau.among)

#Priors

theta � dnorm(0,1)

tau.residual� dgamma(0.1,0.1)

sigma.residual <- sqrt(1/tau.residual)

#Priors

for(k in 1:Nexp){

alpha[k]� dnorm(0,1)

}

}

We wished to run three parallel chains. Below are the

sets of initial values we used. For all the models, initial

values were the same for both food sources: E. coli and B.

subtilis data.

Model 1:

list(tau =1, tau.residual =1)

list(tau =10, tau.residual =10)

list(tau =100, tau.residual =100)

Model 2:

list(tau.residual =1, tau.among =1)

list(tau.residual =10, tau.among =10)

list(tau.residual =100, tau.among =100)

Model 3:

list(tau.residual =1, tau.within.line =c(1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
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list(tau.residual =10, tau.within.line =c(10, 10,

10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,

10, 10, 10, 10, 10, 10))

list(tau.residual =100, tau.within.line =c(100,

100, 100, 100, 100, 100, 100, 100, 100, 100, 100,

100, 100, 100, 100, 100, 100, 100, 100, 100, 100))

Model 4:

list(tau.residual =1, tau.within.line =c(1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

alpha=c(0,0,0))

list(tau.residual =100, tau.within.line =c(10,

10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,

10, 10, 10, 10, 10, 10, 10), alpha=c(0,0,0))

list(tau.residual =1000, tau.within.line =c(100,

100, 100, 100, 100, 100, 100, 100, 100, 100, 100,

100, 100, 100, 100, 100, 100, 100, 100, 100, 100),

alpha=c(0,0,0))

Model 5:

list(tau.among =1, tau.residual =1, alpha=c

(0,0,0))

list(tau.among =10, tau.residual =10, alpha=c

(0,0,0))

list(tau.among =100, tau.residual =100, alpha=c

(0,0,0))
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