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Human gastrointestinal tract is covered by a monolayer of specialized epithelial cells that constitute a protective barrier surface to
external toxic and infectious agents along with metabolic and digestive functions. Intercellular junctions, among epithelial cells,
such as desmosomes, adherens, gap, and tight junctions (TJs), not only provide mechanical integrity but also limit movement of
molecules across the monolayer. TJ is a complex structure composed of approximately 35 different proteins that interact with each
other at the apical side of two adjacent epithelial cells. Claudin family proteins are important members of TJ with so far 24 known
isoforms in different species. Claudins are structural proteins of TJ that help to control the paracellular movement by forming fence
and barrier across the epithelial monolayer. Altered function of claudins is implicated in different form of cancers, inflammatory
bowel diseases (IBDs), and leaky diarrhea. Based on their significant role in the molecular architecture of TJ, diversity, and disease
association, further understanding about claudin family proteins and their genetic/epigenetic regulators is indispensable.

1. Introduction

Epithelial monolayer (EM) is the largest body tissue lining
many organs in the human body. In the intestine, EM
provides protection to the internal body from toxic and
infectious agents while at the same time it facilitates absorp-
tion of digested food and water from the gut. Epithelial
monolayer integrity and paracellular transport are the impor-
tant features that can be protected and maintained with
the help of epithelial barrier function [1]. Epithelial cells
are connected with each other by four types of junctions,
that is, desmosomes, gap junctions, adherens junctions, and
TJs [2–4]. Tight junctions are impermeable and control the
movement of molecules and ions via a paracellular pathway.
Until recently, tight junction functions were categorized as
“fence” as they separate the apical and basolateral cell surface
domain defining cell polarity or a “barrier” due to their
control over solutes and liquid flow through the paracellular
space between the epithelial cells [5–8]. However TJs are

not restricted to the fence and barrier function but have
been defined to participate in signal transduction processes,
gene expression, cell proliferation, and differentiation [9–11].
Various unidentified external and internal regulators impair
the normal function of TJs causing loss of water and solute in
the passive manner that leads to leaky-flux watery diarrhea.
The unwanted invasion of noxious luminal antigens prolongs
the existence of mucosal inflammatory processes [12].

Tight junction (TJ) is a complex structure constituting of
growing numbers of components, including integral mem-
brane proteins (claudins, occludin, and junctional adhesion
molecules “JAMs”) and peripheral membrane proteins. The
peripheral membrane proteins include (1) scaffold PDZ
(postsynaptic density protein (PSD95), Drosophila discs
large tumor suppressor (Dlg1), and Zonula occludens-1
protein (ZO-1)), multi-PDZ domain protein-1 (MUPP-1),
and membrane-associated guanylate kinase (MAGI-1); (2)
no-PDZ expressing proteins such as cingulin, symplekin,
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atypical protein kinase C, Ras-related protein Rab-3B (Rab-
3b), Ras-related protein Rab-13 (Rab-13), phosphatase and
tensin homolog (PTEN), and 7H6 antigen; (3) cell polarity
molecules ASIP/PAR-3, partitioning defective 6 homolog
alpha (PAR-6), and PALS1-associated TJ protein (PATJ) [13,
14]. Besides these proteins, tricellulin protein has recently
been identified at the epithelial cell junctions with involve-
ment in the barrier function [15].

Claudin family so far includes 24 reported members in
different types ofmammalian cells; among them21 are known
components of TJ in EM in the kidneys, liver, brain, and
intestine [25]. These are involved in various physiological
processes such as regulation of paracellular permeability
and conductance. Claudins are found in homo and het-
erotypic manner in single TJ [13, 26]. They can be divided
into two main categories, “pore-sealing” and pore-forming
claudins. Claudin-1, -3, -4, -5, -7, and -19 are known as
pore-sealing claudins and an increased expression of these
claudin proteins leads to increased tightness of EM and
increased transepithelial electrical resistance (TEER) and
decreases solute permeability across the monolayer [27–31].
On the other hand, claudin-2 and -15 are considered as the
“pore-forming claudins,” because of their ability to form
paracellular anion/cation pores as well as water channels
and therefore they decrease epithelial tightness and increase
solute permeability [13, 32].

Epithelial barrier dysfunctions occur in inflammatory
bowel diseases (IBDs) like Crohn’s disease (CD) or ulcerative
colitis (UC) that contribute to leaky-flux diarrhea, that is,
loss of solutes and water in increased amount dependent
upon the components of TJ proteins. Downregulation of
pore-sealing claudins (e.g., 4, 5, and 8) while upregulation of
pore-forming claudin-2 is observed in active Crohn’s disease
patients [33, 34]. Similarly downregulation of pore-sealing
claudin-4 is also associated with UC disease [34]. Numerous
studies have reported leaky diarrhea in patients undergoing
immunosuppressive therapy after organ transplantation [35–
38]. Recently our group has reported mycophenolic acid-
(MPA-) mediated increased expression of myosin light chain
kinase (MLCK), myosin light chain-2 (MLC-2), and MLC-2
phosphorylation and redistribution of ZO-1 and occludin in
Caco-2 and in HEK-293 cells [39, 40] as a possible mecha-
nism of diarrhea in patients undergoing immunosuppressive
therapy. Transcription factors (TFs) play an important role in
the gene regulation at the promoter level working either as
an activator or as a repressor of a specific gene. The current
review will focus major claudins family members (Table 1)
and their regulators, which alter claudins gene activity at
promoter level and therefore modulate TJs structure and
function.

2. Claudin-1

Claudin-1 protein is a key constituent of TJs and its altered
expression is reported in a variety of cancers, most promi-
nently colorectal cancers [13, 17, 41, 42]. Promoter region
(−1160 bps to −850 bps) of claudin-1 consists of putative bind-
ing sites for caudal-related homeobox (cdx-1, -2), GATA4,

and T-cell factor/lymphoid enhancing factor-1 (Tcf/Lef-1)
transcription factors. There is a direct correlation between
claudin-1 and cdx-2 expression in human colon cancer
patient [17]. Cdx-2 is a homeobox domain-containing nuclear
transcription factor that plays an important role in intestinal
development by regulating the proliferation and differenti-
ation of intestinal cells [43–45], and it is expressed in all
cells along the crypt villus axis. Cdx-2 transcriptional activity
is controlled through mitogen-activated protein kinase/extra
cellular signal regulated kinase pathway (MAPK/ERK path-
way) which phosphorylates it at ser-60 position and resul-
tantly reduces cdx-2 transcription activity in crypt and lowers
villus cells. On the other side, cyclin-dependent kinase 2
(CDK2) phosphorylates cdx-2 at Ser-281 which coordinates
cdx-2 polyubiquitination and degradation by the proteasome
[43, 46–49].

Specificity protein-1 (Sp-1) is the first identified tran-
scription factor of specificity protein/Krüppel-like factor
(Sp/XKLF) family, consisting of 785 amino acids (aa) with
molecular weight of 100 to 110 kDa. Sp-1’s DNA binding
domain is the most conserved among other domains of
SP family members which consisted of Cy2His2 Zinc (Zn)
fingers.Mutational analysis has revealed that Zn fingers 2 and
3 are essential for DNAbinding activity [50]. Sp-1 binds to the
GC-rich elements [51] that are common regulatory elements
in the promoters of numerous genes. Sp-1 binds its individual
binding sites as a multimer and is capable of synergic
activation of promoters containing multiple binding sites
[52] and regulates transcription by dynamically recruiting
and forming complexes with many factors associated with
transcription [53]. Normally Sp-1 has been described as a
transcriptional activator but it can also act as a repressor
[54]. Claudin-1 promoter region (−138 to −76 bp) contains
Sp-1 binding site and a mutation in this region results in a
significant loss of claudin-1 transcription [16].

3. Claudin-2

Claudin-2, also known as leaky protein, forms paracellular
water channels in TJs and mediates paracellular transport of
water molecules across the EM. EMpermeability is enhanced
by increased expression of claudin-2 in TJs. It is also involved
in many signaling pathways, including vitamin D receptor,
epidermal growth factor receptor (EGFR), and c-Jun N-
terminal kinases (JNK) signaling pathways, and contributes
to inflammatory bowel disease and colon cancer [33, 55–
58]. Salmonella infection facilitates bacterial invasion across
the EM by inducing claudin-2 expression and altering its
localization in TJs which is reversible by specific inhibitors
(EGFR (Gefitinib) and JNK (SP600125)), making claudin-2
as a potential therapeutic target to prevent bacterial invasion
and inflammation [59].

Interleukin-6 (IL-6) increases TJ permeability of Caco-
2 monolayer from the basal side by inducing caludin-
2 expression. IL-6 activates the mitogen-activated protein
kinases/extracellular signal-regulated kinases (MEK/ERK)
pathway by inducing phosphorylation of ERK and phos-
phatidylinositol 3-kinase (PI3K/Akt) by phosphorylating



Mediators of Inflammation 3

Table 1: Regulators of claudins.

TJ proteins Regulator Promoter binding region Expression/reference

Claudin-1 Sp-1 −138 to −76 bp ↑ [16]
cdx-2 −1160 to −850 bp ↑ [17]

Claudin-2 cdx-2 −1067 to −1 bp ↑ [18]
Claudin-3 Sp-1 −112 to −74 bp ↑ [19]
Claudin-4 Sp-1 −105 to −49 bps ↑ [20]
Claudin-5 FoxO1 −2,906 to −2,871 bps ↓ [21]
Claudin-7 ELF-3 −150 bps ↑ [22]
Claudin-15 Hnf4𝛼 −693 to −47 bps ↑ [23]
Claudin-19 Sp-1 −139 to −75 bps ↑ [24]
Note: arrow (↑) = upregulation, arrow (↓) = downregulation.

Akt, which in turn enhances cdx-2 expression. In the claudin-
2 promoter region (−1067 to −1), four cdx-2 (cdx-A, -B,
-C, and -D), STAT, and nuclear factor-kappa-light-chain-
enhancer of activated B cells (NF-𝜅B) putative binding sites
are identified. IL-6 induced expression of claudin-2 can be
reversed by using either specific inhibitors of MEK/ERK
and PI3K/AKT pathways (U0126 (a MEK inhibitor) and
LY294002 (a PI3K inhibitor)) or site directed mutagenesis
in the putative cdx-2 binding sites in the promoter region of
claudin-2 gene [18].

4. Claudin-3, Claudin-4, and Claudin-5

Both claudin-3 and claudin-4 are overexpressed in ovarian
cancer. A Sp-1 binding site (−112 and−74 bps) in the promoter
region of claudin-3 is crucial for its activation. Claudin-3
expression is significantly decreased at mRNA and protein
levels, by knocking down the Sp-1 with siRNA, indicating an
essential role of Sp-1 in claudin-3 activation [19]. Claudin-
4 is mainly expressed in the EM of colon, renal tubules,
mammary gland, and thyroid gland and is considerably raised
in their cancers [60]. There are two known Sp-1 binding
sites (between −105 and −49 bps) in the promoter region of
claudin-4 [20].

Caludin-5 is mostly expressed in the TJs of EM of pan-
creatic acinar cells, alveolar lung cells, colon, and endothelial
cells forming the blood-brain barrier and endoneurial blood-
nerve barrier. In colonic regions, its expression is mainly
involved in the paracellular sealing of TJs [33, 61–63]. Both
downregulation and redistribution of claudin-5 can alter TJs
structure leading to barrier dysfunction in active Crohn’s
disease [33]. Forkhead box (foxO) gene family members are
potent transcriptional activators with four known members;
foxO1 (also known as foxO1a), foxO3 (also known as foxO3a),
foxO4, and foxO6 which bind to conserved consensus core
recognition motif TTGTTTAC [64–66]. Four pairs of puta-
tive binding sites for foxO and tcf-𝛽-catenin (Tcf-𝛽-catenin
act as a stabilizer) are identified in the three regions of
claudin-5 promoter (region 1, position −2,906/−2,871; region
2, position −2,317/−2,287; region 3, position −1,103/−1,008).
Both foxO1 and tcf-𝛽-catenin interact with region 1 of the
caludin-5 promoter to repress its transcription [21].

5. Claudin-7

Claudin-7 is expressed prominently in the biphasic type of
synovial sarcoma of adults. E74-like factor 3 (ELF3) belongs
to E26 transformation-specific sequence (ETS) family of
transcription factors and binds to the Ets binding site in
the promoter region (−150 bps) of claudin-7 [22]. Members
of ETS family are mainly involved in cell differentiation,
proliferation, and cell transformation [67]. Regulation of the
target genes by ETS factors depends upon their activation
by MAPK and their association with other cofactors [68,
69]. An essential role of ELF3 is reported in epithelial cell
differentiation [70–72] and small interference RNA (siRNA)
treatment downregulates the claudin-7 expression validating
the central role of ELF3 in claudin-7 activation.

6. Claudin-15

Claudin-15 is a pore-forming protein expressed in the EM
of intestine, liver, and kidney tissues. Downregulation of
claudin-15 decreases permeability of EM layer and can initiate
IBD. Four putative binding sites (BS1-4) of transcription
factor hepatocyte nuclear factor 4 alpha (hnf4𝛼) are present
in the (−693 to −47 bps) region of claudin-15 promoter [23].
Hnf4𝛼 is considered as an important regulator of EM barrier
integrity and is involved in the regulation of metabolism,
cell junction, differentiation, and proliferation of liver and
intestine epithelial cells [73]. Both animal model and IBD
patients’ biopsy studies have shown that an altered expression
of hnf4𝛼directly influences the expression anddistribution of
claudin-15 [23].

7. Claudin-19

The kidney is responsible for the filtration of excretory
material from the blood. However, 25–40% of filtered Na+
[74], 50–60% of filtered Mg2+ [75], and 30–35% of filtered
Ca2+ [76] are reabsorbed into the body by thick ascending
limb, the loop of Henle. Claudin-16 and -19 play a main role
in the regulation of Mg2+ reabsorption and loss of either
claudin-16 or -19 leads to excessive renal waste of Mg2+ [77].
Four putative transcription factor (not characterized, AP2,
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NF-E, and Sp-1) binding sites are located between −139 and
−75 in the promoter region of mouse claudin-19. However,
only Sp-1 is described for having an important role in the
expression of claudin-19 and a mutation in Sp-1 binding site
significantly reduces the claudin-19 expression [24].

8. Conclusion

Tight junctions play an important role in the regulation of
paracellular movement of molecules across the EM, impart
mechanical strength, maintain the polarity of cells, and
prevent the passage of unwanted molecules and pathogens
through the space between the plasma membranes of adja-
cent cells. The efficiency of the junction in preventing ion
passage increases exponentially with the number of strands
of claudins family proteins which are having important role
in the structure as well as controlling paracellular movement
across the tight junctions. Altered expression of claudins
family proteins in TJs plays a key role in numerous abnor-
malities like cancers, IBDs, and leaky diarrhea and a better
understanding of their regulatory mechanism could help in
designing innovative therapeutic strategies.
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