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Abstract

Fathead minnow and zebrafish are among the most intensively studied fish species

in environmental toxicogenomics. To aid the assessment and interpretation of

subtle transcriptomic effects from treatment conditions of interest, better

characterization and understanding are needed for natural variation in gene

expression among fish individuals from lab cultures. Leveraging the transcriptomics

data from a number of our toxicogenomics studies conducted over the years, we

conducted a meta-analysis of nearly 600 microarrays generated from the ovary

tissue of untreated, reproductively mature fathead minnow and zebrafish samples.

As expected, there was considerable batch-to-batch transcriptomic variation; this

‘‘batch-effect’’ appeared to differentially impact subsets of fish transcriptomes in a

nonsystematic way. Temporally more closely spaced batches tended to share a

greater transcriptomic similarity among one another. The overall level of within-

batch variation was quite low in fish ovary tissue, making it a suitable system for

studying chemical stressors with subtle biological effects. The observed differences

in the within-batch variability of gene expression, at the levels of both individual

genes and pathways, were probably both technical and biological. This suggests

that biological interpretation and prioritization of genes and pathways targeted by

experimental conditions should take into account both their intrinsic variability and

the size of induced transcriptional changes. There was significant conservation of

both the genomes and transcriptomes between fathead minnow and zebrafish. The
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high degree of conservation offers promising opportunities in not only studying fish

molecular responses to environmental stressors by a comparative biology

approach, but also effective sharing of a large amount of existing public

transcriptomics data for developing toxicogenomics applications.

Introduction

Among an organism’s responses to environmental perturbations, gene tran-

scription could be regarded as one of the earliest molecular events along the

genotype-phenotype continuum. Dynamic and transient in nature for most genes,

variation in this transcriptional response and its complex regulatory mechanisms

is believed to contribute to much of the phenotypic complexity across biota [1],

[2]. Whole genome expression profiling, now almost two decades old, along with

other companion technologies, has fundamentally shifted the paradigms in

biological research. Simultaneous determination of a large number of gene

transcripts enables experimental and computational construction of a multitude

of molecular interactions at the levels of both individual genes and biological

networks/pathways, greatly facilitating the dissection of an organism’s responses

to changes in its environmental conditions.

An organism’s transcriptome represents its full range of expressed gene

transcripts regulated by a wide variety of molecular control mechanisms. At the

molecular level, gene regulatory complexity is determined in part by the

combinatorial nature of multiple cis-regulatory elements and trans-acting

transcription factors [1]. Gene transcription is also a somewhat stochastic process

[3], [4], with a certain degree of intrinsic ‘‘noise’’ [5]. Organisms with diverse

genotypes are known to impact transcriptomes as well, probably through rewired

gene regulatory circuits since regulatory polymorphisms are both cis- and trans-

acting [6]. From a pragmatic perspective, transcriptome profiling could also be

potentially complicated by the fact that, like many other fields of research, the

work often has to be conducted in different phases over a period of time, often by

different laboratories, and almost always using different materials (e.g., biological

samples and reagents). Under these circumstances, transcriptomic data tend to be

‘‘batch-specific’’. In this context, a batch can be defined by any one of several

factors intrinsic to a study, for example, individual experiments, dates samples are

treated, collected, or processed, and personnel involved in the lab work. Samples

within a batch generally have a greater similarity to one another in their gene

expression profiles than those between, a phenomenon commonly referred as

‘‘batch effects’’ [7]. Since these batch factors are not necessarily independent,

between-batch variation may reflect some of the interactive effects of these

variables as well. While batch effects themselves are typically not the intended

targets of a scientific investigation, their correlations with treatment conditions
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need to be taken into account statistically during data analysis to avoid making

erroneous conclusions [8]–[10].

It is, of course, also possible to introduce technical variation into

transcriptomic data due to methodological differences across studies, for example,

in RNA sample preparation, choice of profiling platforms, data processing

approaches, and so on. Over the years, there have been extensive investigations

into these technical issues and their impact on gene expression profiling by

microarrays [11], [12]. Typically in these studies, common RNA samples were

distributed across labs and tested on various microarray platforms. Different

normalization and analytical procedures were then applied to identify

differentially expressed genes (DEGs) and the concordance among the resultant

gene sets evaluated. It has been found that technical reproducibility across

microarray platforms and labs is generally high [11], and that fold-change in gene

expression is the most consistent metric for comparisons between microarrays

and qPCR (quantitative polymerase chain reaction) [13], [14]. While generally

giving similar results, optimum normalization methods seem to be data-

dependent [15]. Variability observed among microarray platforms could largely

be attributed to differences in probe sequences and reduced sensitivity in detecting

more weakly expressed genes [14]. Variability among microarray runs is also

typically low. Overall, technical variability beyond between-batch variation

appears to be of relatively minor importance in microarrays and the concordance

is high across sites, platforms, and data analysis approaches.

Among a wide range of applications of transcriptomics in various disciplines

are human disease diagnostics/prognostics [16] as well as chemical toxicity and

exposure assessment in ecotoxicology [17]. Yet, in spite of years of developmental

effort, consistency and predictability are still quite low in many gene expression-

based disease biomarkers [18], [19], nor is there a significant number of

ecotoxicological biomarkers proved to be field-ready. One of the major

contributing factors behind these underperforming biomarkers is probably our

inadequate knowledge of the extent and scope of the variability in their respective

transcriptomes, particularly that of biological nature. A lack of thorough

characterization and understanding of such variability makes it difficult to

optimize the designs of transcriptomics experiments, has an adverse impact on the

delineation of molecular mechanisms of action for hazardous chemicals, and

impedes the development of their molecular biomarkers effective on samples

independently collected under different conditions over time.

Fish in general are among the most commonly studied non-mammalian

organisms in environmental toxicogenomics, with the fathead minnow and

zebrafish (Danio rerio) arguably the most studied species in this diverse group. As

a common biological model with extensive genome-level knowledge, the zebrafish

is a logical species of choice for toxicogenomics work. The fathead minnow also is

an attractive model species because it has been the dominant aquatic vertebrate

test organism in regulatory toxicity testing for decades [20]. The relatively recent

evolutionary divergence between the two species also means that a substantial

amount of biological information is transferable between them. There are
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abundant and growing ‘‘-omics’’ resources available for both species. Nonetheless,

despite numerous transcriptomic studies focused on molecular mechanisms of

action of chemicals in the context of hazard identification and biomarker

development, relatively little attention has been paid to transcriptomic variation

among a common batch of untreated individuals from lab cultures. While well

studied in other species, between-batch variation in these fish, to our knowledge,

has not been characterized either. In a recent report on fathead minnow

(Pimephales promelas; PPR), based on samples across different gender-tissue-

treatment conditions, variability among individuals was found to be very high,

with a wide-ranging distribution among genes as well as molecular networks [21].

An assessment and basic understanding of the extent and scope of such

variations should be considered an important priority in order to improve

interpretation of treatment effects caused by chemical stressors and their

discrimination from background variability. Our research team has conducted a

number of microarray studies focused on chemical effects on reproductive

pathways in zebrafish and fathead minnows [22]. This dataset provides an

opportunity to evaluate issues related to transcriptome variability. Given the

strong impact of gender and tissue type on gene expression profiles from these

studies [23], the ‘‘baseline’’ analysis described herein was restricted to ovary

samples from untreated, reproductively mature fathead minnow and zebrafish in

order to avoid contributions from sex- and tissue-dependent effects. The

objectives of the current analyses were to determine: 1) the extent of between-

batch variation, namely, how much gene expression profiles of untreated lab fish

change over time or experiments; 2) the extent of within-batch variation in gene

expression among individuals and its partitioning across different levels of

organization, from whole transcriptome, to molecular pathways and individual

genes; and 3) transcriptomic conservation between fathead minnow and zebrafish

with respect to their within-batch variation.

Materials and Methods

A total of 511 fathead minnow and 80 zebrafish microarrays from samples of

ovary tissue in untreated lab fish were assembled from a number of experiments

conducted by our research team between 2004 and 2010 (Table 1). These

microarray samples could be grouped in a variety of ways. For the purposes of this

investigation, we chose to consider five factors that broadly align with various

stages of gene expression profiling: the original experiments they belonged to

(Experiment), dates the ovary tissue samples were collected (Sampling Date),

dates RNA samples were prepared (RNA Date), people who prepared RNA (RNA

Person), and the date microarrays were scanned (Scan Date). These factors were

nested to various degrees so they were not independent. Each factor contained a

different number of batches (i.e., different experiments, sampling dates, or

people). Throughout this report, between-batch variation is defined as significant

changes in gene expression between two batches of untreated samples within the
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same factor and measured by the number of DEGs. Within-batch variation is

defined as differences in gene expression among individuals within the same batch

after taking into account between-batch variation statistically. Note that standard

normalization methods cannot effectively remove between-batch variation

Table 1. Factors and batches (N) by which fathead minnow (PPR) and zebrafish (DRE) microarray samples were organized.

Species Experiment Sampling Date RNA Date RNA Person Scan Date

N59 N59 N54 N52 N55

DRE (80) CTL_FAD24 (5) CTL_2004_12 (10) CTL_2005_1 (10) CTL_A (65) CTL_2007_12 (47)

CTL_FIP48_96 (10) CTL_2005_1 (5) CTL_2005_3 (5) CTL_B (15) CTL_2007_2 (4)

CTL_FLU48_96 (10) CTL_2006_10 (10) CTL_2006_11 (30) CTL_2007_3 (24)

CTL_KTC24_48_96 (15) CTL_2006_4 (10) CTL_2007_6 (35) CTL_2007_4 (2)

CTL_MUSC96 (5) CTL_2006_5 (10) CTL_2008_4 (3)

CTL_PRO48_96 (10) CTL_2006_9 (10)

CTL_TRB24_48 (10) CTL_2007_2 (5)

CTL_TRI96 (5) CTL_2007_4 (5)

CTL_VIN48_96 (10) CTL_2007_5 (15)

N523 N516 N517 N510 N518

PPR (511) BPA_NOTEL (6) 2007_12 (4) 11111 (12) DDD (20) 2008_10 (10)

FAD_I_Acute (12) 2007_2 (12) 2007_12 (58) A (32) 2008_11 (22)

FAD_III_Acute (20) 2007_3 (72) 2007_4 (12) B (124) 2008_12 (62)

FAD_Phase3 (60) 2007_6 (54) 2007_6 (60) B_ROBOT (54) 2008_4 (12)

FLU_II_Acute (20) 2007_7 (24) 2008_11 (19) C (24) 2008_5 (10)

FLU_Phase3 (38) 2008_1 (54) 2008_2 (12) J (23) 2008_6 (132)

GEM (5) 2008_2 (12) 2008_6 (124) L (126) 2008_7 (38)

KTC_I_Acute (12) 2008_4 (51) 2008_7 (44) R (60) 2008_8 (26)

KTC_IV_Acute (28) 2008_5 (78) 2008_9 (32) X (36) 2009_1 (40)

KTCv2_Phase3 (39) 2008_8 (52) 2009_1 (20) YYY (12) 2009_10 (6)

PRO_I_Acute (12) 2009_1 (5) 2009_10 (44) 2009_11 (39)

PRO_Phase3 (54) 2009_10 (67) 2009_11 (29) 2009_2 (30)

RDX_Repro (4) 2009_6 (4) 2009_7 (9) 2009_6 (23)

TNT_KTC_Acute (24) 2009_7 (10) 2009_9 (5) 2009_7 (8)

TRB_BPA (6) 2009_9 (6) 2010_02 (6) 2009_9 (14)

TRB_EE2 (4) 2010_1 (6) 2010_1 (5) 2010_1 (28)

TRB_Phase3 (54) 55555 (20) 2010_2 (5)

TRB_TCC (5) 2010_7 (6)

TRI_II_Acute (20)

TRI_Phase3 (32)

VIN_II_Acute (19)

VIN_Phase3 (32)

WLSSD (5)

Sample sizes were indicated in parenthesis.
BPA, bisphenol-A; EE2, 17a-ethynyl estradiol; FAD, fadrozole; FIP, fipronil; FLU, flutamide; GEM, Gemfibrozil; KTC, ketoconazole; PRO, prochloraz; RDX,
hexahydro-1,3,5-trinitro-1,3,5-triazine; TRB, 17 -trenbolone; TNT, 2,4,6-trinitrotoluene; TRI, trilostane; VIN, vinclozolin; WLSSD, effluent from Western Lake
Superior Sanitary District; RNA Date not determined: 11111, 55555; RNA Person not determined: DDD, YYY.

doi:10.1371/journal.pone.0114178.t001
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because of its nonsystematic and differential impact on subsets of a transcriptome

[8].

Fish culture, sampling, RNA preparation, and microarray profiling

A brief overview of fish culture, sampling, RNA preparation, and microarray gene

expression profiling is provided below. Further details about these procedures

were described elsewhere [22]–[24]. Because these samples originally served as

controls for treatments with a variety of chemicals, this overview describes

common procedures applied to both treated and untreated fish from their

respective experiments. Moreover, these experiments were conducted over a

period of six years, thus can be considered largely independent. All animals were

treated humanely and with regard for alleviation of suffering, and all laboratory

procedures involving animals were reviewed and approved by the US EPA Animal

Care and Use Committee in accordance with Animal Welfare Act regulations and

Interagency Research Animal Committee guidelines. The entire microarray

dataset is available at the National Center for Biotechnology Information Gene

Expression Omnibus (NCBI-GEO) [25] as the accession GSE60202.

Zebrafish Experiments

Reproductively mature zebrafish (ab wild-type strain, 5–7 months old) were

exposed to a continuous flow of sand filtered, UV-sterilized, Lake Superior water

(LSW; controls) for 24, 48, or 96 h at the US Environmental Protection Agency

(USEPA) laboratory in Duluth, Minnesota. At the end of each exposure period,

fish were anesthetized in a buffered solution of tricaine methanesulfonate (MS-

222; Finquel, Argent, Redmond WA, USA) and ovaries were collected and shipped

overnight on dry ice to the USEPA laboratory in Cincinnati, Ohio. Total RNA

isolated from selected tissue samples was then sent to Cogenics Corporation, an

Agilent certified contract laboratory (Morrisville, North Carolina 27560, USA).

Hybridization was conducted using a two-color protocol on Agilent zebrafish

microarrays with 21K probes (design 013223 and design 015064, Agilent

Technologies, Santa Clara, CA, USA), followed by high-resolution scanning and

image processing by Agilent Feature Extraction software. Eighty ovary controls for

nine treatment conditions, all based on the design 015064, were included in this

study.

Fathead Minnow Experiments

Reproductively mature fathead minnows (5–7 months old) reared at the US EPA

laboratory in Duluth were exposed to LSW. All exposures were continuous flow-

through exposures. Representative experimental designs for the experiments

included as part of the current analysis have been detailed elsewhere [26], [27]. At

the end of each exposure period, ovary tissues used for the transcriptomic analyses

considered in the present study were snap-frozen in liquid nitrogen and stored at

280 C̊ until RNA was extracted, using either Qiagen RNeasy mini kits (Qiagen,

Valencia, CA, USA) or Tri-Reagent (Sigma, St. Louis, MO, USA). Expression
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profiling was carried out using a single-color protocol on Agilent fathead minnow

microarray with 15 K probes (design 019597, GEO accession GPL9248) [28] at

the Environmental Laboratory of the US Army Engineer Research and

Development Center in Vicksburg, Mississippi. One mg of total RNA was used for

all hybridizations. Probe labeling, amplification, and hybridization were

performed using Agilent Quick Amp Labeling Kit following the manufacturer’s

One-Color Microarray Hybridization Protocol. Microarrays were scanned with a

high-resolution scanner and the images were processed with Agilent Feature

Extraction software.

Microarray Data Analysis

Various analyses were conducted in the R environment (www.r-project.org)

primarily by using the Limma package [29]. Pre-processing was first conducted

on the raw data files from Agilent Feature Extraction software prior to any

analysis. This included background correction and quantile normalization for

single-color fathead minnow microarrays, and background correction, loess

normalization, and quantile normalization for two-color zebrafish microarrays.

Between-batch Variation

The size of between-batch effect could be estimated by DEG count, variance

partitioning of total variance on a per gene basis to within-batch and between-

batch components, or a composite variance measure such as that from principal

variance component analysis, a hybrid of principle component analysis (PCA) and

variance partitioning [7]. To be comparable, however, to the typical estimates of

treatment effects in transcriptomics as well as the estimates of transcriptomic

variation both within and between populations [30]–[36], DEG count was chosen

in this study to approximate the scale of between-batch variation. Since many

combinations of factor by batch were not available in this leveraged dataset,

factorial analysis was not possible. Some of the combinations also lacked adequate

replication. Hence, between-batch variation in gene expression was determined by

forming statistical contrasts among various batches under individual factors and

then identifying the number of DEGs therein by modified t-tests. Samples from

individual batches were compared to two different types of references so the

between-batch variation for a given factor could have two estimates for

comparison. The first was constructed by taking the mean expression value of

each gene among the replicates within each batch under a factor. In other words, a

factor with four batches each containing multiple replicates would form a

simulated reference group containing four expression values for each gene. This

method will hereafter be referred to as the simulated reference. The second

reference type was used in conjunction with estimating within-batch variation,

where an original factor (for example Experiment) and a simulated factor

(containing two created levels of ‘‘case’’ and ‘‘control’’) were included in a general

linear model (GLM). The batches under the original factor effectively served as

experimental blocks. To estimate between-batch variation, one batch was
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designated as a common reference and compared against each of the remaining

batches throughout the permutations. This method will be referred to as the

designated reference.

Between-batch variation was further evaluated by several approaches. To

provide an empirical critical value to assess the statistical significance of DEG

counts, a non-parametric distribution of the number of DEGs between batches

was generated. Microarray sample labels were permuted according to the original

number of replicates in each batch under the factor Experiment to generate 1000

simulated datasets, followed by identifying DEGs in paired comparisons between a

selected common reference batch and each of the remaining batches in every

dataset. Note that a different batch was selected as a common reference in the

analysis of each simulated dataset. To determine if between-batch variation is

biologically significant, the 100 DEGs with the highest F statistic p-values for

between-batch variation under each factor were also combined and analyzed for

possible enrichment in biological pathways by DAVID (The Database for

Annotation, Visualization and Integrated Discovery) [37]. Finally, to visualize

batch effects, all DEGs identified in each factor were combined and made non-

redundant. PCAs were conducted on these DEGs based on the expression values

of either individual samples or the average of individual batch in each factor.

Similarly, hierarchical clustering was carried out on DEGs using the R package

PVclust with 100 bootstraps (http://www.is.titech.ac.jp/,shimo/prog/pvclust/).

Within-batch Variation

Individuals within a batch are subjected to the same degree of technical variation,

thus their differences should better reflect biological variability. We used two

different approaches to evaluate within-batch variation. First, for a given factor,

half the samples in each batch randomly assigned as ‘‘case’’ were compared to the

remaining half assigned as ‘‘control’’ for DEGs during each of 250 permutations.

Between-batch variation was controlled in these analyses by including the factor

under consideration in the GLM to ensure the comparisons were made within a

batch. This method essentially searched through samples’ possible membership

assignments between the two classes to uncover the configuration where the

number of DEGs was maximized. This DEG count served as an indirect measure

of the variation among individuals. To be included in these permutations, each

batch needed to contain a minimum of ten (zebrafish) or 12 (fathead minnow)

samples, respectively, to ensure that there were at least 250 unique permutations

and the maximum amount of data was utilized. Second, the coefficient of

variation (CV) and intensity of individual probes were also calculated from

multiple biological replicates in individual batches under the Experiment factor

and averaged over all its batches. An assessment of these two simple metrics both

within and between the two species, at the levels of entire transcriptome, KEGG

(Kyoto Encyclopedia of Genes and Genomes) molecular pathways, and individual

genes, would be informative of not only gene expression variability among

individuals and relative biological contribution to this variability, but also the

interspecific transcriptomic conservation as well. The simple linear regressions
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and validations of their underlying statistical assumptions were conducted for

selected inter- and intraspecific comparisons of these two metrics using

‘‘RegressIt’’, an Excel macro developed jointly at Duke University and University

of Texas (http://regressit.com/index.html).

To allow interspecific comparison of within-batch variation, probes from

Agilent design 019597 (fathead minnow) and 015064 (zebrafish) representing

orthologous genes were identified through several successive steps of identifica-

tion (ID) mapping. Probe sequences from Agilent 019597 were first mapped to

their corresponding EST (Expressed Sequence Tag) target sequences (courtesy of

Dr. Nancy Denslow, University of Florida, Gainesville, Florida, USA;

e-mail: ndenslow@ufl.edu) by TBLASTX so the latter with a greater sequence

length could be used as queries for more successful mapping across species. The

EST sequences were then mapped to the NCBI (National Center for

Biotechnology Information) nucleotide (NT, as of March, 2013) and protein (NR,

as of July 2013) databases by TBLASTX and BLASTX respectively, effectively

associating fathead minnow probe IDs to their corresponding NCBI accession

IDs. All three rounds of mapping had a minimum E-value cutoff of E206. These

fathead minnow IDs were then joined to a variety of zebrafish accession IDs

prepared by the NCBI (‘‘gene2accession’’ as of April, 2014; ftp://ftp.ncbi.nlm.nih.

gov/gene/DATA/), and finally to Agilent probe annotations (https://earray.chem.

agilent.com/earray/). In the end, a total of 9311 probes from probes from Agilent

019597 through 6617 common Entrez GeneIDs in NCBI (S1 Table). These probes

were then organized into 162 KEGG pathways available as of April, 2014 (http://

rest.kegg.jp/link/dre/pathway) by these GeneIDs. Before the pathway level the CV

and intensity of those duplicated probes were consolidated first by Entrez

GeneIDs.

The analytical procedures described above for both between- and within-batch

variation were incorporated into several R (www.r-project.org) scripts developed

by the authors based primarily on the R. In contrast to DEG determination by a

regular t-test (or F-test), this software fits expression data of each gene into a

linear model and generates a modified t-statistic (or F-statistic for multiple

contrasts) using an empirical Bayesian and hierarchical modeling approach to

adjust for unreliable variance estimates caused by small sample size [38]. The

work flow started with data pre-processing, followed by linear model fitting,

calculating a modified t-statistic for each gene, and finally multiple test

corrections to generate DEGs from a given statistical contrast. Since the fathead

minnow and zebrafish data were in Agilent one-color and two-color formats

respectively, they were handled differently in normalization. The fathead minnow

data were quantile-normalized only. The zebrafish data were, however, both loess-

[39] and quantile-normalized. These within- and between-array normalization

were necessary for zebrafish microarrays because their two-color channels each

containing a treated and a control sample had to be split into single channel

intensities; and only the control samples were analyzed across microarrays [29].

The channel-splitting was accomplished by several relevant functions in the
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Limma package based on mixed model methods to effectively decouple the

correlated intensities between the two channels.

Results

Between-batch Variation

Between-batch variation was estimated by organizing samples according to one of

the five factors under consideration and then comparing each batch to either the

simulated reference or the designated reference. Both types of comparisons

revealed considerable variation between batches in fathead minnow and zebrafish

(Table 2, 3). Measured against the threshold values of 104 and 594 at 0.1%

significance from the non-parametric distributions generated for fathead minnow

and zebrafish by permutations (Figure S1A, S1B in S1 File), the average numbers

of DEGs per pair of batch comparison were all statistically significant, regardless

of the species and factors under which batches were compared. In general,

between-batch variation measured by the simulated reference method was less

than that of the designated reference, especially in fathead minnow. When all the

DEGs from between-batch variation were pooled under individual factors, the

total number (percentage of total genes) impacted were 13101 (86%; Experiment),

10871 (71%; RNA Date), 10576 (70%; Sampling Date), 10160 (67%; Scan Date),

and 3322 (22%; RNA Person) for fathead minnow, and 13581 (63%; Experiment),

12522 (58%; RNA Date), 13581 (63%; Sampling Date), 10187 (47%; Scan Date),

9383 (44%; RNA Person) for zebrafish.

Between-batch variation was also apparent in PCA plots (Figure S2–S6 in S2

File, Figure S7–S11 in S3 File) and dendrograms (Figure S12–S16 in S4 File,

Figure S17–S21 in S5 File). For example, samples were largely segregated in the

PCA plots by the batch they belonged to under the Experiment factor in both

species (Figure S2B in S2 File, Figure S7B in S3 File). There was also a tendency

for batches that were temporally closer to one another to share a greater similarity

in their gene expression profiles (Figure S5A in S2 File, Figure S10A in S3 File).

The numerous fathead minnow samples made it difficult to observe sample

clustering by batch in their crowded dendrogram (Figure S12B in S4 File), but a

pattern could clearly be seen with the zebrafish samples (Figure S17B in S5 File).

Indeed, the PCA plots and dendrograms showed very similar patterns of sample

clustering by batch in each of the four other factors of both species.

The DEGs from between-batch variation in both the fathead minnow and

zebrafish were not enriched with any KEGG pathways, GO terms, or other types of

gene functional groups (S2 Table, S3).

Within-batch Variation

Within-batch variation was assessed based on DEG counts and gene expression

CVs. Identified between two classes of ‘‘case’’ and ‘‘control’’ randomly created

within each batch by many permutations, the maximum number of DEGs per
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permutation varied considerably among the factors. In the fathead minnow, RNA

Person generated the greatest number of DEGs, followed by Sampling Date,

Experiment, RNA Date, and Scan Date (Table 4). In zebrafish, within-batch

variation was again the largest under RNA Person, followed by Scan Date, RNA

Date, Experiment, and Sampling Date. When measured by the CVs of individual

genes within each batch under the Experiment factor, the picture of within-batch

variation for these species became quite complex. Globally, when all the genes

from each species were considered, those with lower expression tended to have

greater CVs in general (Fig. 1A, 1B). However, the genes with the highest

variability appeared to have different levels of expression in the two species: lower

level in the fathead minnow but more mid-level in zebrafish. With a global CV of

around 0.05 as averaged across all genes over individual batches, approximately

50% of genes had CVs below and 30% of genes above this average, in both species

(Table 5, Figure S22A and S22B in S6 File). There was little batch-to-batch

difference in CVs averaged within individual batches. Roughly 5% of genes had

CVs greater than 0.1. And similar percentages of genes were distributed over the

entire range of CVs in the two transcriptomes. However, comparison of orthologs

between the two species suggested that fathead minnow was somewhat more

variable than zebrafish, as a greater percentage of genes of the former species were

found in ranges with higher CVs.

Within-batch variation was also examined within individual species at the

molecular pathway level by placing the 6617 orthologs into individual KEGG

pathways (S4 Table). There were 144 out of 162 pathways each containing at least

five orthologs. Compared to the global transcriptomic CV average of 0.05 in both

species, the average CV by pathways ranged from 0.018 (dre03430, Mismatch

Repair) to 0.098 (dre00360, Phenylalanine Metabolism) in zebrafish, and 0.034

(dre03010, Ribosome) to 0.082 (dre00072, Synthesis and Degradation of Ketone

Table 2. Between-batch variation as measured by average number of DEGs (standard deviations where N.3).

Species/sample condition Experiment Sampling Date Scan Date RNA Date RNA Person

PPR 2360 (1033) 1498 (1032) 1123 (1102) 1907 (756) 434 (525)

DRE 2754 (1684) 2754 (1684) 2845 (2320) 4403 (2435) 5593

The DEGs were identified in paired comparisons of N batches against a simulated reference made up of the batch means of their respective factors. DRE,
zebrafish; PPR, fathead minnow.

doi:10.1371/journal.pone.0114178.t002

Table 3. Between-batch variation as measured by average number of DEGs (standard deviations where N.3).

Species/sample condition Experiment Sampling Date Scan Date RNA Date RNA Person

PPR 4517 (889) 4312 (1009) 4640 (1616) 4667 (941) 5872 (2045)

DRE 2523 (1651) 2841 (2141) 6321 5503 3669

The DEGs were identified in paired comparisons of N–1 batches against a batch designated as a common reference. N is the total number of batches in a
factor. The comparisons were made in conjunction with the analysis of within-batch effects involving 250 permutations. There were little variations in
between-batch effects among permutations so their calculations were made only from the first permutation. DRE, zebrafish; PPR, fathead minnow.

doi:10.1371/journal.pone.0114178.t003
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Bodies) in fathead minnow. Globally, average gene expression intensity among the

individuals within the same batch was 8.5 for the two species. At pathway level,

gene expression intensity ranged from 6.33 (dre04080, Neuroactive ligand-

receptor interaction) to 13.63 (dre03010, Ribosome) in zebrafish, and from 6.23

(dre00360, Phenylalanine Metabolism) to 12.67 (dre03010, Ribosome) in fathead

minnow. In both species, the average CV by pathway was inversely correlated with

the average expression intensity (Fig. 2A, 2B).

Within-batch variation was further compared at the pathway level between the

two species. There were 87 and 55 pathways significantly correlated by ortholog

intensities and CVs respectively at p-value of 0.1 or less. Each of these pathways

contained at least five orthologs (S4 Table). The average membership

Table 4. Within-batch variation as measured by the maximum (% of transcriptome) and minimum number of DEGs per permutation.

DEGs per
permutation Experiment Experiment

Sampling
Date

Sampling
Date

Scan
Date

Scan
Date

RNA
Date

RNA
Date

RNA
Person

RNA
Person

PPR DRE PPR DRE PPR DRE PPR DRE PPR DRE

Maximum 267 (1.8) 52 (0.2) 393 (2.6) 10 (0.05) 25 (0.2) 1120 (5.2) 156 (1.0) 192 (0.9) 883 (5.8) 3613 (16.8)

Minimum 0 0 0 0 0 216 0 0 0 1153

There were 250 permutations conducted under individual factors. Between-batch variation was controlled statistically in these analyses. PPR, fathead
minnow; DRE, zebrafish.

doi:10.1371/journal.pone.0114178.t004

Fig. 1. Estimation of within-batch variation. Coefficients of variation (CV) were computed at various intensities of 15208 fathead minnow probes (A) and
21495 zebrafish probes (B).

doi:10.1371/journal.pone.0114178.g001
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representation of these pathways (number of orthologs over total number of

member genes) was 43%, over a range of 12%–75%. When the two species were

compared across all the orthologs, both their gene expression intensities and the

Table 5. Within-batch variation as measured by coefficient of variation (CV).

CV range DRE probes (% total) PPR probes (% total) DRE probes orthologous to PPR PPR probes orthologous to DRE

,0.01 409 (1.9) 3 (0.02) 344 (3.7) 1 (0)

0.01–0.049 10721 (49.9) 7625 (50.1) 5956 (64.0) 3825 (55)

0.05–0.059 3651 (17.0) 2738 (18) 922 (9.9) 1166 (16.8)

0.06–0.069 2728 (12.7) 1661 (10.9) 738 (7.9) 662 (9.5)

0.07–0.079 1573 (7.3) 1065 (7.0) 440 (4.7) 429 (6.2)

0.08–0.089 856 (4.0) 664 (4.4) 276 (3.0) 278 (4.0)

0.09–0.099 491 (2.3) 466 (3.1) 168 (1.8) 183 (2.6)

0.1–0.199 896 (4.2) 909 (6.0) 406 (4.4) 379 (5.5)

$0.2 170 (0.8) 77 (0.5) 61 (0.7) 27 (0.4)

Total 21495 15208 9311 6950

The CVs were calculated for each probe by individual batches under the Experiment factor and averaged over all batches. Further averaging these CVs
across the entire transcriptome yielded an overall CV of 0.056 for fathead minnow (PPR) and 0.051 for zebrafish (DRE). The total number of orthologous
genes identified between Agilent 015064 and 019597 was 6617, represented by 9311 and 6950 unique probes respectively. The PPR probes mapped to
their EST sequences and ESTs to NCBI databases by BLAST all had a minimum E-value of E-06.

doi:10.1371/journal.pone.0114178.t005

Fig. 2. Intraspecific correlation between the average CV and average intensity by KEGG pathways. A total of 136 pathways (eight outliers excluded)
were included for fathead minnow (A) and 144 pathways for zebrafish (B). The CCs were 20.68 and 20.70 respectively, with both p-values50. The p-values
of normality test of error distribution for linear regressions were 0.094 (no significant departure from normality) and 0 (significant non-normality) respectively.

doi:10.1371/journal.pone.0114178.g002
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CVs were significantly correlated (Fig. 3A, 3B), with correlation coefficients (CCs)

of 0.49 and 0.33, respectively, and p-values of 0. The correlation of CVs by

individual pathways ranged from 0.24 (dre04010, MAPK signaling pathway;

dre01100, Metabolic Pathways) to 0.85 (dre00563, Glycosylphophatidylinositol-

anchor biosynthesis), and the correlation of intensities varied from 0.19

(dre03040, Spliceosome) to 0.93 (dre00790, Folate biosynthesis). Correlation and

regression of average gene expression intensities of the 84 pathways (three outliers

excluded) between the two species resulted in a CC of 0.86 and R2 of 0.75

(Fig. 4A). Similarly, a correlation and regression of the average CVs of the 53

pathways (two outliers excluded) yielded a CC of 0.80 and R2 of 0.64 (Fig. 4B).

The p-values for both CCs were 0.

Lastly, within-batch variation was also examined at the individual gene level. In

fathead minnow, 36 of the top 50 most variable genes had expression intensities

below the global average of 8.5 (S5 Table). For zebrafish, the pattern was reversed,

with only 18 of the top 50 having expression intensities less than the global

average (S6 Table). Interestingly, many members of the vitellogenin (egg yolk

precursor) gene family were found among this group of the most variable genes.

Fig. 3. Interspecific correlation by within-batch intensity and coefficient of variation of orthologs. The within-batch intensities (A) and coefficients of
variation (CV; B) were based on 6617 orthologous genes. The orthologs were represented by 9311 zebrafish (DRE) and 6950 fathead minnow (PPR)
probes. The intensity and CV of an ortholog with duplicated probes were probe means. The correlation coefficients over the orthologs for the two metrics
were 0.49 and 0.33 respectively, with the both p-values50.

doi:10.1371/journal.pone.0114178.g003
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Discussion

An ideal design to study within-batch transcriptomic variation in untreated fish

samples should closely reflect the real world conditions under which these

organisms are deployed for toxicity testing. These typically include random

samples from a large and long term lab culture with a genetically heterogeneous

background, chemical exposures and gene expression profiling conducted over an

extended period of time, as well as variation in lab personnel and supplies. We

leveraged data from almost 600 microarrays generated from many different

studies conducted over several years to evaluate transcriptomic variation among a

common batch of untreated fish samples.

Conceptually, there are at least two different approaches to assess and remove

between-batch variation present among samples assembled from different studies

in order to estimate transcriptomic variation among individual fish. One is to pre-

process gene expression data using various algorithms so between-batch variation

is removed prior to conducting any analysis of interest [9], [10]. This, in effect,

creates an adjusted gene expression matrix encompassing the entire dataset.

Variance, for example, could then be estimated for each probe as a measure of

variation in gene expression among individual fish. Alternatively, between-batch

variation could be appropriately controlled statistically in GLM and unbiased

Fig. 4. Interspecific correlation by average intensity and average coefficient of variation of individual pathways. A total of 84 (three outliers excluded)
KEGG pathways were calculated for their average intensities (A), and 53 (two outliers excluded) pathways for their average CVs (B), based on a combined
total of 6617 orthologous genes. To be included, each pathway must have at least five orthologs and a p-value of #0.1 for the correlation of the intensities or
CVs of its member genes as estimated within a batch. The CCs were 0.86 and 0.80 for the average intensity and average CV by pathway respectively, with
the both p-values50. The p-values of normality test of error distribution for linear regressions were 0.045 and 0.585 respectively.

doi:10.1371/journal.pone.0114178.g004
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estimates could then be obtained for between- and/or within-batch variation

separately. The latter approach was adopted in this study, using either the

simulated reference or the designated reference method. The main advantage of

the GLM method is that within- and between-batch variation is estimated

simultaneously in a well-established statistical framework. Moreover, it also

presents variation in the form of DEG counts, the most common measure of

treatment effects utilized in transcriptomic studies.

As expected, there was significant variation between batches in both the fathead

minnow and zebrafish regardless of the factors, as evidenced by both high DEG

counts from modified t-tests, and graphic separation of samples by the original

batches in relevant PCA plots and dendrograms. Several lines of evidence indicate

that the between-batch variation has a nonsystematic impact at the transcriptome

level [8]. First, regular data pre-processing including normalization designed to

primarily deal with systematic biases could not remove between-batch variation.

Second, the total number of genes pooled from between-batch variation under an

individual factor was much greater than those from its individual pair of between-

batch comparisons. In other words, each such comparison turned up a great many

previously unobserved DEGs. And third, the top-ranked DEGs by p-values from

between-batch variation were not enriched with any KEGG pathways, GO terms,

or gene functional groups. As to the generally smaller estimate of between-batch

variation observed using the simulated reference compared to the designated

reference method, it is likely that the former artificially inflated the variance of

each gene in the constructed reference group, thus making t-tests more

conservative. Note that the five factors selected in this study to group samples are

not independent, which is reflected in their many shared DEGs and the similar

patterns observed in their PCA plots and clustering dendrograms. These factors

may have all contributed, to a various extent, to the tendency that temporally

more closely spaced batches shared a greater transcriptomic similarity to one

another.

In the context of an overall low level of transcriptomic variation among fish

ovary samples within the same batch, relative variability across the transcriptome,

molecular pathways, and genes was still quite substantial. The estimated overall

CV of 0.05 in ovary is only 10% of the previously reported fathead minnow CV

across genders, tissues, and experimental conditions [21]. In both species,

however, a large number of genes are at least twice as variable (CV$0.1); and

when assembled into molecular pathways, the difference in average variability and

expression intensity could reach several-fold. There are at least two ways to

interpret these observations. On the one hand, the generally low variability in

ovary tissue should make it a suitable system to study chemicals with subtle

transcriptomic effects. On the other hand, even relatively slight differences in gene

expression could very well be biologically significant and consequential in some

cases. Given that the transcriptomic variability in this study was assessed under

the homogeneous conditions of a common tissue type from fish raised in a

controlled environment to a similar reproductive maturity, at least some of these
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differences are probably attributable to fish ovaries at different stages of egg

development.

Within-batch variation measured indirectly by DEG counts is probably both

over- and under-estimated. For the factor RNA Person and Scan Date in zebrafish,

the DEG counts were likely inflated because a large number of sample replicates

were distributed into only two batches under each of these two factors, and

between-batch variation was probably not removed completely. The other

estimates were generally low suggesting less than 2% of the transcriptomes was

impacted. Without knowing the exact distribution of sample variability, an even

split of samples into two classes randomized over many permutations may not

discover the optimum configuration where the DEG count is maximal.

Exhaustively searching through all possible sample class assignments for such a

configuration is computationally very resource-intensive. For example, assuming

the fathead minnow has an equal batch size of 22 samples per batch (511 samples/

23 batches) under the Experiment factor, dividing the samples into two classes

with each containing four to 11 samples will result in 2.46E+6 configurations. In

this context of possible under-estimation, within-batch variation seems to be

dependent on the factors upon which samples were grouped, with the factor RNA

Person, which had the fewest groups, being responsible for the largest variation.

There have been a limited number of studies reporting transcriptomic variation

among individuals within a population, which are similar in nature to the within-

batch variation under consideration here. These studies were limited to several

organisms sampled from wild or lab populations with different levels of

heterozygosity. Most of them were based on utilizing technical replicates to

various degrees to estimate variability. The range of variation by percentage of

genes identified as DEGs is quite wide: 2 to 9% in nematode (whole organism)

[31], 17 to 28% (heart) and 38 to 61% (brain) in mummichog [35], [40], 0.8%

(liver), 1.9% (testis), 3.3% (kidney), and 4% (liver) in mouse [34], [41], and 11 to

83% in human (lymphoblastoid cell lines) [33], [42]. Compared to these values,

the 0.2% and 1.8% of genes determined as DEGs in the present study for zebrafish

and fathead minnow ovary tissue under the factor Experiment, although probably

underestimated, appear to be at the lower end of the variation range. However, it

is difficult to generalize here about interspecific trends in transcriptomic variation

because the current fish study is limited only to ovary tissues sampled from a long

term lab culture, while these previous studies vary considerably with regard to

levels of genetic variation, tissue types, and degrees of technical replication.

The expression intensities of the orthologs and their variation within-batch

differed considerably among the molecular pathways in the two species. For

example, in both species, some of the pathways involved in basic cellular functions

such as Ribosome, RNA Transport, Citrate Cycle, Cell Cycle, and RNA

Polymerase tended to be less variable. Some of the metabolic pathways, on the

other hand, were more variable in both species but involved in different functions.

Many pathways involved in signal transduction were expressed on average at a

fairly low level, while those participating in basic cellular functions like DNA

replication and protein synthesis were highly expressed. Although this difference
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in the average variability of pathways could be explained to a considerable extent

by an inverse correlation with average intensity (in other words due to technical

reasons), a large portion of the variance in the average CV remains unaccounted

for by the average intensity at pathway level (R250.46 and 0.49, Fig. 2A, 2B).

Conceivably, this unexplained variance could have several contributing sources.

Within an individual organism, the variances of mRNA transcripts and proteins

in a population of similar cells such as those from ovary tissue were believed to be

inversely proportional to their levels of expression [43], [44]. In other words,

weakly expressed genes are inherently more variable. Among individuals,

asynchronous egg development in fish sampled within-batch may also be linked to

altered gene expression profiles [45]. Potential genetic polymorphisms among

individuals could also contribute to the variability in gene expression [46], [47].

Further complicating the picture is the finding that genes with different expression

variance were not randomly distributed among molecular pathways [48], [49].

Those genes with a greater network connectivity and serving more critical

functions in a pathway tended to be less variable. This hypothesis is not suited for

testing in the current dataset, however, because reverse engineering of gene

networks requires expression data with a wide dynamic range, achieved by either

experimental perturbations or taking samples with diverse phenotypes [50]. For

future studies, a proper deconvolution of gene expression variability due to

technical and biological reasons is essential to the interpretation of treatment-

induced effects in a transcriptomics study.

The levels of within-batch variation differed among individual genes. The top

50 most variable genes, however, did not overlap between the two species, with the

exception of vitellogenin. While some of these genes lack adequate annotations,

asynchronous egg development in ovaries is probably a primary contributing

factor to the discrepancy. This developmental heterogeneity, along with a

naturally large dynamic range of expression, could also be invoked to explain in

part why vitellogenin genes are among the most variable ones in fish ovary

transcriptomes. The common observation of high variance linked to low

expression does not fully explain vitellogenin variability in this study, at least not

for zebrafish. Interestingly, in the livers of fathead minnow males, variance of

vitellogenin expression increased with estrogen exposure concentration and

duration [51]. If this gene is somehow intrinsically variable, it may become

difficult to detect its differential expression during ovary development [52].

A comparative analysis of transcriptomic variation based on the orthologous

genes between fathead minnow and zebrafish could provide significant biological

insights to the integration of these two model species for toxicogenomics

applications. Both are members of the family Cyprinidae, and were estimated to

have shared a last common ancestor 31 million years ago [53]. In the absence of a

finished fathead minnow genome and with incomplete annotations of zebrafish, a

total of only 6617 orthologs between the two species were identified through

indirect multi-step ID mapping. This number represents only 25% of the 26000

zebrafish protein-coding genes [54]. Given that 69% of zebrafish genes have at

least one ortholog to phylogenetically distant human species, the 6617 orthologs
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determined here most likely represent only a subset of the two evolutionarily more

closely-related fish genomes under this study. Still, the strong correlation of both

the variation and expression intensity over these orthologs suggests that the

overall transcriptomes of the two species are probably well conserved. Even more

importantly, the strongest correlation of both variation and intensity in gene

expression was observed when evaluated at the pathway level. If this high degree of

conservation, reflected in both relatively static genomes and dynamic transcrip-

tomes, and reflected in a number of currently annotated molecular pathways

dedicated to critical cellular functions, extends to most of the orthologs and

pathways yet to be identified and annotated, there will be scientific opportunities

to integrate these two model species for a variety of toxicogenomics applications.

For example, zebrafish has a very large and increasing number of gene expression

profiles available to the public. The expression data from both species could be

effectively combined based on their orthologs to create a reference collection of

rank-ordered gene lists much greater than it is possible from the fathead minnow

alone. Such a collection will enable fish connectivity mapping for studying

chemical exposures and their mechanisms of action [55], [56].

In summary, achieving a better understanding of the level and extent of

transcriptomic variation among untreated individuals should improve our ability

to discriminate treatment effects from background ‘‘noise’’ and inform their

biological interpretations. Significant, and most likely nonsystematic, between-

batch variation found in the fathead minnow and zebrafish transcriptomes calls

for its appropriate handling in their future meta-analysis. Temporally more

closely spaced batches tended to share a greater transcriptomic similarity among

one another. The overall low level of within-batch transcriptomic variation in fish

ovary tissue, on the other hand, makes it a suitable system for studying chemical

stressors with subtle biological effects. The observed differences in the within-

batch variability of gene expression, at the levels of both individual genes and

pathways, were probably both technical and biological. This suggests that

biological interpretation and prioritization of genes and pathways targeted by

experimental conditions should take into account both their intrinsic variability

and the size of induced transcriptional changes. An intrinsically less variable gene

or pathway with a slight change in expression might be just as informative for

evaluating treatment effects as the highly expressed but more variable one. The

significant conservation of both the genomes and transcriptomes between the

fathead minnow and zebrafish over currently identified orthologs suggests

promising opportunities in not only studying fish molecular responses to

environmental stressors by a comparative biology approach, but also effective

sharing of a large amount of existing public transcriptomics data for developing

toxicogenomics applications.
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Supporting Information

S1 Table. Cross-mapped probes from Agilent design 015064 (zebrafish) and

019597 (fathead minnow) via their orthologs. A total of 9311 probes from

Agilent 015064 were linked to 6950 probes from Agilent 019597 through 6617

common Entrez GeneIDs in NCBI.

doi:10.1371/journal.pone.0114178.s001 (XLSX)

S2 Table. The DAVID analysis of fathead minnow DEGs. The top 100 DEGs

were combined from the between-batch variation under each factor for possible

enrichment in biological pathways.

doi:10.1371/journal.pone.0114178.s002 (PDF)

S3 Table. The DAVID analysis of zebrafish DEGs. The top 100 DEGs were

combined from the between-batch variation under each factor for possible

enrichment in biological pathways.

doi:10.1371/journal.pone.0114178.s003 (PDF)

S4 Table. Interspecific comparison of within-batch variation at the molecular

pathway level. A total of 6617 orthologous genes were grouped into 144 out of the

162 KEGG pathways as of April, 2014. The intensity and CV were calculated by

individual batches each containing multiple biological replicates under the

Experiment factor, and then averaged over all batches. Only pathways with at least

five orthologs were included. KEGG, Kyoto Encyclopedia of Genes and Genomes;

DRE, zebrafish; PPR, fathead minnow.

doi:10.1371/journal.pone.0114178.s004 (XLSX)

S5 Table. The top 50 most variable fathead minnow (PPR) genes based on

average within-batch coefficient of variation (CV) under the Experiment

factor.

doi:10.1371/journal.pone.0114178.s005 (DOCX)

S6 Table. The top 50 most variable zebrafish (DRE) genes based on average

within-batch coefficient of variation (CV) under the Experiment factor.

doi:10.1371/journal.pone.0114178.s006 (DOCX)

S1 File. Average number of DEGs per pair of between-batch comparison in

1000 permutations. Fathead minnow (Figure S1A) critical cutoffs were: 5%, 15;

1%, 27; 0.1%, 104. Zebrafish (Figure S1B) critical cutoffs were: 5%, 418; 1%, 479;

0.1%, 594. Samples were grouped by the factor Experiment.

doi:10.1371/journal.pone.0114178.s007 (PDF)

S2 File. The PCA plots of fathead minnow samples based on all the DEGs

identified as between-batch variation. Samples were grouped by Experiment

(Figure S2A, S2B), RNA Date (Figure S3A, S3B), RNA Person (Figure S4A, S4B),

Sampling Date (Figure S5A, S5B), and Scan Date (Figure S6A, S6B). Each figure

was based on either the average gene intensity by individual batches (A) or the

gene intensity of individual samples (B). DEGs were based on the simulated

reference method.

doi:10.1371/journal.pone.0114178.s008 (PDF)
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S3 File. The PCA plots of zebrafish samples based on all the DEGs identified as

between-batch variation. Samples were grouped by Experiment (Figure S7A,

S7B), RNA Date (Figure S8A, S8B), RNA Person (Figure S9A, S9B), Sampling

Date (Figure S10A, S10B), and Scan Date (Figure S11A, S11B). Each figure was

based on either the average gene intensity by individual batches (A) or the gene

intensity of individual samples (B). DEGs were based on the simulated reference

method.

doi:10.1371/journal.pone.0114178.s009 (PDF)

S4 File. The dendrograms from resampling clustering of fathead minnow

samples based on all the DEGs identified as between-batch variation. Samples

were grouped by Experiment (Figure S12A, S12B), RNA Date (Figure S13A,

S13B), RNA Person (Figure S14A, S14B), Sampling Date (Figure S15A, S15B), and

Scan Date (Figure S16A, S16B). Each figure was based on either the average gene

intensity by individual batches (A) or the gene intensity of individual samples (B).

DEGs were based on the simulated reference method.

doi:10.1371/journal.pone.0114178.s010 (PDF)

S5 File. The dendrogram from resampling clustering of zebrafish samples

based on all the DEGs identified as between-batch variation. Samples were

grouped by Experiment (Figure S17A, S17B), RNA Date (Figure S18A, S18B),

RNA Person (Figure S19A, S19B), Sampling Date (Figure S20A, S20B), and Scan

Date (Figure S21A, S21B). Each figure was based on either the average gene

intensity by individual batches (A) or the gene intensity of individual samples (B).

DEGs were based on the simulated reference method.

doi:10.1371/journal.pone.0114178.s011 (PDF)

S6 File. The distribution of within-batch coefficients of variation (CV) of probe

intensities. Fathead minnow (Figure S22A) CVs were based on 15208 probes, and

zebrafish (Figure S22B) CVs were based on 21495 probes.

doi:10.1371/journal.pone.0114178.s012 (PDF)
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