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Abstract

A previously developed joint-space metabolic energy expenditure (MEE) model includes
subject-specific parameters and was validated using level walking gait data. In this work, we
determine how well this joint-space model performs during various walking grades (-8%,
0%, and 8%) at 0.8 m-s " and 1.3 m-s "' using published gait data in the literature. In
response to those results, we formulate an optimization problem and solve it through the
particle swam method plus fmincon function in MATLAB to identify a new optimal weighting
parameter set for each grade that produces more accurate predicted MEE and we compare
our new findings with seven other MEE models in the literature. The current study matched
the measured MEE the best with the lowest RMSE values for level (0.45 J-kg '-m ™)

and downhill (0.82 J-kg ~'-m ") walking and the third lowest RMSE value for uphill

(1.56 J-kg "'-m ") walking, where another MEE model, Looney et al., had the lowest RMSE
for uphill (1.27 J-kg ~'-m *') walking. Bland-Altman plots and three independent-samples
t-tests show that there was no statistical significant difference between experimentally mea-
sured MEE and estimated MEE during the three walking conditions, meaning that the three
new optimal weighting parameter sets can be used with 6 degree of freedom (DOF) lower
extremity motion data to better estimate whole body MEE in those scenarios. We believe
that this work is a step towards identifying a single robust parameter set that allows for accu-
rate estimation of MEE during any task, with the potential to mitigate a limitation of indirect
calorimetry requiring lengthy steady state motion.

1. Introduction

The ability to estimate metabolic energy expenditure (MEE) is desirable for many reasons.
This measurement could inform physical laborers on when to stop a particular task, especially
for those in the military. Gaining insight on how much energy a task requires could also pin-
point how much sustenance would be needed for the individual to achieve those goals. The
ability to compare MEE between tasks would also be helpful. For example, a variety of lifting
techniques could be evaluated to see which lifting task requires the least amount of energy,
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therefore, potentially identifying the most ergonomic and cost-effective approach to the lifting
task.

Experimental measurement of MEE can be done via indirect calorimetry which estimates
MEE based on oxygen uptake. However, a shortcoming of indirect calorimetry measurement
is that it is limited to steady state tasks such as walking or cycling [1]. As an alternative, a vari-
ety of methods have been developed that estimate MEE in the literature. Some approaches
involve calculating mechanical work based on body segment and center of mass motion [2, 3],
consider mechanical work and locomotion efficiency [4], and predict optimal expenditure
depending on the locomotion [5]. In this work, we focus on three types of MEE models:
empirical predictive equations, muscle-space-based, and joint-space-based.

Empirical predictive equation formulations are typically simplistic, where whole body met-
abolic energy consumption is estimated by using few input variables. Some depend only on
grade [6], while others are a function of a combination of speed, grade, load carriage, body
mass, terrain coefficients, and oxygen consumption [7-10]. These models can be very accurate
when applied and they are easy to use, but they are limited to the specific task that they are vali-
dated for like walking or running and cannot always account for tasks beyond that scope.

Muscle MEE models define MEE by utilizing the first law of thermodynamics, where MEE
is a summation of mechanical work and heat liberation. Many muscle-based MEE models
exist [11, 12] and some are even included as an analysis plug-in [13, 14] for the published mus-
culoskeletal modeling software OpenSim [15], which allows researchers to easily estimate
MEE based on their muscle simulation results. These MEE models rely on the Hill-Type
model [16] which functions according to muscle lengths, muscle activations, and muscle stim-
ulation. As a result, muscle-based MEE models require detailed muscle information and some
estimation of muscle activity for a specific task to calculate MEE, which can sometimes be chal-
lenging to obtain.

Joint-space-based MEE models are derived from muscle MEE models but are framed in the
joint-space instead of the muscle-space [17, 18]. Using a muscle-space model often requires
muscle simulations that can be determined via optimization [19, 20]. The optimization uses
joint moments to determine each muscle’s contribution to a body segment’s motion. Joint-
space-based models eliminate the need for the muscle activation prediction and muscle infor-
mation, and instead rely on commonly acquired motion data such as joint kinematics and
ground reaction forces which uses motion capture in combination with force plates to calcu-
late joint moments. The motion data allows for greater subject specificity as opposed to using
empirical equation formulas which use simple measurements for height and weight but do not
account for more detailed anthropometric differences between participants such as body seg-
ment lengths. Considering this, joint-space-based models require less information than is
needed for muscle-space models yet provides a more subject specific MEE estimation than is
provided by empirical equations.

A previous study compared seven MEE models (6 muscle-space-based and 1 joint-space-
based) and found that muscle-based MEE models performed better than the joint-based
model [21]. The joint-based model they used was developed by Kim and Roberts [17]. Since
then, an enhanced version of that model was developed which incorporates subject-specific
heat coefficients when calculating MEE instead of the more generalized coefficients used in its
predecessor [18]. Roberts et al. [18] determined these heat coefficients using only level walking
data and it has not been tested in other motion scenarios, such as uphill or downhill walking.
Therefore, the original weighting parameter set may not be suitable for tasks beyond level
walking and its performance under different circumstances has not yet been investigated. This
joint-space model has the potential to estimate a larger range of tasks beyond the typical steady
state scenarios previously mentioned. However, until we gain confidence in a robust
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parameter set that can be used for a broader range of tasks, continued testing of steady state
tasks is needed before advancing to more complex, non-steady state situations. Therefore, this
work is a first step towards exploring beyond steady-state walking on level ground as the Rob-
erts model was originally validated for by testing the model with various inclines.

The foundation of this work is built on the previously validated MEE model developed by
Roberts et al. [18]. In this model, the generalized heat rate coefficients incorporate weighting
parameters and subject-specific parameters which include subject mass, height, age, and maxi-
mum knee torque. The coefficient weighting parameters are identified by solving an optimiza-
tion problem which minimizes the root-mean-square error (RMSE) between measured and
model-estimated MEE. Their work was validated for level walking at various speeds, but uphill
and downbhill walking was not considered. In this work, we determine how well Roberts’
model performs during level, uphill, and downbhill walking at two walking speeds using pub-
lished gait data. In response, new weighting parameter sets that would result in a more accu-
rate metabolic energy consumption estimation are identified by solving a similar optimization
problem through the particle swam method plus finincon function in MATLAB. Finally, we
compare our new results to the results found by using empirical predictive equation, muscle-
spaced-based, and joint-space-based MEE models.

2. Method
2.1 Subjects

Published gait data of 12 healthy subjects are used in this study and subject information is
listed in Table 1 [22]. The data set is split into a training group and a validation group. The
training group contains 8 participants that are used in the weighting parameter optimization
process. The validation group contains 4 participants that are used to demonstrate the success
of the new parameter set found through the optimization procedure. A student’s t-test is used
to ensure that the training and validation group do not have any statistical differences in mass,
height, and age.

2.2 Data collection

As described in previous work [21], the participants were asked to perform six walking trials
with varying speed (0.8 m-s ' and 1.3 m-s ') and grade (-8%, 0%, and 8%) conditions. The
order of trials was randomized. Pulmonary gas exchange rates were measured during all walk-
ing trials and was used to calculate measured metabolic rate (W-kg '). Koelewijn et al. [21, 22]
used a motion capture system and force plates to collect kinematic and kinetic data. All raw
and processed experimental data were available online. The processed joint velocities, joint
moments, and measured metabolic rates are used in this study. Gait cycles are averaged for
each walking condition and resampled to 100 data points. The data contain 6 degrees of

Table 1. Subject information for training and validation [22].

Group Subjects
Training 1,3,10,11
2,5,6,7
Validation 4
8
9
12

https://doi.org/10.1371/journal.pone.0267120.t001

Sex Mass (kg) Height (m) Age (yrs)
Male 74.72 £14.73 1.80 £ 0.08 25.00 £5.94
Female 64.30 £9.32 1.68 £ 0.08 22.25+3.95
Male 90.58 1.72 34
Male 59.25 1.70 25
Female 68.72 1.70 20
Female 67.28 1.69 21
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freedom (DOFs) which include hip flexion, knee flexion, and ankle dorsiflexion, bilaterally, as
shown in Fig 1. The measured metabolic cost (J-kg '-m ') for each trial is calculated through
dividing the metabolic rate (W-kg ') by the walking speed (m-s ).

2.3 Joint-based metabolic energy expenditure model

This study uses a metabolic energy consumption model which calculates MEE based on joint
moments and joint angular velocities [18]. The intention of this paper is not to define a new
MEE model, but to identify new weighting parameter sets that allow the model to handle new
walking scenarios. Therefore, we will briefly describe the theory for Roberts’ model, but more
details can be found in the original paper. The metabolic energy expenditure rate (W) as a

function of time, E™*(t), is defined by the following equation:
E™(1) = W"(1) + U'(1) — Q™(¢) + E°(1) (1)

W is the work rate done by non-conservative internal forces, U is the internal thermal
energy, Q" is the heat transfer rate across the system boundary, and E° is the metabolic energy
that is not related to muscles. Individually, each component can be expanded as follows. First,

Wit is defined by the summation in Eq (2):
() = 3 50,00 )

7,(t) is the joint torque and g,(¢) is the joint velocity at the ith DOF. # is the total number of
DOF in the human model. Next, U* — Q*' represents the heat exchanges occurring within the
body and are defined by the summations in Eq (3):

U(r) (1) = 3 b (0] + 30 b (0),0) (3)

h{" is the heat coefficient associated with joint actuator torque and torque-dependent co-con-

traction. h!' is the heat coefficient associated with joint mechanical power. Lastly, E° is the met-
abolic energy that is not related to muscles, i.e. basal metabolic rate. The heat coefficients, h}"

and h are formulated as follows:

,L.max N .
B = (W + WM + wim A + Wit H) (1 + wi" jﬂ'ﬁ;jﬁ”“*) (i=1,...,n) (4)
knee
B = (W +w/M+ wjA + wiH) <1 + ijsz-m> (i=1,...,n) (5)
knee

M, A, H, and 1} represent the participant’s mass, age, height, and measured maximum knee tor-
que, respectively. The published gait data did not include measured maximum knee torque for
each participant, therefore we chose to estimate a maximum knee torque for men and women
based on the averages found in Roberts’ original work, where men averaged 212.4 N-m and

women averaged 107.6 N-m. 7' is the average human’s maximum knee torque and 7"** is the

knee
average human’s maximum i* torque. w = [w®", w® w2 e w wi wi wd, wi, wi]" repre-
sent the weighting parameters, which were solved by Roberts et al. [18] as shown in Table 2.

2.4 Optimization formulation

As described by Roberts et al. [18], the weighting parameters were estimated by minimizing a
least squares problem. Similarly, this study calculates a new set of weighting parameters that
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Fig 1. 6 DOF model.
https://doi.org/10.1371/journal.pone.0267120.g001
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Table 2. Original weight parameter estimation for level walking from Roberts et al. [18] without normalization.

wy" —2.27 x 107
wi" —6.40 x 1077
Wy 1.61 x 10°°
wy" 1.43 x 107"
Wy 9.79 x 107"
w 3.45 x 107
wi 1.07 x 10~
Wi —1.46 x 10”
wi" 1.82 x 10"

wi —6.97 x 107°

https://doi.org/10.1371/journal.pone.0267120.t002

could better estimate level, uphill, and downhill walking. The design variables are w =
[weam wom wam wem wim et wd wd wsd ws]" for each of the walking conditions. The cost func-
tion used in our study is described in Eq (6):

f=\—x— (6)

E"™ represents the measured experimental energy expenditure and E™ represents the energy
expenditure estimated from the model, and N represents the number of data points.

In response to the irreversibility of heat dissipation, it is assumed that both heat coefficients
must be non-negative. Therefore, the following inequality constraints are enforced:

wo" + WM+ wi"A+wi"H > 0 (7)

wi + wiM + wyA + wiH > 0 (8)

1+WT(%%>ﬁmzoazLuqm 9)
knee

1Hﬁ<%§)ﬁ“200_1,”m) (10)
Tknee

Metabolic energy expenditure does not recharge via negative joint work; therefore, the fol-
lowing constraint is employed in Eq (11).

©(1)4,(6) + B[ (1) + (04, (0)] = 0 (1= 1,....,n for V) (11)

Lastly, the total MEE is considered non-negative and bounded by the subject-specific maxi-
mum oxygen uptake (maximum VO,). Although maximum VO, can be estimated using age
and resting heart rate [23, 24], resting heart rate was not provided with the published data
from Koelewijn et al. [22]. Therefore, we chose to alter this constraint by bounding the calcu-
lated total MEE by an estimated maximum MEE, E™*, which we chose to be 110-115% of the
measured MEE. The final constraint is defined in Eq (12):

0 S EM S Emax (12)

Three optimizations were carried out via the MATLAB functions particleswarm and fmin-
con using a personal computer (Intel Core i7-8750H CPU @ 2.20GHz with 16.0 GB RAM) to
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identify three new parameter sets for level, uphill, and downhill walking, respectively. A swarm
size of 100 was used and no upper or lower bounds were enforced. The particle swarm optimi-
zation would terminate when the relative change in the best objective function value was less
than the default function tolerance (10~°). The results from the particle swarm optimization
were used as the initial parameter values for the fimincon optimization. Default settings were
used for fimincon optimization where function tolerance was 10~° and the results from the
fmincon optimization were used as the new parameter sets for the validation group to assess fit
for the three walking conditions.

2.5 Statistical design and analysis

An independent-samples t-test is performed using SPSS to determine if there are any statistical
differences in mass, height, and age between the training and validation groups. No outliers
are identified via boxplots and both groups are normally distributed as assessed by Shapiro-
WilK’s test, p > 0.05. Homogeneity of variance, as assessed by Levene’s test, is present in mass
(p = 0.744) and age (p = 0.791) but could not be assumed for height (p = 0.031), therefore a
Welch t-test is used for height [25].

A RMSE calculation, Bland-Altman plots, and independent-samples t-tests are used to
assess how well the MEE results from the validation group matched the experimental measure-
ments for level, uphill, and downhill walking. When comparing the measured MEE to the esti-
mated MEE for the three walking conditions using the t-test, there were no outliers identified
via boxplots and all groups were normally distributed as assessed by Shapiro-Wilk’s test,

p > 0.05. Homogeneity of variance, as assessed by Levene’s test, is present in the three walking
conditions, p > 0.05.

In addition to calculating the RMSE for the current model, seven other MEE models are
included for comparison. These included two muscle-based models [13, 14], three empirical
predictive equations [7-10], and two joint-based models [17, 18]. The two muscle-based models
are chosen because they are readily available within the OpenSim software which means that
they are easily accessible to users. The three empirical predictive equations are included in the
comparison because they have not been previously compared to both muscle-based and joint-
based MEE models and they are the easiest to use. The two joint-based models are included to
demonstrate the progression of the MEE model development up to the current study.

The muscle-based models and Kim and Roberts [17] were previously calculated via the
published data. Therefore, the results from the Koelewijn database were directly used to calcu-
late RMSE of the validation group for the muscle-based models and Kim’s model without
manually calculating the energy consumption ourselves. Originally, Koelewijn reported net
MEE calculations in the dataset, therefore we added basal metabolic rate (BMR) to the two
muscle-based models and Kim’s model by using the Harris-Benedict equation [26]. The origi-
nal parameter set from Roberts was used and RMSE was calculated for that group. Again,
because we did not have measured maximum knee torque for each participant, we estimated
those values. The empirical predictive equations were used to calculate the MEE for the valida-
tion group, and we assumed a terrain coefficient equal to 1 since the published gait data used a
treadmill. More information on these models can be found in the S1 File.

3. Results
3.1 T-test for verification and validation groups

The results from the independent-samples t-test show that there is no significant statistical dif-
ferences in mass (£(10) = -0.245; p = 0.811), height (#(7.449) = 1.142; p = 0.289), or age (#(10) =
-0.417; p = 0.685) between the verification and validation groups.
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Table 3. Optimization initial values for weighting parameters found via particle swarm.

Level Uphill Downbhill
wim —1.30 x 10° —3.27 x 10° —2.64 x 10°
Wi 1.05 x 10° 1.28 x 10° 7.05 x 10
wam —2.76 x 10° —1.12 x 10° —1.13 x 107
wan 4.16 x 10° —1.34 x 10° 3.76 x 10°
Wy 8.70 x 10’ 4.69 x 10 1.06 x 10°
wi —1.24 x 10° —1.84 x 10° 8.52 x 10"
wy 3.16 x 10° —2.33 x 10° —2.93 x 10°
Wy 5.51 x 10" 2.71 x 10° —4.10 x 10
wi" —7.39x 107 —5.52 x 107 —5.55 x 107
wi -7.01 x 107° -5.91 x 107* —7.44 x 107

https://doi.org/10.1371/journal.pone.0267120.t003

3.2 Parameter sets

Three new weighting parameter sets are identified by separately solving three optimization
problems dealing with level, uphill, and downhill walking. Each weighting parameter set is cal-
culated by enforcing constraints that pertained to their respective walking condition and mini-
mizing the objective function, using only the trials for that specific condition (8 total trials per
condition). The weighting parameters, the design variables within the optimization, were not
restricted to any upper or lower bounds. The E™* for level walking and uphill walking at both
speeds is set to 110% of measured MEE. The E”** for downhill walking at 1.3 m-s™* and 0.8
m-s™ is set to 115% and 110% of measured MEE, respectively. The initial parameter set values
used for the fmincon optimization setup and final optimal weighting parameter sets can be
seen in Tables 3 and 4.

3.3 RMSE calculation for all models

After the parameter sets are identified for each walking case, they are used to evaluate the vali-
dation group’s energy expenditure using the joint-based MEE model. These joint-space model
results are compared to the MEE estimations from other MEE models and measured MEE as
shown in Fig 2. In Table 5, the validation group (4 subjects) RMSE values between the mea-
sured and estimated MEE for each model and each condition is calculated, including the

Table 4. Optimal weighting parameter set values for each condition.

Original (Roberts et al., 2016)

wy™" —2.27 x 10
wam —6.40 x 10
wam 1.61 x 10~
wam 1.43 x 10~
w 9.79 x 10~
w! 3.45 x 10~
w 1.07 x 10~
wi! —1.46 x 10~
wam 1.82 x 10"
wy —6.97 x 10~

https://doi.org/10.1371/journal.pone.0267120.t004

Level Uphill Downhill
- 4.49 x 10° 9.31 x 10° —8.94 x 107"
- 1.35 x 107? —1.64 x 107? —4.87 x 107°
6 —4.87 x 107* —1.06 x 107" —8.82 x 107°
: —1.39 x 10° —2.10 x 10° 8.77 x 107"
! —1.46 x 10° —9.03 x 10° 1.97 x 10°
4 —1.44 x 107? 3.95 x 1072 4.37x 107"
2 3.55 x 107* 2.00 x 107" 4.67 x 107
! 1.75 x 10° 2.11 x 10° —9.76 x 107"
—6.64 x 107 7.68 x 107 3.02 x 107
5 2.32 x 107° —2.24 x 107° —1.17x 107°
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(a) Level Walking (b) Uphill Walking (c) Downhill Walking
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Fig 2. MEE model comparison and error bars represent + 1 SD: (a) Level walking, (b) uphill walking, and (c) downhill walking.
https://doi.org/10.1371/journal.pone.0267120.g002

RMSE for all conditions. Table 6 also includes the training group and the validation group
RMSE values for each of the three walking conditions and the RMSE values for all condition.

For level walking, the average measured walking MEE is 4.60 + 0.49 J-kg '-m "' Our study
had the highest average calculation (4.68 + 0.60 J-kg “L.m 1) and Roberts has the lowest average
calculation (2.58 £ 0.18 J-kg Tm ™). Kim (2.80 + 0.19 J'kg “L.m ), like Roberts, largely under-
estimated the MEE measurement. The muscle-based models, Bhargava (3.00 + 0.31 J-kg ™
1 and Umberger (3.36 + 0.48 J-kg L.m ™), also underestimate MEE and do not fall within the
range of the measured MEE. The three empirical models, Pandolf (3.09 + 0.02 J-kg Tm™),
Ludlow (3.16 £ 0.35 J-kg Tm), and Looney (3.72 + 0.44 J-kg “L.m ), underestimate mea-
sured MEE. This study has the closest agreement and falls within the range of the measured
MEE with a RMSE of 0.45 J-kg '-m ",

During uphill walking, the average measured walking MEE is 7.02 + 0.99 J-kg *-m . Our
study has the highest estimation (7.91 + 0.86 J-kg "'-m ™) and Roberts has the lowest estimation
(2.89 +0.44 J-kg "m "). Kim (3.59 + 0.25 J-kg "'-m '), Bhargava (4.08 + 0.47 J-kg '-m ™),
Umberger (4.08 + 0.53 J-kg "-m '), Ludlow (5.43 + 0.22 J-kg "-m "), and Pandolf (5.89 + 0.02
J'kg “L.m 1) each underestimate the measured MEE. Looney (6.12 + 0.44 J-kg Lm Y also
underestimates the measured MEE, although part of its range overlaps with the measured with
a RMSE of 1.27 J-kg ""-m ™. Our study overestimates MEE but our range overlaps with the
measured MEE with a RMSE of 1.56 J-kg '-m .

The average measured metabolic cost during downhill walking is 3.68 + 0.62 J-kg '-m
Our study (3.46 + 0.89 J-kg ""-m ') has the highest estimation of MEE and Bhargava
(2.05+0.25 J-kg "-m ") has the lowest estimation of MEE. Kim (2.57 + 0.27 J-kg "'-m '), Pan-
dolf (2.29 £ 0.11 J-kg Lm ™), Ludlow (2.61 + 0.34 J-kg Tm), and Bhargava all greatly under-
estimate MEE. Umberger (2.83 + 0.48 J-kg “L.m 1), Roberts (2.96 + 0.43 J-kg Im™), and
Looney (2.76 + 0.34 J-kg "-m ™) also underestimate MEE, but their ranges overlap with the
range of the measured MEE. Our study underestimated MEE, but our range encompasses the
measured MEE with a RMSE of 1.05 J-kg "-m .

-1

Table 5. Validation group (4 participants) RMSE values (J-kg '-m ™) for each model during level, uphill, and downhill walking.

Model Level Uphill Downbhill (N = 8) All Conditions (N = 24)
(N=8) (N=8)

Kim 1.83 3.54 1.20 2.40
Roberts 2.06 4.31 0.92 2.81
Looney 0.95 1.27 1.05 1.10
Ludlow 1.48 1.86 1.17 1.53
Pandolf 1.58 1.46 1.53 1.52
Bhargava 1.67 3.04 1.73 2.24
Umberger 1.32 3.06 1.01 2.01
This Study 0.45 1.56 0.82 1.05

https://doi.org/10.1371/journal.pone.0267120.t005
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Table 6. Training group (8 participants) and the validation group (4 participants) RMSE values (J-kg "-m ') during level, uphill, and downhill walking.

Group Level Uphill Downhill All Conditions
Training 0.41 0.68 0.46 0.53
(N =16) (N =16) (N=15) (N =47)
Validation 0.45 1.56 0.82 1.05
(N=8) (N=8) (N=38) (N =24)

https://doi.org/10.1371/journal.pone.0267120.t006

3.4 Bland-Altman plots and T-test

The Bland-Altmann plots in Fig 3 show how closely the current study estimates MEE com-
pared to the measured MEE. For level walking, the plot shows a bias of -0.08 J-kg "-m " and
all data points fall within the 95% limits of agreement. The plot for uphill walking shows a bias
of -0.89 J-kg ':m "' and all but one data point fall within the 95% limits of agreement. Finally,
the downhill walking plot shows a bias of 0.21 J-kg ""-m ™" and all data points fall within the
95% limits of agreement.

Our independent-samples t-test results showed that there were no statistical differences
between the measured and estimated MEE values for level (#(14) = -0.292, p = 0.774), uphill (¢
(14) = -1.919, p = 0.076), or downhill walking (#(14) = 0.556, p = 0.587).

3.5 Respiratory exchange ratio values during walking trials

It is important to ensure that respiratory exchange ratio (RER) values remain in bounds of 0.7
to 1.0 when calculating metabolic rate. Koelewijn et al. [21] stated that they used the average
respiratory quotient over the time for each trial where the first three minutes of walking data
were discarded. We have replicated those average RER values using the raw data provided by
Koelewijn’s dataset for each trial in Table 7.

4. Discussion

The results from the optimal weighting parameter set provided interesting results. It was antic-
ipated that the level walking parameter set would closely align with the original parameter set
because Roberts et al. [18] validated their model under a similar walking condition. Instead,
the weighting values had some differences. Specifically, parameters w2, w4™, wy and, w}
increased in value from the original parameter values while the others decreased in value. The
values may have altered in response to our gait data including only 6 DOF (lower extremities)
instead of 42 DOF (whole body), as in Roberts’ original work. The uphill and downbhill param-
eter sets do not have any frame of reference for comparison, but some trends can be identified

among the three conditions. First, there is a consistent increase in value from downhill to level

(a) Level Walking (b) Uphill Walking (c) Downhill Walking
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Fig 3. Bland-Altman Plots for Measured MEE and Estimated MEE: (a) Level walking, (b) uphill walking, and (c) downhill walking. The solid blue line
represents the bias and the dashed red lines represent the 95% limits of agreement about the bias + 1.96-SD.

https://doi.org/10.1371/journal.pone.0267120.9003
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Table 7. Average RER values (non-dimensional) for each trial from Koelewijn et al. [22]. Note that there is no data for Subject 11 during downhill walking at 1.3 m-s '

as it was not available in the dataset.

Subject Level Level Uphill Uphill Downhill Downbhill

1.3ms ™! 0.8m-s ' 1.3ms ™! 0.8m-s ! 1.3ms ™! 0.8m-s !
1 0.83 0.87 0.83 0.87 0.87 0.90
2 0.78 0.81 0.84 0.81 0.75 0.81
3 0.82 0.92 0.91 0.95 0.80 0.92
4 0.76 0.77 0.82 0.77 0.77 0.78
5 0.84 0.78 0.83 0.83 0.80 0.77
6 0.80 0.79 0.83 0.80 0.81 0.77
7 0.84 0.81 0.84 0.81 0.85 0.88
8 0.91 0.92 0.96 0.90 0.92 0.86
9 0.82 0.83 0.85 0.79 0.84 0.84
10 0.82 0.84 0.85 0.82 0.86 0.84
11 0.74 0.75 0.81 0.74 N/A 0.81
12 0.75 0.74 0.81 0.78 0.77 0.77

https://doi.org/10.1371/journal.pone.0267120.t007

to uphill for parameters w%" and wi. Additionally, there is a consistent decrease in value from
downhill to level to uphill for parameters w5™, wi" and w;]. The remaining parameters do not
have any recognizable pattern.

The empirical predictive equations, Looney, Ludlow and Pandolf had RMSE values which
ranged from 0.95 to 1.86 J-kg '-m "'. All empirical predictive equations underestimated the
measured MEE values and followed a consistent trend of increasing MEE estimation when
adjusting from downbhill to level to uphill, which is consistent with the measured MEE trend.
Out of the three empirical models, Looney had the best overall performance for all three walk-
ing conditions with a RMSE values of 1.10 J-kg "'-m ™" for all conditions. Further, Looney had
the most accurate estimation for uphill walking out of all models tested in this study. This
trend aligns with what was seen in Looney’s original paper where their predictive equation had
the least bias in accuracy and precision of MEE estimation when compared to Pandolf’s equa-
tion [8]. The underestimation of MEE from the empirical predictive equations was unexpected
as previous publications showed close agreement with experimental measurements. This leads
us to believe that it is possible that the experimental measurements from Koelewijn could be
overestimations of MEE. One key advantage to using empirical predictive equations is the
wide range of walking conditions which can include more extreme grades and various walking
speeds. In addition, a carrying load can be taken into consideration. Despite these positive
attributes, these types of models are still limited to only walking. Therefore, the shortcoming
of these models would be that they are too general to use for activities beyond walking but are
useful for quick calculation and estimation of energy consumption during a walking activity.

The muscle-based models, Bhargava and Umberger, consistently underestimated MEE, but
Umberger had better overall performance during level and downhill walking. The current
study utilized a 6 DOF model that contained information for eight major muscles bilaterally
within the lower extremity but did not include musculature for the trunk or arms which may
explain the underestimated MEE calculation when using the muscle-based models. An advan-
tage of using the muscle-based MEE models is that it allows the user to break down MEE by
muscle and by joint, but it appears that it may not be capable of estimating whole body MEE
without muscle information throughout the body.

Surprisingly, the joint-based models, Kim and Roberts, had good agreement during down-
hill walking despite both being validated for level walking. They had the largest RMSE for the
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uphill and level walking conditions across all models tested in this work. Some reasons for this
misalignment could be that only 6 DOFs were observed which was reflected in the underesti-
mations of MEE, although Kim was originally validated with only lower extremity walking
data. In addition, when we calculated MEE using Roberts’ original weighting parameter set,
we used the same estimated maximum knee torque according to sex as we did for the current
work. This lack of subject-specificity might explain why Roberts’ model did not perform as
well as it could have. In addition, the inclusion of subject-specific parameters was meant to
give Roberts’ an edge on its predecessor, but Kim’s model was more accurate during level and
uphill walking.

The new weighting parameter sets from this study had the best overall performance with a
RMSE value of 1.05 J-kg "'-m ™' for all conditions. The model overestimated MEE during level
walking, but its range aligned well with the measured MEE values as shown by its RMSE of
0.45 J-kg "-m "". The Bland-Altman plot for level walking (Fig 3A) shows that the new parame-
ter set of level walking for estimating MEE can be reasonably comparable to the measured
MEE found through indirect calorimetry. The model overestimated MEE during uphill walk-
ing and had a range that deviated more than the ranges during level and downbhill walking, as
shown by its RMSE of 1.56 J-kg "-m "'. Of all the models included in this study, the joint-space
model with the new parameter set of uphill walking had the third lowest RMSE. The Bland-
Altman plot for uphill walking (Fig 3B) has the largest bias among the three walking conditions
and one out of the eight data points falls just outside of the limits of agreement. Despite that,
the plot shows good agreement between the measured MEE and the estimated MEE values.
During downhill walking, the model underestimated MEE and maintained good agreement
with the measured MEE range as indicated by its RMSE of 0.82 J-kg '-m "'. The Bland-Altman
plot for downhill walking (Fig 3C) shows that the new parameter set of downhill walking for
estimating MEE can be reasonably comparable to the measured MEE. Lastly, our t-test results
support that the differences between the measured MEE and the estimated MEE values are not
statistically significant for each condition.

In Roberts’ original paper, it is stated that the parameter set identified was calculated using
level walking data, but that it should be capable of evaluating other tasks without altering those
values. In this study, we found that the original parameter set did not perform well when using
our 6 DOF lower extremity motion dataset for level walking, nor for uphill or downhill walk-
ing. Recall that the original parameter set was validated with a 42 DOF full-body data set dur-
ing level walking. It is possible that the original parameters from Roberts’ paper could have
performed better if a 42 DOF dataset had been evaluated. Considering this, the three new opti-
mal parameter sets found in this study may be considered suitable for level, uphill, and down-
hill walking when using a 6 DOF model.

This study has the following limitations. First, the published data used in this work only
included joint moments and velocities for 6 DOFs. Roberts’ model was originally validated
using a 42 DOF model within Visual3D software (C-Motion, Germantown, MD, USA), cap-
turing full body motion. While the results from our optimization is promising, it is reasonable
to assume that a different parameter set could be identified when using 42 DOF data that
would result in more accurate estimations of MEE. Regardless, our results align closely with
the values from whole-body measurements via calorimetry. Therefore, it is reasonable to say
that the parameter sets we have identified are sufficient to predict whole-body MEE while
walking under the conditions described in this study if only 6 DOFs (in the lower extremities)
are available. In addition, in this work we chose to estimate maximum MEE for each partici-
pant trial in response to not having access to resting heart rate from the published data, mean-
ing that we could not estimate maximum VO,. In Roberts’” work, the maximum VO, is the
maximum possible oxygen uptake just before total exhaustion and they use it to estimate the
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maximum energy expenditure possible for the given task duration. It is sensible to presume
that this estimated maximum MEE should be much higher than the measured MEE during a
comfortable energetic task such as walking. The values we chose during optimization ranged
from 10% to 15% larger than measured MEE. Although we made this estimation, the parame-
ter sets found still produce promising results. Another limitation in this work includes the esti-
mation of maximum knee torque for each participant. In Roberts’ work, the maximum
isometric extension torque of the knee was experimentally measured for each participant. This
maximum knee torque was intended to make the MEE calculation more subject-specific.
Again, this measurement was not collected by Koelewijn et al. [22] in their data, therefore we
estimated the value for maximum knee torque by sex. While this could be considered a crude
estimation, our results demonstrate that this method is sufficient for a reasonable estimation
of MEE under these circumstances. Lastly, this work has the small sample size for each walking
condition for validation (n = 8). We were able to identify another open-source study that pro-
vided the necessary kinematics, kinetics, and measured metabolic expenditure, however, it
would have provided us with a smaller total number of participants [27]. The data used in this
study is the largest and best suited data set known to the authors.

5. Conclusion

In this work, we were able to identify three new optimal weighting parameter sets which can
be used with 6 DOF lower extremity motion data to better estimate whole body MEE in differ-
ent walking conditions. In our comparison, a variety of models perform differently under dif-
ferent walking conditions. The new optimal parameter sets that we found produced the lowest
RMSE for level and downhill walking and the third to lowest RMSE for uphill walking. Fur-
ther, there was no statistical difference between the measured MEE and the estimated MEE
using the new parameter sets for the three walking conditions. The process of identifying these
parameter sets via optimization leads us to believe that other parameter sets can be found for
other tasks with varying availability of DOFs motion data. We believe that this work is a step
towards identifying a single robust parameter set that allows for accurate estimation of MEE
during any task, with the potential to mitigate a limitation of indirect calorimetry requiring
lengthy steady state motion. Future work should include continued testing of Roberts’ model
with a larger full-body (42 DOF) dataset as well as an expansion of tasks such as running, lift-
ing, climbing, and jumping. In addition, the incorporation of extreme temperature and its
influence on MEE could be explored and implemented in the joint-space MEE model.

Supporting information

S1 File. Metabolic energy consumption models. Describes each of the metabolic energy con-
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