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Abstract. Non-small cell lung cancer (NSCLC) is the most 
common type of lung cancer, accounting for ~80% of all lung 
cancer cases. The aim of the present study was to identify 
key genes and pathways in NSCLC, in order to improve 
understanding of the mechanism of lung cancer. The GSE33532 
gene expression dataset, containing 20 normal and 80 NSCLC 
samples, was used. Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analyses were performed 
to obtain the enrichment data of differently expressed genes 
(DEGs). Disease modules within NSCLC were constructed by 
Cytoscape, using protein-protein interaction (PPI) from the 
Search Tool for the Retrieval of Interacting Genes database. In 
addition, the Kaplan Meier plotter KMplot was used to assess 
the top hub genes in the PPI network. As a result, 1,795 genes 
were identified in NSCLC; 729 were upregulated and 1,066 were 
downregulated. The results of the GO analysis indicated that 
the upregulated DEGs were significantly enriched in ‘biological 
processes’ (BP), including ‘cell cycle and nuclear division’; 
the downregulated DEGs were also significantly enriched in 
BP, including ‘response to wounding’, ‘anatomical structure 
morphogenesis’ and ‘response to stimulus’. Upregulated DEGs 
were also enriched in ‘cell cycle’, ‘DNA replication’ and the 
‘tumor protein 53 signaling pathway’, while the downregulated 
DEGs were also enriched in ‘complement and coagulation 
cascades’, ‘malaria’ and ‘cell adhesion molecules’. The top 9 
hub genes were cyclin-dependent kinase 9 (CDK1), polo-like 
kinase 1, aurora kinase B, cell division cycle 20, baculoviral 
initiator of apoptosis repeat containing 5, mitotic checkpoint 
serine/threonine kinase B, proliferating cell nuclear antigen 

(PCNA), centromere protein A and MAD2 mitotic arrest 
deficient‑like 1, and the KMplot results revealed that the high 
expression levels of these genes resulted in significantly low 
survival rates, compared with low expression samples (P<0.05), 
with the exception of PCNA and CDK1. In the pathway 
crosstalk analysis, 26 nodes and 41 interactions were divided 
into two groups: One module of the two groups primarily 
included ‘metabolism of amino acid’ and the other primarily 
contained ‘tumor necrosis signaling’ pathways. In conclusion, 
the present study assisted in improving the understanding of 
the molecular mechanisms underlying NSCLC development, 
and the results may help the understanding of the biological 
mechanism of NSCLC.

Introduction

Lung cancer is the leading cause of cancer-associated 
mortality worldwide, accounting for 1.3 million mortalities 
annually (World Health Organization, 2008) (1). It has the 
highest mortality rate of all types of cancer in women and 
men globally, with its mortality rate exceeding the combined 
mortality rates of breast, prostate, colorectal and pancreatic 
cancer (1). Non-small cell lung cancer (NSCLC) accounts for 
~80% of all lung cancer cases globally, with ~75% of patients 
being diagnosed in the middle-late stages, and the 5-year 
survival rate of NSCLC is poor (mean, 9-11 months) (2). 
NSCLC includes squamous cell carcinoma, adenocarcinoma 
and large cell carcinoma subtyes (3); and NSCLC cells 
divide more slowly and spread relatively late compared with 
small-cell carcinoma cells. At present, the lack of knowledge 
concerning the molecular mechanisms of NSCLC progression 
has limited the development of novel treatment strategies. 
However, in combination with a large number of applications 
involving bioinformatics available for clinical studies, a large 
volume of disease-associated bioinformatics data has been 
produced. Obtaining detailed biological information from 
these resources is valuable for the study and development of 
therapeutic strategies for NSCLC. 

High-throughput bioinformatics platforms may promote 
the analysis of differential gene expression, including micro-
arrays, and have a wide range of applications in medical 
oncology, particularly in searching for disease-associated 
biomarkers (4), alternative splicing (5) and gene function 
prediction (6). Numerous previous studies have generated a 
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large volume of microarray data, and a number of gene expres-
sion profiling studies on NSCLC have identified differentially 
expressed genes (DEGs) in various pathways, molecular func-
tions and biological processes. 

Therefore, in the present study, the original data (GSE33532) 
was downloaded from the Gene Expression Omnibus (GEO; 
http://www.ncbi.nlm.nih.gov/geo/), which contains variations in 
gene expression profiles in stage I and II (Tumor‑Node‑Metastasis 
classification of malignant tumors) (7) NSCLC tissues (8), and in 
normal tissues. The gene expression profiling of NSCLC tissues 
has resulted in the establishment of several prognostic and 
predictive gene signatures with little overlap (8). Subsequently, 
R software (version 3.4.1; https://www.r‑project.org/) was used 
to compare the expression profiles of NSCLC tissues with 
those of normal tissues in order to identify DEGs. Subsequent 
to obtaining the DEGs, biological function enrichment and 
integrated protein-protein interaction network (PPI) analyses 
were performed to establish the complete characterization of 
the DEGS for NSCLC and obtain further understanding into 
the mechanism underlying NSCLC. By analyzing the biological 
function of the DEGs, certain potential biomarkers were 
identified for additional study. 

Materials and methods

Microarray data. The GSE33532 microarray expression dataset 
was downloaded from the GEO database (http://www.ncbi.
nlm.nih.gov/geo/). This dataset was based on the Affymetrix 
GPL570 platform (Affymetrix Human Genome U133 Plus 2.0 
Array), submitted by Meister et al (8). The GSE33532 dataset 
contained 100 samples, including 80 NSCLC tissue samples 
and 20 normal tissue samples.

Identification of DEGs. The raw data used for analysis 
contained CEL files (GPL570 platform), and the results were 
obtained using Affy package (version 1.52.0) (9), Limma 
package (version 3.0.1) (10) and Gplot package (version 3.3.2; 
https://cran.r-project.org/web/packages/gplots/). A hierarchical 
clustering method was applied to classify these data into either 
the NSCLC or normal group. The quality control was indicated 
by using the ‘Robust Multiarray Averaging’ (RMA) function 
in the Affy packages. Subsequently, the adjust method ‘BH’ 
in the Limma R package was used to identify DEGs with log 
|fold change|>1 and adj. P<0.05 as cut-off levels for statisti-
cally significant candidate genes. Following this, a heatmap 
was constructed to indicate the differential expression levels of 
the top 100 DEGs (50 upregulated and 50 downregulated), and 
a volcano plot was produced to map all DEGs in this dataset.

Gene Ontology (GO) and kyoto encyclopedia of genes and 
genomes (KEGG) analyses. In the field of molecular biology, 
GO is the most developed and widely-used ontology. Through 
the GO method, it is also possible to characterize biological 
concepts with different specificity levels, from general to 
precise concepts (11). KEGG (http://www.genome.ad.jp/kegg/) 
is a collection of databases and associated software for under-
standing and simulating higher-order functional behaviors of 
cells or organisms from their genomic information (12). In 
addition, analyzing DEGs using the Database for Annotation, 
Visualization and Integrated Discovery (DAVID; http://david.

ncifcrf.gov/) is an important means of identifying the relevant 
biological functions for any high-throughput gene functional 
analysis (13). The DEGs of the present study were analyzed 
to identify their biological function using the results from the 
GO and KEGG pathway analyses and the DAVID online tool. 
P<0.05 was considered to indicate a statistically significant 
difference.

Disease module creation using the integration of PPIs. The 
Search Tool for the Retrieval of Interacting Genes (STRING) 
database includes 5,214,234 proteins from 1,133 organisms. It 
identified the PPIs of the DEGs identified in the present study. 
To evaluate their interactive associations, all DEGs were 
mapped to this database, in order to get an improved result, 
interactions with the highest confidence score (score >0.9) in 
the STRING database were selected. Subsequently, the PPIs 
were analyzed by Cytoscape software (version 3.2.1; National 
Resource for Network Biology) (14) to obtain the PPI network. 
The criteria of disease module searching were set as follows: 
Molecular COmplex DEtection (MCODE) score >3, and each 
module must have >4 nodes. P<0.05 was considered to indi-
cate a statistically significant difference.

Pathway crosstalk. The regulation of biological pathways 
is complex, yet it underlies the functional coordination 
of cells (15). Cancer is a disease that is characterized by 
unregulated cell proliferation, driven by underlying pathway 
deregulation (16). This pathway deregulation occurs within 
and between pathways (17). Pathway crosstalk analysis may 
assist in identifying the interactions among pathways enriched 
by DEGs. The present study used the pathway information 
of DEGs from the KEGG database to conduct a pathway 
crosstalk analysis in NSCLC. The principle of pathway cross-
talk is defined by >3 overlapping genes in 2 pathways (each 
pathway must have ≤5 genes) (17). To measure the interaction 
of crosstalk, 2 novel variables were introduced: The Jaccard 
Coefficient (JC)  and the Overlap Coefficient (OC) 

, where A and B are the lists of genes included in the 
2 analyzed pathways. The rank value (RV) was calculated by 

 (17). Subsequently, Cytoscape software was used to map 
the interaction between pathways and use RV as the interac-
tion type in order to display the weight of the crosstalk.

Survival analysis. The Kaplan-Meier plotter (KMplot, 
http://www.kmplot.com/analysis) is capable of assessing 
the effect of 54,675 genes on survival using 10,293 cancer 
samples. These include 5,143 breast, 1,648 ovarian, 2,437 lung 
and 1,065 gastric cancer samples, with mean follow-up periods 
of 69, 40, 49 and 33 months, respectively. The primary purpose 
of this tool is to conduct meta-analysis-based biomarker 
assessments (18). The top 9 hub genes of disease module in 
the present study were entered into the KMplot database to 
examine the association between these genes and the 5-year 
survival rates of patients.

Results

Identification of DEGs. The dataset of the present study 
contained 100 samples; 20 normal tissue samples and 
80 NSCLC tissue samples. Each sample from the chip was 
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analyzed by Affy and Limma packages of R software, respec-
tively. Based on the Affy package, using the RMA method to 
pre-process the dataset, then using the lmFit function of the 
Limma package to screen differentially expressed genes with 
P<0.05 and fold control (Log|FC|)>1 criteria to obtain DEGs 
from the dataset, a total of 1,795 genes were identified. Of 
these, 729 were upregulated and 1,066 were downregulated. 
The Gplots package (R software) was used to obtain the top 
50 upregulated and the top 50 downregulated DEGs, and to 
produce an expression heatmap (Fig. 1) and a volcano plot of 
the DEG distribution (Fig. 2). 

GO enrichment analysis. Enriched GO categories and 
KEGG pathways were identified by uploading all DEGs to 
DAVID. The results of the GO analysis indicated that the 

upregulated DEGs were significantly enriched in ‘biological 
processes’ (BP), which included ‘cell cycle’ and ‘nuclear divi-
sion’ (Table I); downregulated DEGs were also significantly 
enriched in BP, including ‘response to wounding’, ‘anatomical 
structure morphogenesis’ and ‘response to stimulus’ (Table I). 
For ‘molecular function’, the upregulated DEGs were enriched 
in ‘microtubule motor activity’, ‘protein binding’ and ‘struc-
tural molecule activity’, and the downregulated DEGs were 
enriched in ‘calcium ion binding’, ‘protein binding’ and 
‘growth factor binding’ (Table I). Concurrently, the GO ‘cell 
component’ analysis also revealed that the upregulated DEGs 
were significantly enriched in ‘chromosome’ and ‘centromeric 
region’, and that the downregulated DEGs were enriched in 
‘plasma membrane part’, ‘extracellular region part’ and ‘cell 
periphery’ (Table I).

Figure 1. Heat map of the top 100 differentially expressed genes (top 50 upregulated and top 50 downregulated genes). Yellow denotes upregulation and red 
represents downregulation. The blue and red bar represents control and case group, respectively.
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KEGG pathway analysis. Table II indicates the KEGG 
analysis result of the most significantly enriched pathways 
(top 5 upregulated and downregulated) in the DEGs of NSCLC. 
The upregulated DEGs were significantly enriched in ‘cell 
cycle’, ‘DNA replication’, ‘tumor protein 53 (p53) signaling 
pathway’, ‘Extracellular matrix (ECM)‑receptor interaction’ 
and ‘Protein digestion and absorption’, while the downregu-
lated DEGs were significantly enriched in ‘Complement and 
coagulation cascades’, ‘Malaria’, ‘Cell adhesion molecules 
(CAMs)’, ‘Axon guidance’ and ‘Renin secretion’.

Integration of PPIs create disease module. All DEGs of 
NSCLC were loaded into the STRING database, to obtain the 
PPI data among them, and PPIs with highest interaction score 
(confidence >0.9) were selected. Subsequently, Cytoscape was 
used to identify the 9 hub nodes with the highest degrees, which 
included aurora kinase B (AURKB), centromere protein A 
(CENPA), cyclin dependent kinase 1 (CDK1), proliferating 
cell nuclear antigen (PCNA), BUB1 mitotic checkpoint 
serine/threonine kinase B (BUB1B), cell division cycle 20 
(CDC20), baculoviral Inhibitor of apoptosis (IAP) repeat 
containing 5 (BIRC5), MAD2 mitotic arrest deficient‑like 1 
(MAD2L1) and polo like kinase 1 (PLK1). Of these hub 
genes (Table III), CDK1 revealed the highest node degree 
(degree=58). In addition, a total of 684 nodes and 2,134 edges 
were analyzed using MCODE in Cytoscape software. The 
top 5 largest size modules were identified, and the functional 
annotations of the genes within them were isolated (Fig. 3). 
KEGG enrichment analysis of these modules demonstrated 
that the genes in modules 1-5 were primarily associated with 
‘cell cycle’, ‘chemokine signaling pathway’, ‘protein digestion 
and absorption’, ‘DNA replication’ and ‘malaria’.

Pathway crosstalk. In order to identify the significantly‑enriched 
pathways and to understand the interaction between them, 

pathway crosstalk analysis among the 26 significant pathways 
was performed; in total, these pathways contained 41 edges. 
Based on the crosstalk analysis, the pathways were divided into 
two major groups, and each of the included pathways shared 
more crosstalk events than those outside of the pathways 
identified in the crosstalk analysis and may be associated with 
similar biological processes (Fig. 4). One group primarily 
included metabolism of amino acids tyrosine, phenylalanine, 
tryptophan and histidine. The other group primarily 
contained tumor necrosis signaling pathways: CAM; tumor 
necrosis factor signaling pathway; leukocyte transendothelial 
migration; malaria and stress reaction (renin secretion, 
salivary secretion, platelet activation, vascular smooth muscle 
contraction, extracellular matrix (ECM)-receptor interaction 
and oocyte meiosis). These pathways had >4 degrees and high 
rank-values with other pathways in this crosstalk.

Survival analysis. To validate the 9 hub genes identified, the 
KMplot was used to analyze the survival potential of patients 
with upregulated hub genes. Following the gene upload, 
8 genes were available in KMplot database, and there were 
1,926 patients as candidates. All the hub genes were upregu-
lated genes, 7 of which were a significantly associated with 
low survival rates (P<0.05; Fig. 5). However, PCNA was 
upregulated, but did not exhibit a significant association.

Discussion

NSCLC accounts for ~80% of all types of diagnosed 
lung cancer (19). The cause of NSCLC is complex with 
various factors, including smoking, air pollution and radon 
exposure (20); therefore, understanding the biological 
mechanisms of NSCLC is important for clinical diagnosis 
and treatment. As microarrays have a wide range of 
applications in oncology, including identification of 

Figure 2. Volcano plot of the distribution of all differentially expressed genes, mapping the 729 upregulated genes (red crosses) and 1,066 downregulated genes 
(blue triangles). FC, fold change.
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disease-associated biomarkers, alternative splicing and gene 
function prediction, microarray data were extracted from 
GSE33532, and 729 upregulated and 1,066 downregulated 
DEGs between NSCLC and normal samples were identified 
using bioinformatics analysis. In order to obtain additional 
analysis of these DEGs, GO and KEGG analyses were 
performed using DAVID software.

The GO analysis results indicated that the upregulated 
DEGs were primarily associated with ‘cell cycle phase’, 
‘mitotic cell cycle’, ‘cell cycle process’, ‘M phase of mitotic 
cell cycle’ and ‘nuclear division’, while the downregulated 
DEGs were primarily associated with ‘response to wounding’, 

‘anatomical structure morphogenesis’, ‘response to stimulus’, 
‘response to chemical stimulus’ and ‘single‑multi cellular 
organism process’. These results are in agreement with those 
of previously published studies suggesting that irregular and 
abnormal cell cycles or cell proliferation are closely associated 
with tumor proliferation and apoptosis (21-24), and that there 
is an association between repetitive wounding/stimuli and 
lung cancer (25).

The KEGG pathway analysis result revealed that upregu-
lated DEGs were involved in ‘Cell cycle’, ‘DNA replication’, 
‘p53 signaling pathway’, ‘ECM‑receptor interaction’ and 
‘protein digestion and absorption’. Previous studies have 

Table I. Gene Ontology analysis of DEGs associated with non-small cell lung cancer.

A, Upregulated DEGs

Category Term/gene function Gene count P-value

BP GO:0022403; cell cycle phase 117 3.56x10-30

BP GO:0000278; mitotic cell cycle 106 3.67x10-27

BP GO:0022402; cell cycle process 124 3.65x10-26

BP GO:0000087; M phase of mitotic cell cycle 71 4.22x10-26

BP GO:0000280; nuclear division  69 1.79x10-25

MF GO:0003777; microtubule motor activity 13 4.16x10-6

MF GO:0005515; protein binding 323 1.48x10-5

MF GO:0005198; structural molecule activity 45 1.59x10-5

MF GO:0016538; cyclin‑dependent protein kinase regulator activity 6 4.69x10-5

MF GO:0003678; DNA helicase activity 8 2.00x10-4

CC GO:0044427; chromosomal part 64 2.90x10-17

CC GO:0005694; chromosome 70 5.28x10-17

CC GO:0000793; condensed chromosome 34 2.21x10-16

CC O:0000775; chromosome, centromeric region 32 2.73x10-16

CC GO:0000779; condensed chromosome, centromeric region 25 5.44x10-16

B, Downregulated DEGs

Category Term/gene function Gene count P-value

BP GO:0009611; response to wounding 130 1.29x10-18

BP GO:0009653; anatomical structure morphogenesis 198 1.74x10-18

BP GO:0050896; response to stimulus  468 3.25x10-18

BP GO:0042221; response to chemical stimulus  239 5.30x10-17

BP GO:0044707; single‑multicellular organism process  406 2.16x10-16

MF GO:0005509; calcium ion binding  65 1.64x10-7

MF GO:0005515; protein binding  434 2.35x10-7

MF GO:0019838; growth factor binding  20 2.36x10-7

MF GO:0005102; receptor binding  99 5.28x10-7

MF GO:0097367; carbohydrate derivative binding  27 7.64x10-7

CC GO:0044459; plasma membrane part  200 2.10x10-24

CC GO:0044421; extracellular region part  139 2.28x10-24

CC GO:0071944; cell periphery  346 2.98x10-21

CC GO:0005886; plasma membrane 338 2.20x10-20

CC GO:0005615; extracellular space  105 1.81x10-17

DEGs, differentially expressed genes; BP, biological process; MF, molecular function; CC, cellular component.
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indicated that the p53-independent structure-activity associa-
tions of mesogenic compounds are associated with cytotoxic 
effects (26,27), and that disturbances in the p53 signaling 
pathway is associated with NSCLC (28). According to 
previous studies, ECM-receptor interactions were involved 
in cell adhesion (29), and it has been revealed that the ECM 
molecule hyaluronan induced focal adhesion, to signal the 
cytoskeletal changes required for the elevated cell motility 
observed in the processes of tumor cell progression, metastasis 
and invasion (30).

Notably, the downregulated DEGs were enriched in 
disease malaria during the KEGG enrichment analysis, which 

may suggest that anti-malaria compounds, artemisinin, dihy-
droartemisinin and artesunate, also have anticancer potential. 
The antimalarial drug, artemisinin, was previously used in the 
treatment of lung cancer, and Tong et al (31) identified that 
artemisinin inhibited tumor metastasis through Wnt/β-catenin 
signaling. In addition, a previous study by Ashton et al (32) 
suggested that a commonly used anti-malarial drug, atova-
quone, effectively increased the oxygen content inside cancer 
cells, therefore improving the efficiency of radiation treatment. 
Atovaquone rapidly decreased the oxygen consumption rate 
by >80% in a range of cancer cell lines at pharmacological 
concentrations. In additional experiments, atovaquone killed 

Table II. Kyoto Encyclopedia of Genes and Genomes pathway analysis of DEGs associated with non-small cell lung cancer.

A, Upregulated DEGs

Pathway ID Name Count P-value Genes

hsa04110 Cell cycle 25 8.4x10-11 CDK1, CDC6, E2F3, DBF4, TTK, ESPL1, CDC20, 
    CHEK1, MCM2, PTTG1, SFN, MCM4, CCNB1,
    CCNE2, CCNE1, CDC45, CDKN2A, CCNB2,
    MAD2L1, PLK1, PCNA, BUB1B, ORC6, ORC1,
    CCNA2
hsa03030 DNA replication 10 8.8x10-6 PRIM1, DNA2, RFC4, POLE2, PCNA, MCM2, 
    RNASEH2A, MCM4, FEN1, RPA3
hsa04115 p53 signaling pathway 13 1.2x10-5 CDK1, CHEK1, SFN, PMAIP1, GTSE1, CCNB1, 
    CCNE2, CCNE1, CDKN2A, CCNB2, SERPINB5,
    RRM2, IGFBP3
hsa04512 Extracellular matrix-receptor 11 2.0x10-3 IBSP, COMP, COL3A1, COL1A2, COL1A1, COL11A1, 
 interaction   THBS2, COL5A2, COL5A1, SPP1, HMMR
hsa04974 Protein digestion and 11 3.0x10-3 KCNN4, COL17A1, COL7A1, PRSS2, COL3A1, 
  absorption   COL1A2, COL1A1, COL11A1, COL5A2, COL5A1,
    COL10A1

B, Downregulated DEGs

Pathway ID Name Count P-value Genes

hsa04610 Complement and coagulation 16 4.2x10-6 C7, C5AR1, C6, F8, SERPING1, C4BPA, C1QA, C8B, 
 cascades   C1QB, VWF, CD55, THBD, SERPIND1, CFD, CPB2,
    PROS1
hsa05144 Malaria 12 5.9x10-5 CSF3, GYPC, ICAM1, ITGAL, SELP, IL6, CD36, 
    PECAM1, ACKR1, TLR4, HBB, SELE
hsa04514 Cell adhesion molecules 20 3.1x10-4 ICAM1, ITGAL, SELP, CLDN18, OCLN, PTPRM, 
    CADM1, ICAM2, CLDN5, NECTIN3, HLA-DMA,
    CDH5, SIGLEC1, CD34, ITGA8, PECAM1, ESAM,
    JAM2, SELE, NEGR1
hsa04360 Axon guidance 18 6.3x10-4 ABLIM1, PLXNA2, ABLIM3, EFNB2, NTN4, DPYSL2, 
    CXCL12, SLIT2, SLIT3, SEMA5A, SEMA6A, RND1,
    SEMA6D, FYN, SEMA3G, CFL2, SEMA3E, ROBO2
hsa04924 Renin secretion 12 7.1x10-4 AGTR1, ACE, ADRB2, ADRB1, PLCB4, PTGER4, 
    GUCY1A2, GUCY1A3, NPR1, AQP1, CACNA1D,
    ITPR1

p53, tumor protein 53; DEGs, differentially expressed genes.
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Table III. Hub genes and rank of degreesa.

Gene symbol Full name Degree

CDK1 Cyclin dependent kinase 1 58
PLK1 Polo-like kinase 1 53
AURKB Aurora kinase B 46
CDC20 Cell division cycle 20 42
BIRC5 Baculoviral initiator of apoptosis repeat containing 5 37
BUB1B BUB1 mitotic checkpoint serine/threonine kinase B 36
PCNA Proliferating cell nuclear antigen 35
CENPA Centromere protein A 34
MAD2L1 MAD2 mitotic arrest deficient‑like 1 33

aDegree, number of interactions connected to a gene.

Figure 3. Top 5 modules from the high-score protein-protein interactive network. (A-E) Modules 1-5 and their enriched pathways. FDR, false discovery rate.
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Figure 4. Pathway crosstalk among differentially expressed genes‑enriched pathways. AGE‑RAGE, advanced glycation endproducts‑receptor for AGE; ECM, 
extracellular matrix; p53, tumor protein 53; TNF, tumor necrosis factor. 

Figure 5. Survival analysis of hub genes. (A) PLK, (B) AURKB, (C) CDC20, (D) BIRC5, (E) BUB1B, (F) CENPA and (G) MAD2L1 expression indicated signifi-
cantly lower survival rates, compared with low expression samples. (H) PCNA expression did not exhibit a significantly different survival rates. PLK, polo‑like 
kinase 1; AURKB, aurora kinase B; CDC20, cell division cycle 20; BIRC5, baculoviral initiator of apoptosis repeat containing 5; BUB1B, BUB1 mitotic 
checkpoint serine/threonine kinase B; CENPA, centromere protein A; MAD2L1, MAD2 mitotic arrest deficient‑like 1; PCNA, proliferating cell nuclear antigen.
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90% of cancer cells in an in vitro lung cancer tumor model 
involving radiotherapy (32).

By constructing a PPI network with DEGs, the present study 
identified the top degree hub genes: CDK1, PLK1, AURKB, 
CDC20, BIRC5, BUB1B, PCNA, CENPA and MAD2L1. 
CDK1 exhibited the highest degree of connectivity among 
these hub genes. CDK1, a protein-coding gene, serves a key 
role in the control of the eukaryotic cell cycle by modulating 
the centrosome cycle and mitotic onset, promoting G2-M 
transition and regulating G1 progress and G1-S transition 
via association with multiple interphase cyclins (33). CDK1 
is an adverse prognostic biomarker of lung adenocarcinoma 
(LUAD), and increased expression of CDK1 was revealed 
to be associated with a higher risk of cancer recurrence 
and poor survival, compared with the normal expression of 
CDK1 in patients with LUAD (34). Danilov et al (35) also 
demonstrated that using dinaciclib to inhibit the expression of 
CDK1 induced anaphase catastrophe in lung cance (35). The 
second hub gene, PLK1, performs several important functions 
throughout the M phase of the cell cycle, including the regu-
lation of centrosome maturation and spindle assembly, the 
removal of cohesins from chromosome arms, the inactivation 
of anaphase-promoting complex/cyclosome (APC/C) inhibi-
tors and the regulation of mitotic exit and cytokinesis (36). 
A previous study demonstrated that PLK1 may promote 
tumor cell survival by regulating Myc stabilization; inhibi-
tors of PLK1 preferentially induced potent apoptosis level in 
MYCN‑amplified tumor cells from neuroblastoma and small 
cell lung cancer, and synergistically potentiated the thera-
peutic efficacies of Bcl‑2 antagonists (37). AURKB, the third 
hub gene, encodes a member of the aurora kinase subfamily 
of serine/threonine kinases, and participates in the regula-
tion of alignment and segregation of chromosomes during 
mitosis and meiosis (38). A previous study has confirmed the 
antitumor and radiosensitizing activities of daurinol in human 
lung cancer cells through the inhibition of AURKB (39). In 
addition, CDC20 serves as a regulatory protein interacting 
with several other proteins at multiple points in the cell 
cycle (40). A previous study suggested that CDC20 is a 
critical regulator in glioma tumors, initiating cell prolifera-
tion and survival (41). High levels of CDC20 expression are a 
key component of the spindle assembly checkpoint; CDC20 
has been identified in various malignancies and serves a vital 
role in tumorigenesis and progression (42-44). BIRC5, the 
member of the IAP gene family, encodes negative regula-
tory proteins that prevent apoptotic cell death. Han et al (45) 
suggested that the upregulation of the anti-apoptosis 
gene BIRC5 will lead to the inhibition of p53 signaling in 
H1650GR cells. BUB1B serves a role in the inhibition of the 
APC/C, delaying the onset of anaphase and ensuring proper 
chromosome segregation (46). Chen et al (47) also revealed 
that BUB1B may serve as target gene in lung carcinoma as 
a result of PPI network analysis. In addition, high levels of 
BUB1B expression are associated with disease progression 
and poor survival in patients with lung adenocarcinoma 
(47). PCNA acts as a homotrimer and assists in increasing 
the processivity of leading strand synthesis during DNA 
replication (48). Bodduluru et al (49) revealed that benzo[a]
pyrene may induce pulmonary carcinogenesis by modulating 
PCNA expression. CENPA encodes a centromere protein 

that contains a histone H3-associated histone fold domain 
required for targeting to the centromere (50). This domain is 
one of the basic components of the human active kinetochore, 
which serves an important role in cell-cycle regulation, cell 
survival and genetic stability (51). Toh et al (52) identified 
that CENPA may be considered as a prospective diagnostic 
and prognostic biomarker of lung adenocarcinoma. MAD2L1 
is a component of the mitotic spindle assembly checkpoint 
that prevents the onset of anaphase until all chromosomes are 
properly aligned at the metaphase plate (53). As aforemen-
tioned, MAD2L1 is closely associated with the carcinogenesis 
of lung adenocarcinoma (34). Guo et al (54) performed a 
case-control analysis, indicating an association between the 
concentration of MAD2L1 Leu84Met SNP gene product and 
the risk of lung cancer in an allele dose-dependent manner, 
with the result demonstrating that the expression level of 
MAD2L1 Leu84Met SNP was linearly associated with the 
risk of lung cancer.

Considering the enrichment results of the top 5 modules 
from the PPI network genes in the present study, it was 
demonstrated that NSCLC was associated with ‘cell cycle’, 
‘chemokine signaling pathway’, ‘protein digestion and absorp-
tion’, ‘DNA replication’ and ‘malaria’.

In the chemokine signaling pathway (hsa04062; KEGG 
database), chemokines are a type of small chemoattractant 
peptide, which may provide directional cues for cell trafficking; 
this is the key for the protective host response (55). In addition, 
chemokines regulate a plethora of biological processes in 
hematopoietic cells that lead to cellular activation, differentiation 
and survival (55,56). A previous study has revealed that 
chemokines are vital in the pathogenesis of NSCLC and 
NSCLC cells are rich in the secreted protein CXCL12 (57). 
Another study has suggested that the methylation of CXCL12 
has a marked correlation with NSCLC prognosis (58), and that 
CXCL12-mediated adhesion and survival signals are associated 
with chemo-resistance in lung cancer (59).

During the survival analysis of the present study, KMplot 
was used to assess the effect of high expression levels of the 
hub genes in patients with lung cancer. There were 8 genes 
available in the database, with only CDK1 not matching 
HGU133A and HGU133Aplus2 probe set IDs in the KMplot 
database. Notably, 7 of the 8 genes indicated significantly low 
survival rates, compared with low expression samples (P<0.05); 
the remaining gene, PCNA, did not. In addition, a number of 
previous studies have analyzed the association between the 
expression of PCNA and NSCLC postoperative survival time 
and did not identify a significant correlation (60‑63). This may 
be due to the fact that the prognosis of lung cancer may be 
affected by a variety of factors, including pathological type 
and stage, differentiation, treatment, complications, age, 
physical condition and the expression of PCNA (60,64-67). It is 
difficult to predict the prognosis of lung cancer by considering 
the effecters of PCNA alone.

In conclusion, the results from the present study provided 
a wider analysis of the DEGs associated with NSCLC, and 
identified certain key pathways in the progress of NSCLC, 
which may provide guidance for future studies. Nevertheless, 
a number of biomarkers associated with NSCLC remain 
uncharacterized; additional biological and bioinformatics 
analyses are required.
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