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The Nobel Prize in Chemistry: past, present,
and future of AI in biology

Luciano A. Abriata Check for updates

The work by Hassabis and Jumper on protein
structure prediction together with Baker’s
supremacy in de novo protein design set the stage
for a future where AI not only deciphers biology at
the atomic level but also designs newmolecules for
biotechnology, medicine, and beyond. I provide an
overview of the recent past, the present, and the
future of AI in structural biology, from how it all
started with the Critical Assessment of Structure
Prediction (CASP) experiments and a protein
engineering lab, to how the field could further evolve
with AImodels that eventually “understand”biology
holistically.

The 2024 Nobel Prize in Chemistry, awarded to Demis Hassabis & John
Jumper from Deepmind and David Baker from the Institute for Protein
Design at the University of Washington, recognizes transformative
achievements in artificial intelligence-driven protein structure prediction
and design. It certainly ushers in a new era for chemistry and biology, in
particular acknowledging the profound impact of artificial intelligence (AI)
on scientific research and on practical applications across disciplines, which
was also acknowledged more broadly with the 2024Nobel Prize in Physics.

At the core of the advancements behind the Chemistry prize is a full
computational understanding of living matter at atomic level, particularly
by AI models capable of predicting, analyzing and designing the 3D
structures of proteins, alone ormore recently forming complexeswith other
molecules such as nucleic acids, ions, and small ligands. Such capabilities
tackle one of biology’smost enduring challenges and are the reasonwhy the
irruption of AI in the field represented a revolution already sinceAlphaFold
2 “won” the 14th edition of CASP in 2020. After seeing at best some
incremental improvements for nearly 25 years, CASP was finally giving its
first really fleshy and tasty fruits.

Artificial neural networks that understand biomolecules
Deepmind had already entered CASP in its previous edition with its
AlphaFold (version 1) model, which engineered the most out of the same
techniques that the top academic groups were applying at the time, all
mainly capitalizing on the recent breakthroughs in residue contact (and
distance and orientation) prediction from multiple sequence alignments
(MSAs) through coevolution calculations1. AlphaFold 2 was not at all a new
version, but rather a full redesign and rethinking of the protein structure
prediction problem, whose performance left scientists both in awe and
initially frustrated after which a period of illumination came that changed

the future of structural biology forever. It turns out the AlphaFold 2 paper2

put forward several innovations that other scientists could subsequently
build on. Two key innovations included an Evoformer module and the
integration of attention mechanisms to model proteins as spatial graphs
right as part of the AI model itself, unlike all other methods - including the
first AlphaFoldmodel - which only predicted contacts, distances and angles
that were then fed into a regular proteinfolding program. In particular, the
Evoformer module allowed AlphaFold 2 to process multiple sequence
alignments to extract coevolutionary information in an indirect way that
made the system more tolerant to problems in the MSAs. The attention
mechanisms in turn allowed the system to process evolutionary relation-
ships and physical interactions between distant residues, enabling highly
accurate 3D predictions even for protein complexes. Importantly, too, the
integration of the structure calculation stage as part of the neural network
itself connected fluently (in mathematical terms) the input data (sequences,
alignments, and 3D structures of candidate templates) with the outputs
(modeled structures together with various confidence scores). This meant
that the systemcould be run iteratively tobetter process the information and
achieve better convergence. It was also critical from the users’ points of view
that AlphaFold 2 returned not just structural models but also various
metrics (global Tm score, residue-wise pLDDT, and pairwise PAE scores)
that are reporting the quality of its own predictions - something that CASP
had always pushed for but rarely assessed1.

The availability of such a powerful tool as AlphaFold 2 meant a dra-
matic acceleration of all research in structural biology, as thousands of
previously unknown protein structures became accessible through com-
putational means, especially when backed up by high-quality metrics.
Rapidly, Deepmind paired with the European Bioinformatics Institute3 to
produce millions of structural models that soon became available as part of
UniProt and the ProteinData Bank themselves. Far fromcompeting against
experimental structure determination methods, AlphaFold 2 became their
perfect ally, boosting the efficiency of scientists and software processing
experimental data by orders of magnitude. Already in CASP14, when
AlphaFold 2 came out, its models helped to solve the phase problem on
X-ray diffraction data available for some of the targets4; Cryo-EM structures
can now be solved much faster when at least parts of the volumetric maps
canbefilledwithAlphaFold 2models to thenoptimize conformations as the
experimental densities are fit5; and NMR structure determination was dri-
ven to almost full automation by tools likeNMRtist especially when assisted
with reliable AlphaFold 2 models6.

BeyondAlphaFold2’s direct applications, thenumberof newconcepts,
methods and algorithms presented by theAlphaFold 2 paper inspiredmany
academic and private groups to either recycle, build on, or adapt the new
knowledge and tools into their own methods and software. That is how a
burst of new tools for computational structural biology came about that
facilitated all kinds of studies on biomolecular structures, from predicting
interacting surfaces7,8 or stabilizing mutations9 given a structure to filling
themwith ligands10, modeling the 3D structures of RNA (although notably,
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non-AI methods seemed to perform best in CASP’s only assessment for
RNA folding11), predicting structures of proteins complexed with non-
protein molecules (pioneered by Baker with RoseTTAFold-AllAtoms12),
processingMSAs to exploreprotein structure andevolution13, anddesigning
proteins in whole new ways14–17—the latter developed below.

Expanding AI to all biomolecules
While the initial focus of AlphaFold and similar models was on predicting
the structure of proteins, the latest advancements have expanded their scope
to other biomolecules, including nucleic acids, ions, lipids, and other small
molecules. This broader application marks a critical shift from studying
proteins in isolation to modeling complex molecular environments, and
promises anewrevolution inbiology as thenewgenerationofAImodels can
essentially understand all the different kinds of molecules and interactions
relevant to biology.

The first program capable of parsing and modeling more than protein
atoms was RoseTTAFold-AllAtoms from the Baker lab12. Then, AlphaFold
318 came out in an extremely simple-to-use web server within the Google
domain, but with serious limitations that the community did not welcome:
no source code, only a limited number of jobs per day and only for academic
not-for-profit work, and only handling a limited set of small molecules and
ions despite the program’s intrinsic capabilities to actually handle, in theory
at least, any small molecule. Today, new programs are coming out that
incorporate these “all atoms” functionalities in more permissive ways, such
as Chai-119 fromChaiDiscovery, which can be executed locally or through a
web interface similar to AlphaFold 3’s but without limitations on the small
molecule inputs, accepting anymolecule provided as a SimplifiedMolecular
Input Line Entry System (SMILES) string.

These all-atoms models not only advance ways to model life at
atomic level like never before, but also stand as new ways for computers
to assist drug development. While the “canonical” protocol for testing
whether a ligand binds to a target protein involves knowing their 3D
structures and sampling possible binding poses in silico, with little hope
for any required conformational changes to take place during the
docking procedure, the new AI models can simultaneously sample
ligand and protein target conformations as they are “co-folded”. As these
all-atoms models become more efficient, we can expect a shift toward
AI-driven drug discovery through the “co-folding method”. This will
have profound implications for the pharma, biotechnology and
healthcare, likely reducing costs and experimental research time in drug
development pipelines. This application is so important that various
companies areworking on it andCASP started dedicating a specific track
to this problem since its 15th edition20.

Understanding protein structure enables protein
engineering
Prof. David Baker’s pioneering efforts in de novo protein design21, initially
voidof anyAImethods at its core but in the last years largely relyingon them
especially through its RoseTTAFold12 andMPNNmethods14,22, set the stage
for a futurewhereAInotonlydeciphersnatural biologybut alsodesignsnew
molecular entities for use in biotechnology, medicine, and beyond. Baker’s
group at the University of Washington’s Institute for Protein Design pio-
neered methods to create novel proteins from scratch, a feat that became
significantly more powerful with the advent of AI - especially diffusion
models to design protein conformations in space23 and message-passing
neural networks to produce sequences that fold into the designed
structures14,22. Along key proof of concept and concrete applications of these
AI-based tools from the Baker lab, we count with efficiently designing new
enzymes24 or stabilizing existing ones25, crafting complex multiprotein

assemblies26, designing multi-state proteins27, engineering binders with
therapeutic applications, and building protein crystals of use in material
sciences, to mention some notable examples.

Proteins designed with AI methods are already proving powerful, for
example as multivalent single-chain proteins of potential use as vaccines28,
as soluble analogs of membrane proteins to facilitate their study29, and as
high-affinity binders useful for therapies or as sensors30. Broader applica-
tions include protein function regulation through designed binders, even
engineered clinical antibodies31, enzyme stabilization and computational
evolution32, etc.

The future of AI in structural biology and of “holistic” AI
models for biology
CASP16 is now rolling, with results expected for late 2024 and promising an
assessment of the stateof the art of structurepredictionbeyond static tertiary
protein structures. As CASP15 revealed,modeling ofmultimeric assemblies
still needs some tweaks, and now that protein-only modeling is close to
solved, thenew frontiers awaitmodeling ligandbinding toproteins,multiple
protein conformations, and nucleic acid folding, all already tackled in
CASP15. Besides, CASP16 reintroduced the track assessing integrative
modeling, which involves modeling typically large multicomponent com-
plexes from sparse and varied data and after years of rather poor results33

could take new heights as AI methods step in. All these special evaluation
tracks in CASP16 point at the direction in which the field of computational
structural biologywill progressnext, likely also carrying along that of protein
design and, importantly, of small molecule discovery and drug
development.

Another big piece of the AI-for-biology picture is that of multimodal
foundational models for biology trained on, for the moment, massive
amounts of DNA, RNA and protein sequences. Training on protein
sequences “only” already proved useful to predict protein structures and
detect structure-consistent evolutionary relationships, with Meta’s ESM-
Fold at the pinnacle13. Meanwhile, foundational models centered around
Biology’s central dogma hold promise for new applications in genomics,
transcriptomics and proteomics34.

Next, multimodal foundational models that span also molecular
structure are perfectly foreseeable with current technologies. Such models
could bring a whole new series of tools to interrogate and understand
biology holistically, for example explaining complex changes in gene
expression patterns in molecular and structural terms and then inferring
what molecular effectors could restore the disrupted pathways.
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