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Hyperaldosteronism, a common cause of hypertension, is strongly connected to Na+,
K+, and Mg2+ dysregulation. Owing to its steroidal structure, aldosterone is an active
transcriptional modifier when bound to the mineralocorticoid receptor (MR) in cells ex-
pressing the enzyme 11β-hydroxysteroid dehydrogenase 2, such as those comprising the
aldosterone-sensitive distal nephron (ASDN). One such up-regulated protein, the ubiqui-
tous serum and glucocorticoid regulated kinase 1 (SGK1), has the capacity to modulate
the surface expression and function of many classes of renal ion channels, including those
that transport Na+ (ENaC), K+ (ROMK/BK), Ca2+ (TRPV4/5/6), Mg2+ (TRPM7/6), and Cl−

(ClC-K, CFTR). Here, we discuss the mechanisms by which ASDN expressed channels
are up-regulated by SGK1, while highlighting newly discovered pathways connecting al-
dosterone to nonselective cation channels that are permeable to Mg2+ (TRPM7) or Ca2+

(TRPV4).

Introduction
In 2017, hypertensive blood pressure thresholds were lowered such that stage 1 hypertension commences
at 130 mmHg (systolic) and/or 80 mmHg (diastolic) [1]; down from 140 mmHg/90 mmHg [2]. Prior to
these changes, global data showed hypertensive rates of 22–30% in the total population [2-6], however
with the more stringent definitions, these rates will no doubt climb. Moreover, the prevalence of hyper-
tension is expected to further increase over time due to increasing rates of obesity and a progressively
aging demographic [3].

Clinically, hyperaldosteronism is often observed in resistant hypertension [4] and is a common cause
of secondary hypertension [5-8]. This is of major significance because hyperaldosteronism is associ-
ated with a plethora of cardiovascular comorbidities and is hallmarked by electrolyte dysregulation [9].
Moreover, drugs that target aldosterone and its mineralocorticoid receptor, such as spironolactone and
eplerenone, are increasingly being used in the management of various pathologies, including hyperten-
sion, heart failure, arrhythmias and renal disease [10,11]. Therefore, it is critically important that the ion
regulatory pathways of aldosterone are fully understood to understand the unintended consequences of
aldosterone-related treatments.

Ion transport abnormalities in hyperaldosteronism are to be expected, as the earliest research into al-
dosterone showed that the steroid hormone decreases the excretion of Na+ [12] and increases the ex-
cretion of K+ and H+ [13]. Mechanistically, most effects of aldosterone are exerted through the min-
eralocorticoid receptor (MR), to which aldosterone binds [14]. However, the MR has equal affinity for
aldosterone and glucocorticoids [15], a surprising observation since glucocorticoid plasma concentra-
tions are 100–1000 times higher than aldosterone concentrations [16]. To maintain aldosterone sensitiv-
ity, aldosterone-sensitive cells express 11β-hydroxysteroid dehydrogenase 2 [17], which converts cortisol
to cortisone [18], preventing cortisol from interacting with the MR [17]. Within the kidney, immunohis-
tochemical and immunocytochemical experiments have shown that 11β-hydroxysteroid dehydrogenase
localizes to three consecutive segments: the distal convoluted tubule (DCT), connecting tubule (CNT),
and cortical collecting duct (CCD) [19,20]. In some species, where the DCT has been subdivided into the
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DCT1 and DCT2 based on protein expression [21,22], the aldosterone-sensitive distal nephron (ASDN) would com-
mence in DCT2 [19].

Aldosterone and genomic signaling
The discovery of the high affinity aldosterone receptor, the MR [14], and 11β-hydroxysteroid dehydrogenase in re-
nal (distal tubular) cells [17,19,20,23] opened the possibility that aldosterone-MR signaling may affect ion trans-
porters, of which Na+ transporters were the first to be studied. In the kidney, aldosterone increases the transcription
of the basolateral Na+/K+-ATPase [24] and the apical epithelial Na+ channel (ENaC) [25]. Synthesis of channels and
pumps were classified as late effects since they were only detected after 20 h of 1 μM aldosterone exposure [26,27].
Short-term mechanisms have also been identified, as increases in Na+ transport were observed as early as 2.5 h af-
ter aldosterone application in cell-based studies. For apical ENaC, 1.5 μM aldosterone increased channel open time,
subsequently increasing Na+ transport in A6 (amphibian) kidney cells [28]. For the basolateral Na+/K+-ATPase, 1
μM aldosterone increased the activity of the Na+/K+-ATPase at physiological [Na+]i [26]. Surprisingly, this response
was dependent on protein synthesis since cycloheximide, an inhibitor of protein translation [29], blocked the effect
[26]. It was speculated that the MR may transcriptionally up-regulate activators and repressors capable of short-term
effects on aldosterone targets.

A83, the A6 (amphibian renal cell) equivalent of serum and glucocorticoid regulated kinase 1 (SGK1), was dis-
covered as an aldosterone responsive protein, since 100 nM aldosterone increased A83 mRNA and protein expres-
sion. In addition, SGK1 mRNA significantly increased in the distal cortical nephron of aldosterone treated rats (50
μg/100 g), implicating its role in mammalian function. Furthermore, when SGK1 was coexpressed with ENaC in
Xenopus oocytes, macroscopic current increased 7-fold [30]. Since this pioneering study, researchers have connected
aldosterone-stimulated SGK1 to many ion channels, including those expressed in the ASDN. Therefore, the purpose
of this review is to provide a comprehensive overview of the mechanisms by which aldosterone-MR-SGK1 affect ion
channel abundance and/or function, while discussing the present limitations of the literature.

Na+ channels
There are many regulatory mechanisms whereby SGK1 increases the function of ENaC (Figure 1). First, SGK1
phosphorylates Ser444 and Ser338 of the E3 ubiquitin ligase ‘Neural precursor cell-expressed developmentally
down-regulated protein’ (Nedd) 4-2, which reduces the affinity of Nedd4-2 for ENaC [31,32], and increases the affin-
ity of Nedd4-2 for 14-3-3 [33]. When not phosphorylated, Nedd4-2 interacts with the proline-rich segments of ENaC,
causing channel ubiquitination and subsequent internalization from the plasma membrane [34]. By diminishing the
Nedd4-2/ENaC interaction and promoting the Nedd4-2/14-3-3 interaction, SGK1 indirectly decreases ENaC inter-
nalization, and thus increases ENaC expression at the plasma membrane (Figure 1; pathway 3).

Second, SGK1 phosphorylates ‘kinase with no lysine’ (WNK)4 at Ser1169, removing the inhibitory action of WNK4
on ENaC (Figure 1; pathway 4) [35]. Patch clamp studies of the WNK4/ENaC mechanism further showed that WNK4
reduces ENaC current by 50% [36]. Surprisingly, it was observed that the C-terminus of ENaC must be present for
the modulation to occur, leading to speculation that Nedd4-2 is involved in the cascade. However, more recent re-
search has indicated that WNK4 decreases the surface expression of ENaC in a Nedd4-2 independent manner, as the
C-terminal proline rich motifs of ENaC are not required for WNK4 inhibition [37].

Third, SGK1 is suggested to directly phosphorylate α-ENaC, increasing ENaC electrophysiological function by 2-
to 3-fold (Figure 1; pathway 5). However, this response did not affect open channel probability, and since experiments
were performed in outside-out macropatches, the authors hypothesized it was due to the conversion of silent channels
into active channels. In addition, mutation of Ser621 at the C-terminus of α-ENaC abolished the SGK1 effect [38],
which is further interesting because Ser621 represents the terminal amino acid of the SGK consensus sequence [38,39].
Thus, SGK1 may have a direct regulatory site on α-ENaC.

Fourth, SGK1 may directly increase the transcription of αENaC by disrupting the transcriptional repressor
protein complex histone H3 Lys70 methyltransferase ‘disruptor of telomeric silencing alternative splice variant a’
(Dot1a)–‘ALL1-fused gene from chromosome 9’ (AF9), via phosphorylation of Ser435 on AF9 (Figure 1; pathway 6)
[40]. However, the authors noted that the Dot1a–AF9 interaction was only impaired, not prevented, by SGK1 phos-
phorylation and that AF9 still bound to the αENaC promoter. Thus, it was concluded that SGK1 may only be a partial
component of the mechanism responsible for the inhibition of the Dot1a–AF9 complex.
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Figure 1. Schematic of aldosterone, SGK1, and ENaC interactions

Aldosterone freely crosses phospholipid membranes and binds to the cytosolic mineralocorticoid receptor (MR) (1). The aldo/MR

complex translocates to the nucleus, binds to specialized hormone response elements (HREs), and promotes the transcription of

aldosterone-regulated genes, including SGK1, which is translated into protein (2). Newly synthesized SGK1 up-regulates ENaC

activity through several distinct pathways that reduce ENaC ubiquitination through bi-phosphorylation of Nedd4-2 (3), prevent

ENaC endocytosis by phosphorylation of WNK4 (4), recruit silent ENaC channels to active ones by direct phosphorylation (5), and

inhibit the transcriptional repressor complex Dot1a–AF9 via phosphorylation of AF9 (6).

K+ channels
SGK1 also interacts with the renal outer medullary K+ channel (ROMK); an apically located [41,42] K+ secretory
channel [43] of the distal nephron [44]. Prior to discussing this interaction, it is important to review the nomenclature
of the ROMK proteins. ROMK is a three-member splice variant family, where differences between splice variants
occur at the mRNA 5′-coding and 3′-noncoding regions [44]. With regard to the 5′-coding region (the N-terminus),
ROMK1 contains two predicted targets of PKC phosphorylation (Ser4 and Thr17), ROMK2 is a truncated protein
that lacks both of these sites, and ROMK3 has an extended N-terminus with a PKC-targeting threonine residue,
but no equivalent serine residue [44]. These structural differences alter ROMK regulation, as ROMK1 current was
inhibited by PKC through phosphorylation of Ser4, whereas the activities of ROMK2 and ROMK3 were unaffected
[45]. There are also differences in the expression of each splice variant, however all three are expressed in the rat
ASDN. Specifically, the DCT expresses ROMK2/3, the CNT expresses ROMK2, and the CCD expresses ROMK1/2
[44].

In cell-based experiments using exogenous ROMK1 or ROMK2, SGK1 altered ROMK function/expression through
three distinct mechanisms (Figure 2). First, SGK1 phosphorylated ROMK1 at Ser44, and this was correlated with
increased plasma membrane abundance of ROMK1 [46], an effect further dependent on the trafficking/transport
protein Na+/H+ exchange regulatory factor 2 (NHERF2) [47]. These findings indicate that SGK1 increases ROMK1
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Figure 2. Schematic of aldosterone, SGK1, and ROMK interactions

Following an identical cellular entry and SGK1 synthetic pathway discussed for ENaC (Figure 1), aldosterone (through SGK1) up-reg-

ulates ROMK activity through three distinct pathways: increased NHERF2-dependent ROMK trafficking via direct phosphorylation

of ROMK (1), increased channel function by direct phosphorylation of the same ROMK site (2), and decreased ROMK endocytosis

via bi-phosphorylation of WNK4 (3).

trafficking, resulting in increased plasma membrane expression (Figure 2; pathway 1). Second, Ser44 phosphoryla-
tion shifts the pH sensitivity/activation of ROMK1 to more acidic values, increasing electrophysiological function at
cytosolic pH 6.6–7.3 (Figure 2; pathway 2) [48]. Third, phosphorylation of Ser1169 [35] and Ser1196 [49] on WNK4
by SGK1 prevents clathrin-dependent endocytosis of ROMK2 (via the C-terminal NPXY-like motif), increasing the
plasma membrane expression of ROMK2 (Figure 2; pathway 3) [50]. Importantly, as Ser44 and the C-terminus of
ROMK are downstream to the reported N-terminal differences between ROMK1-3 [44], these conclusions may ap-
ply to all ROMK splice variants, however this awaits confirmation.

The large conductance Ca2+-activated K+ channel (BK), also termed Maxi-K+, is a K+ secretory channel expressed
throughout the ASDN [51-56]. BK is primarily stimulated by flow [57] and high K+ diets [58-60], although stimulation
of BK by membrane stretch has also been reported [61]. An initial study by Estilo et al. [60] suggested aldosterone
did not regulate BK in the rabbit CCD. However, it was concurrently reported that aldosterone increased BK mRNA,
luminal expression, and K+ secretion in the mouse colon [62]. An important difference between these studies was
their method of aldosterone stimulation. The CCD study used low Na+ diets, whereas the colonic study used high
K+ diets. Subsequently, in a mouse study where aldosterone was stimulated by high K+ diets, it was determined that
MR blockade could severely blunt BK expression [63]. A follow-up study by this same group revealed that even with
a low Na+ and high K+ diet, adrenalectamized mice with low aldosterone supplementation had lower apical and total
BK expression than control, confirming the necessity of aldosterone for BK up-regulation [64].

The effects of SGK1 on BK function are only beginning to be examined. In a 2017 study comparing control and
SGK1 knockout mice, BK whole-cell currents were unaffected, even when animals were fed high K+ diets [65]. In
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addition, ROMK whole-cell currents, amiloride-sensitive whole-cell currents, and amiloride-sensitive Na+ excretion
were also unaffected in SGK1 knockout mice fed with high K+ diets. The latter two results were surprising, as ENaC
surface expression was decreased when animals were subjected to similar treatments [65]. To date, there have yet to
be any studies that have examined the direct effect of SGK1 on BK plasma membrane expression.

Ca2+ channels
Ca2+ reabsorption in the ASDN occurs in part via the epithelial Ca2+ channel transient receptor potential vanilloid
(TRPV)5 [66-68] and its homolog TRPV6 [68,69]. TRPV5, the first to be studied, was discovered as an apical channel
located in the rabbit DCT, CNT, and CCD [66]. For species which subdivide the DCT into DCT1 and DCT2, TRPV5
expression commences in DCT2 [69]. Pertaining to SGK1, coexpression of SGK1, NHERF2, and TRPV5 dramatically
increased current in Xenopus oocytes. This change was accompanied by an increase in the TRPV5 surface chemi-
luminescence, suggesting that SGK1, along with NHERF2, increases the surface expression of TRPV5 [70,71]. The
surface expression and function of TRPV6 was also increased when TRPV6 and SGK1 were coexpressed in Xenopus
oocytes. This effect did not require NHERF2 [72], differentiating the response from SGK1/TRPV5 [70,71].

TRPV4 is a nonselective cation channel [73,74] expressed on apical membranes of the CNT and CCD [75]. Of
relevance to the tubule, TRPV4 is activated by changes in osmolarity [76-78], sheer stress [78-81], and pressure [82].
Indeed, high flow rates over the mouse luminal collecting duct increased [Ca2+]i, which was abolished in TRPV4
knockout animals [75]. This capacity to increase [Ca2+]i has connected TRPV4 to the Ca2+-activated BK channel, as
TRPV4 potentiators increased flow-dependent K+ secretion in wildtype animals whereas urinary K+ excretion was
significantly decreased in TRPV4 knockout animals [83].

Recently, it has been demonstrated that both aldosterone and high K+ diets increase the total expression of TRPV4
in primary and immortalized mouse CCD cells [84]. It was notable that TRPV4 expression in mice treated with MR
antagonists was below control, implying that aldosterone constitutively regulates TRPV4 [84]. This study further
demonstrated that high K+ diets, which should induce aldosterone release [85], increased TRPV4 apical membrane
expression and increased flow-mediated [Ca2+]i [84]. While SGK1-mediated effects were not explored, the authors
noted that prior findings of TRPV4 phosphorylation (at Ser824) by SGK1, which increased channel activity, Ca2+

influx, and protein stability [86], would explain their aldosterone-mediated effects 84]. Thus, it is possible that al-
dosterone, through SGK1, increases the expression/function of TRPV4, which increases [Ca2+]i in response to sheer
stress, and provides the necessary intracellular Ca2+ for BK-dependent K+ secretion.

Mg2+ channels
The relationship between aldosterone, SGK1, and Mg2+ permeable channels represents a largely unexplored field of
renal electrolyte regulation. While many Mg2+ permeable channels have been identified in DCT primary cells and
cell lines, such as transient receptor potential melastatin (TRPM)6 [87-89], TRPM7 [89-91], MagT1 [92,93], and
ACDP2/CNNM2 [94], few have been studied with aldosterone. TRPM6 [87,95] and TRPM7 [91,96-98] are further
complex, as they comprise Mg2+ permeable, nonselective cation channels fused to a C-terminal α-kinase domain.
Moreover, the α-kinase domain can be cleaved from both channels and act as a nuclear histone modifier, regulating
the expression of thousands of genes [99,100]. Thus, studies examining TRPM6 or TRPM7 must account for the
broad-spectrum regulatory capacity of the α-kinase domain.

Pertaining to aldosterone, we demonstrated that mice injected with aldosterone have a lower membrane to cy-
tosol fraction of renal TRPM6 compared with control animals, an effect that was rescued when mice were fed high
Mg2+ diets [101]. We have also studied TRPM7 and aldosterone, including pathways that involve SGK1. In cell-based
studies using TRPM7-expressing HEK293 cells, aldosterone increased [Mg2+]i, ROS, pro-inflammatory mediator ex-
pression. Pro-inflammatory mediator expression was only observed in kinase-defective mutants, not wildtype cells
[102]. Furthermore, in those same cells, aldosterone increased TRPM7 plasma membrane expression and whole-cell
current in an MR and SGK1-dependent mechanism (Figure 3). This effect was abolished in the phosphotransferase
inactive K1648R mutant, implying that SGK1 evokes its effects through the α-kinase domain [103].

The consequences of these mechanisms are vast given that TRPM7/6 permeability is governed by electrolytes. In
circumstances where extracellular divalent cation concentrations are low and extracellular pH is acidic, such as the
distal tubule, TRPM7 and TRPM6 are likely to conduct Na+ (Figure 3; pathway 1) [104,105]. However, in extracellular
conditions where divalent cation concentrations and pH are serum-like, TRPM7 and TRPM6 are likely to function as
nonselective cation channels with Mg2+ permeability (Figure 3; pathway 2) [88,106,107]. Further supportive of this
rationale, knockout studies targeting TRPM7 or TRPM6 showed that these animals exhibited decreased renal Mg2+

excretion and increased fecal Mg2+ excretion compared with control [108,109]. While it is tempting to conclude that
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Figure 3. Potential physiological consequences of aldosterone, SGK1, and TRPM7

Aldosterone, through induction of SGK1, increases TRPM7 plasma membrane expression and electrophysiological function via an

α-kinase-dependent pathway in expression systems. In the ASDN, where tubular proton concentration is elevated and divalent

cation concentrations are low, TRPM7 is likely to function as a Na+ channel (1). In tissues where aldosterone is active, extracellular

cations are serum-like, and extracellular pH is near 7.4, TRPM7 is likely to function as a Zn2+, Mg2+, and Ca2+ channel (2).

TRPM7 and TRPM6 function as Na+ channels in the ASDN whereas TRPM7 and TRPM6 function as divalent cation
(Mg2+) channels in the intestine of the KO mice, the loss or reduction of a transcriptionally active α-kinase should
severely impact cellular homeostasis. Nonetheless, the dynamic permeability properties of TRPM7 and TRPM6 must
be factored into conclusions surrounding their function in aldosterone-sensitive regions.

Cl− channels
The presence of pathways connecting SGK1 to Cl− transport in the ASDN are less conclusive, however it is highly
plausible that aldosterone, through SGK1, is capable of influencing Cl− transport. By a mechanism similar to
that described above for ENaC, SGK1 was shown to increase the plasma membrane expression of Cl− permeable
ClC-Ka/barttin [110,111] by decreasing the Nedd4-2 interaction with the PY motif of barttin in exogenously express-
ing Xenopus oocytes [112]. However, in the ASDN, human ClC-Kb/barttin is expressed [113], not ClC-Ka/barttin
[114]. Importantly, Nedd4-2 interacts with the barttin subunit [112], and therefore it is possible that SGK1 increases
the plasma membrane expression of ClC-Kb/barttin. This hypothesis is further supported by the similarity between
ClC-Ka and ClC-Kb (94% sequence homology [115]), although this has yet to be demonstrated.

The mRNA of cystic fibrosis transmembrane conductance regulator (CFTR) has been identified in rabbit DCT
[116], and CFTR-like currents have been electrophysiologically recorded in rabbit DCT cells [116,117]. When studied
in pancreatic duct adenocarcinoma cells, wildtype CFTR and Nedd4-2 co-immunoprecipitated, implying a physical
connection between the two proteins [118]. This interaction was also observed for Nedd4-2 and �F508-CFTR, and
siRNA knockdown of Nedd4-2 acted as a rescue for �F508-CFTR plasma membrane expression. Furthermore, siRNA
knockdown of endogenous SGK1 abolished a previously characterized pharmacological rescue of plasma membrane
bound �F508-CFTR, indicating that SGK1/Nedd4-2 internalization mechanisms mediated the plasma membrane
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expression of �F508-CFTR. Since CFTR is expressed in the aldosterone-sensitive distal nephron, it is also possible
that SGK1 modulates CFTR through Nedd4-2 ubiquitination, however this has yet to be determined.

Conclusions
Aldosterone has long been connected with ion transport and ion channel function. Historically this has emphasized
ENaC and ROMK, as Na+ and K+ dyshomeostasis were some of the first symptoms associated with hyperaldostero-
nism. Aldosterone signaling cascades, particularly those evoking widely expressed mediators, such as SGK1, have
expanded the possible classes of ion channels affected by aldosterone. It is now accepted that aldosterone, through
SGK1, has the capacity to modulate ion metabolism through several ion channels, including those that regulate Na+,
K+, Ca2+, Mg2+, and Cl−. Unlike Na+ and K+ channels, there is a paucity of information regarding aldosterone/SGK1
effects on renal Ca2+, Mg2+, and Cl− channels. Hence, there is still much to be explored in understanding the mecha-
nistic pathways whereby aldosterone, through its mineralocorticoid receptor and downstream target SGK1, regulate
ion channels in the kidney in health and disease. Recognizing that aldosterone influences electrolyte balance beyond
its effects on Na+ and K+ regulation is important because perturbations in renal handling of Mg2+, Ca2+, Cl−, and H+

likely influence multiple tissue systems and would impact disease management.
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