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The presence of two spectrally different kinds of rod photoreceptors in

amphibians has been hypothesized to enable purely rod-based colour

vision at very low light levels. The hypothesis has never been properly

tested, so we performed three behavioural experiments at different light

intensities with toads (Bufo) and frogs (Rana) to determine the thresholds

for colour discrimination. The thresholds of toads were different in mate

choice and prey-catching tasks, suggesting that the differential sensitivities

of different spectral cone types as well as task-specific factors set limits for

the use of colour in these behavioural contexts. In neither task was there

any indication of rod-based colour discrimination. By contrast, frogs per-

forming phototactic jumping were able to distinguish blue from green

light down to the absolute visual threshold, where vision relies only on

rod signals. The remarkable sensitivity of this mechanism comparing signals

from the two spectrally different rod types approaches theoretical limits set

by photon fluctuations and intrinsic noise. Together, the results indicate that

different pathways are involved in processing colour cues depending on the

ecological relevance of this information for each task.

This article is part of the themed issue ‘Vision in dim light’.
1. Overview
The colour vision abilities of amphibians have been an intriguing subject for many

decades, and it has repeatedly been hypothesized that these animals might be

able to see colours at light intensities in which others can barely see anything.

This idea stems from the presence of two spectrally different types of rods in

most anurans (frogs and toads) and some urodeles (salamanders and newts)

[1–3], first described by Franz Boll in 1877 [4] on the basis of their colour when

viewed end-on in freshly dissected retinas. He used the term ‘red rods’ for the

majority type found also in other vertebrates, and ‘green rods’ for the minority

type that he found only in amphibian retinas. In 1955, Denton & Wyllie [5]

showed that the absorbance of the ‘green rods’ peaks in the blue part of the spec-

trum at approximately 430 nm, whereas what they called ‘pink rods’ are typical

vertebrate rhodopsin rods with absorbance maximum in the green part of the

spectrum at approximately 500 nm. The traditional nomenclature is hopelessly

confusing, so here we use the terms blue-sensitive (BS) rods and green-sensitive

(GS) rods. The presence of photoreceptors that have different spectral sensitivities

and are functional at the same light levels is mandatory for colour vision (see [6]

for a review), and the fact that rods are active in dim light, when cones do not con-

tribute to vision, led Denton and Wyllie to suggest ‘that frogs could have

dichromatic colour vision using only their retinal rods’ [5].
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Table 1. Properties of the photoreceptors found in the retina of the most studied anurans from families Bufonidae and Ranidae. Bb, Bufo bufo; Bg, Bufo
gargarizans; Rp, Rhinella poeppigii (formerly Bufo marinus); Lp, Lithobates (formerly Rana) pipiens; Lc, Lithobates catesbeianus (formerly Rana catesbeiana);
Rt, Rana temporaria; n.d., no data available to our knowledge.

BS rod GS rod BS cone GS cone RS cone

maximum absorbance or sensitivity (nm) Bb: 432 [7] Bb: 502 [7] Bb: n.d. Bb: n.d. Bb: 562 [8]

Bg: 432a Bg: 502a Bg: n.d. Bg: n.d. Bg: 562a

Rp: 432 [7] Rp: 503 [7] Rp: n.d. Rp: n.d. Rp: n.d.

Lp: 433 [9] Lp: 503 [7] Lp: n.d. Lp: 502 [9] Lp: 562 [10]

Lc: 432 [7] Lc: 502 [7] Lc: 433 [11] Lc: 502 [11] Lc: 570 [11]

Rt: 434 [7] Rt: 503 [7] Rt: 431 [10] Rt: n.d. Rt: 562 [10]

opsin Lc: SWS2 [12] all spp: Rh1 [13] Lc: SWS1 [14] n.d. all spp: LWS [13]
aSL Kondrashev 2015, unpublished data.
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In the last 50 years, a fair amount of information has accu-

mulated about photoreceptor complements, opsin classes

and signal processing in amphibian retinas. Table 1 summar-

izes the most relevant knowledge about the rod and cone

complements of the two families of anurans in this study:

BS rods, GS rods and BS, GS and red-sensitive (RS) cones.1

The BS rods are thought to be ‘transmuted’ cones, evolu-

tionarily modified to extend the operation of an ancestral

cone receptor into a lower illumination range [15,16]. Accord-

ingly, they possess cone pigments: in Lithobates catesbeianus
BS rods have SWS2 while BS cones have SWS1 [12,14],

whereas the latter pigment is found in both BS rods and

cones in the urodele Ambystoma tigrinum [17]. Moreover,

frog BS-rod pigment shows the fast regeneration after bleach-

ing characteristic of cone pigments [18]. The rod-like

morphology will in itself increase quantum catch and slow

down responses (increasing temporal summation), but the

transmutation also involves the use of rod instead of cone

transducin, at least in Ambystoma [17]. There are no direct

electrophysiological recordings from dark-adapted BS rods

or cones of the species used in this study, however, and we

must tentatively rely on results from other amphibians. The

amplitude and kinetics of the single-quantum response of

BS rods in the cane toad Rhinella poeppigii are very similar

to those of GS rods [19,20]. The same is true of BS rods in sal-

amander, where BS cones are 30 times less sensitive, in terms

of photons impinging on the retina, due both to lower quan-

tum catch and smaller single-quantum response [17]; yet,

their dark-adapted response kinetics differ little. Comparing

dark-adapted BS and RS cones, the former have four to five

times higher gain, are much less noisy and have slower

response kinetics [21]. All these differences suggest a higher

sensitivity in the ‘blue’ than in the ‘red’ cone channel.

Despite all knowledge about amphibian retinal physiology,

the hypothesis of rod-based colour vision in amphibians has

never been strictly tested by behavioural experiments [22],

and it is still unknown which photoreceptors are involved in

colour vision at different light levels. The main obstacle for

tackling these questions is the similarity in spectral sensitivities

and response kinetics of BS rods and cones, which make their

contributions virtually impossible to separate at light intensi-

ties where both rods and cones are active. Furthermore, rod

intrusion in cone-dominated colour vision has been suggested

for a number of species at mesopic light levels (reviewed by

Kelber et al. [23]), so testing purely rod-based colour vision
requires a firm knowledge of the limits of cone-based colour

vision in these species.

The critical question is: can amphibians see colours at light

intensities so low that significant cone contributions can be

excluded based on their lower sensitivity? Thus, our objective

in this study was to determine the lowest light levels where

amphibians can discriminate colours. For the experiments, we

relied on three behaviours: mate choice, prey-catching and

phototaxis, using in all cases ‘blue’ and ‘green’ stimuli designed

to stimulate GS and BS rods quantifiably and differently. The

experiments were set up and adjusted at light levels where it

is well known that the tested species can use colour cues (see

[6] for a review and references) and then performed at a

number of lower light intensities until a threshold level was

found. Light intensity was expressed in two manners: (i) as (cal-

culated) photoisomerization rates in rods, which allows us to

relate performance to absolute limits and (ii) as luminance

levels (cd m22), which allows us to translate the experimental

conditions into natural light scenarios and assess the ecological

meaning. The spectral sensitivity curves for each photoreceptor

and methods for calculating light intensities are detailed in the

electronic supplementary material, parts S1 and S6.

In the three following sections, we provide the back-

ground, rationale and specific goals for each experiment

along with experimental procedures and results. In the last

section, we discuss the view of amphibian colour vision

abilities that emerges from our present results together with

previous evidence.
2. Mate choice experiments
In many anuran species, the breeding season lasts for just a

few weeks of the year, during which the animals succumb

to their sexual motivation. In George Orwell’s words, ‘All

he knows, at least if he is a male toad, is that he wants to

get his arms round something, and if you offer him a stick,

or even your finger, he will cling to it with surprising strength

and take a long time to discover that it is not a female toad’

[24]. Such motivation has been fruitful for studying colour

preferences of male frogs and toads by presenting them

two or more ‘female models’ simultaneously, thus forcing

them to decide which one to approach.

Previous research has shown that males of the common

European frog (Rana temporaria) prefer red-coloured female
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Figure 1. Proportions of choices of male toads for colour stimuli at different light intensities in mate choice experiments. Asterisks indicate significant preference for
one of the colour stimuli in that pair and luminance level. The legend ‘refusal’ shows the cases in which the stimulus pair in that position was presented to the
animals and failed to elicit the mating behaviour. The colour coding is only for guidance (the colours do not imitate those of the stimuli). The full dataset and
statistics are available in the electronic supplementary material, part S3.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160066

3

models in their natural environment, but frogs are unsuitable

for experiments in controlled illumination conditions as they

lose sexual motivation when removed from the breeding

pond [25–27]. On the other hand, breeding male toads of the

genus Bufo display their characteristic sexual behaviour even

in the laboratory, allowing for more detailed and controlled

experiments. Such studies have shown species-specific differ-

ences in the colour preferences: Bufo viridis prefers black

female models, whereas B. gargarizans and B. bufo prefer blue

models and ignore those in the yellow-red range [25].

The sensitivity of male toads to the spectral composition

of female models together with their willingness to make sev-

eral choices in a row makes this experimental approach very

well suited to test under which illumination conditions each

of the amphibian colour channels (blue, green and red)

works. With this strategy, we assessed the light intensities

at which the differential stimulation of different colour

channels stops contributing to mate choice behaviour.

(a) Animals
Ten breeding couples of Asiatic toads B. gargarizans (formerly

B. bufo gargarizans) were captured at Popov Island (Peter the

Great Bay, Sea of Japan) during their migration from the

forest where they hibernate to the breeding pond and trans-

ported to the laboratory. The experiments lasted 9 days;

we used only the males and released all the animals in

their natural environment afterwards.

Between the daily experimental sessions, the toads were kept

in a dark room at 5–88C in plastic vessels with wet soil, each

vessel housing one breeding pair (male and female in amplexus).

Before each experimental session, the toads were transferred to
another vessel with a small amount of water and were adapted

for 1 h at 20–228C and luminance 2–9 cd m22.

(b) Colour stimuli and experimental design
The set of stimuli was designed to dissect the contributions of

the different colour channels in the amphibian retina (i.e.

blue, green and red) at different light intensities, irrespective

of the identity of the photoreceptors underlying them. We

used blue and green as mentioned before, and also a few

other colours to gather specific information about the

dynamic range of the RS channel. The colour stimuli were

paired to generate different excitation rates for each of the

colour channels (see the electronic supplementary material,

part S2), and the pairs were grouped on the basis of the rela-

tive excitation rates for the red and blue channels. In group A,

the blue stimulus generates a higher signal in the blue, and

lower in the red channel than its green counterpart. In

group B, the blue/purple stimuli generate a higher signal

in the blue channel than their green/orange counterparts,

while the excitation in the red channel is virtually equal for

both members of each pair. In group C, both components

of each pair generate the same excitation for the blue channel

while the signal in the red channel is higher for the purple/

orange models than for their grey/green counterparts (see

figure 1 for a summary of these grouping criteria). For all

stimulus pairs that cause differential excitation of the green

compared with the red channel that difference goes in the

same direction but is smaller than the differential excitation

of the blue channel. This led us to simplify the grouping

and analyses by excluding green channel excitation as an

independent variable.



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160066

4
We used the experimental procedure described in Gniubkin

et al. [28]. The arena was a rectangle with 20 cm high walls cov-

ered with matte white paper. The female models used as stimuli

consisted of stationary paper discs (3 cm diameter; [26]) printed

in the selected colours and mounted on cardboard discs placed

on the floor in front of one short end of the arena, equidistant

from the edges and 30 cm apart from each other. The starting

position for the animals in each trial was 50–70 cm from the

stimuli. The arena was illuminated with a stabilized halogen

source (24 v, 150 W) that reflected from a flat screen covered

with Whatman filter paper to provide diffuse illumination

and avoid shadows. The luminances used in these experiments

were 190, 63, 19, 1.9, 0.3 and 0.1 cd m22; they were achieved

adding layers of neutral density glass filters (GOST USSR

(State standard) 9411-75) in front of the light source.

In each experimental session, a couple of toads in amplexus

were taken from the terrarium, the male carefully separa-

ted from the female and released in the arena. Before the

two-choice trials, the male’s motivation was tested with a

single blue female model. Any male that did not approach

it was excluded from the experimental session that day.

We considered that the animal had made a choice when he

approached one of the stimuli and grasped it with his forelegs.

After that, the male was taken away from the arena and

re-joined the female. The stimuli were changed and trials con-

tinued as long as the males maintained a steady motivation to

make a choice (see the electronic supplementary material,

video S1 for a demo of the experimental procedure in an

open-air arena). As testing was constrained by the short time

span of the breeding season and dependent on the motivation

of the males, it was not possible to design a balanced exper-

iment with a scheduled number of trials for each stimulus

pair for each individual a priori. Thus, the choices made by

all males for a given stimulus pair at each light intensity were

pooled for the statistical analysis, adding up to more than

650 choices in total. The criterion for significant colour

discrimination was the lower limit of the 95% confidence inter-

val for proportions in binomial distributions [29] (see details in

the electronic supplementary material, part S3).
(c) Results
Our animals showed the behavioural pattern described for

the species before, marked by an overall preference to

approach the female models that generate a higher signal in

the blue channel, and to avoid those that generate a higher

signal in the red channel in bright light conditions. Figure 1

summarizes the results for all the stimulus pairs in all the

tested light intensities. The behavioural choices in each of

the groups show some clear patterns. In group A, the animals

show the expected preference for the blue models in bright

light but also at the previously untested lower light intensi-

ties. As in this pair the green stimulus compared with the

blue stimulus produced not only less excitation of the blue

channel, but also more excitation of the red channel, we

cannot know which of these differences was most decisive

at the different light levels. The results from group C show

that when the only relevant difference in excitation rates hap-

pens in the RS channel, the discrimination of stimuli gets

extinguished at luminance levels of 1.9 cd m22 and lower.

This result could indicate either that the photoreceptors

underlying that channel are not sensitive enough at those

light intensities, or that the aversive (red) stimulation
becomes irrelevant. On the other hand, the results for

group B show that when the stimuli differ mainly by the exci-

tation of the BS channel they can be discriminated at lower

light intensities, down to 0.1–0.3 cd m22. This difference in

the thresholds for the BS and RS channel supports the hypo-

thesis of a higher sensitivity of the blue versus red cones that

was mentioned in the first section.

The readiness and strong drive of the male toads for this

innate response allowed us to test a large number of stimuli

and showed that besides the colour preferences at higher

light intensities, there is a range where the animals continue

to grasp the female models even though they stop using chro-

matic cues. Still, the motivation of the males faded at light

intensities several orders of magnitude higher than their

absolute visual threshold [27]. Moreover, the known lack of

sexual motivation of frog males in the lab made this behav-

iour unsuitable for a comparison between frogs and toads

that would have yielded a more general picture of the

colour vision abilities of anuran amphibians. To overcome

these limitations, we turned to a ‘trainable’ behaviour.
3. Prey-catching experiments
Most adult anurans are carnivorous and rely heavily on

motion detection for hunting prey. Their feeding behaviour

lends itself very well to behavioural experiments, as beauti-

fully described in the classic paper by Lettvin et al. [30]:

‘[The frog] will leap to capture any object the size of an

insect or worm, providing it moves like one. He can be

fooled easily not only by a bit of dangled meat but by any

moving small object.’ Snapping for prey dummies has

previously been used for determining the absolute visual

threshold of B. bufo [31] and for demonstrating colour

vision in B. bufo and B. viridis [27]. Colour-linked food

rewards have also been used to test colour vision thresholds

in salamanders [32] and other vertebrates like geckos [33].

The feeding behaviour based on prey features is trainable

as well as seasonally stable, which makes it a promising

experimental paradigm for testing the colour vision abilities

in both Bufo and Rana.

(a) Animals
We collected common toads (B. bufo; n ¼ 5) and common

frogs (R. temporaria; n ¼ 3) at Lund University’s biological

station in Skåne, Sweden. The animals were kept in glass

terraria, which were wrapped in light brown paper, with

free access to water and hiding places, and fed with crickets

and mealworms three times a week. The photoperiod (12 L :

12 D) and temperature (208C) were kept constant throughout

the experiments.

(b) Colour stimuli and experimental design
The set of green-blue stimulus pairs used in this experiment was

specifically designed to control for brightness cues. Brightness

was calculated as the quantum catches provided by each

colour to the different photoreceptors (electronic supplementary

material, part S4). As it was not feasible to find a single pair in

which blue and green would yield both the same quantum

catches and maximum excitation for all photoreceptors, we

resorted to several combinations that covered all the possible

brightness relationships for each of them. We accomplished
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this with three different greens and three different blues com-

bined in five pairs (electronic supplementary material, part S4).

We printed the prey dummies (0.5� 1.5 cm) in each of the

selected colours for the two-choice experiments.

The arena was a Plexiglas terrarium with a built-in

Y-maze wrapped in the same paper as the housing terraria.

In each trial, there was one stimulus pair, with one prey

dummy placed on each arm of the maze. Live mealworms

placed in hidden compartments underneath each of the

stimuli were used as rewards. The arena was inside a dark

room and illuminated by a fluorescent tube (Phillips

MASTER TL5 HO 90 De Luxe 24 W/950) at 1 m above the

floor of the setup. Luminance levels of 40, 0.2, 0.004, 0.0004

and 0.00007 cd m22 were achieved by adding layers of neu-

tral density filters (Lee filters, Hampshire, UK) underneath

the light source.

In each trial, both stimuli were moved simultaneously

approximately 3 cm backwards and forward to elicit the

prey-hunting behaviour. The first pilot trials showed an

innate preference in the choice rate for the green prey, so

we set that one as the ‘correct’ choice. The decision to snap

at the green stimulus was rewarded by providing access to

the prey item, while the choice of the blue stimulus was unre-

warded (electronic supplementary material, video S2). Each

experimental session consisted—ideally—of 10 consecutive

stimulus presentations; the stimulus pairs were presented

twice inverting the position (left/right) of each colour. The

sequences for the presentations were assigned pseudo-

randomly [34], and were different for each session. Whenever

an animal stopped cooperating before the 10th trial, the ses-

sion was put on hold and resumed the next day. Each

animal performed two to four sessions per week, depending

on their cooperativeness. To increase the motivation to hunt

the prey dummies, the rewards during the experiments

were the only food the animals received during this period.
The initial training took place at a luminance level of

40 cd m22 and each animal performed at least 40 trials. As

in the mate choice experiments, the threshold for colour

discrimination was set at the lower limit of the 95% confi-

dence interval for proportions in binomial distributions [29]

(27 choices of green out of 40 total choices). Each individual

reaching this criterion passed on to the second phase, in

which 40 choices by each animal were collected with the

same reward schedule at lower light intensities.
(c) Results
All the animals were attracted by the moving stimuli and

showed the prey-catching behaviour since the first trial, and

they readily detected and ate the prey item that was offered

as a reward for each correct choice.

After the initial 40 trials per individual, it was evident that

our two species were choosing the preys in different ways.

While the five toads were above the statistical threshold of 27

choices of green, the frogs’ choice rates were very close to 50%

for each colour. We did more trials with the frogs to give

them the opportunity of putting aside whichever strategy

they were using and ‘learn’ that they had to choose based on

colour. After 120 trials, the choice rates were still statistically

random regarding the colour of the prey dummies (figure 2a).

When we sorted the choices by brightness of each stimulus

instead of colour, a clear pattern emerged showing that frogs

were mostly choosing the darkest available prey (figure 2b).

The same analysis provided additional evidence that the

toads’ choices were actually driven by colour, as their responses

sorted by brightness of the stimuli shows a random choice rate,

indicating that the achromatic cue is irrelevant in their case.

The choice patterns in both species were the same when the

analysis was performed separately for each individual (see

raw data in the electronic supplementary material, part S5)
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and stimulus pair (data not shown). Taken together, these

results show that toads used colour vision in this experimental

setting, as their choices were consistently ‘green’ irrespective of

the brightness, whereas frogs used achromatic vision, as they

consistently chose the stimuli with the lowest brightness regard-

less of its colour. As a consequence, frogs were excluded from

the second phase. Before proceeding to the next stage, we

sorted the toads’ choices by position (left/right, data not

shown) and confirmed that there was no side bias in four out

of five animals. The only individual that showed a significant

bias towards one side was excluded from the next stage, and

his data are not included in figure 2.

The four remaining toads performed 40 trials each at each

of the lower light intensities (figure 2c). Their choice rate for

the green stimuli was above the statistical significance criterion

for colour discrimination down to 0.004 cd m22 for three out of

four animals and 0.0004 cd m22. The one animal that reached

the statistical criterion at 0.00007 cd m22 had failed in the pre-

vious step, so we consider that data point to be unreliable.

While at 0.00007 cd m22 the animals did not reach the signifi-

cance criterion, all of them were still making choices and

successfully spotting the prey item. These results show that

the threshold for colour discrimination of toads in the prey-

catching task is in the range 0.004–0.0004 cd m22, while in

the lowest part of the visual dynamic range the chromatic

cue is not used. An equivalent experiment with human obser-

vers gave a colour threshold of 0.08–0.006 cd m22 (data not

shown). This result was expected considering the overall

lower visual sensitivity of humans compared with amphibians,

and is similar to previous findings [35].

Observing known differences in the optics of the eye

and the dimensions, gains and integration times of the cones,

dark-adapted cone vision in anurans at room temperature is

estimated to be �100 times more sensitive than in humans

[36,37]. Thus, the colour thresholds measured here may well

be cone-determined and give no clear indication of rod involve-

ment. Moreover, neither the mate choice nor the prey-catching

experiment allowed determination of frog colour sensitivity.

Therefore, we turned to the phototactic behaviour as our exper-

imental paradigm for testing the performance of frog colour

vision at low light levels.
4. Phototaxis experiments
Phototaxis, or the drive to orient and move in relation to a light

source, is one of the simplest visual tasks that an animal can

perform, as it only requires perception of the light direction

[38]. Kühne (1878) [39] first observed that intact frogs moved

from green towards blue light, while blinded individuals did

not. In 1910, Pearse [40] summarized what was then known

about amphibian colour preference: ‘The rays toward the

violet end of the spectrum are apparently most potent in pro-

ducing photic reactions, and the rays toward the opposite

end approach in their effects the conditions brought about by

dark.’ The question was approached again in classical studies

on amphibian phototaxis and blue preference by Muntz

[41,42] and Hailman & Jaeger [43,44], but in none of these

was the question of absolute intensity thresholds addressed,

either for the behaviour as such, or for the blue preference.

In the 1980s, Aho et al. [45,46] developed a semi-automated

high-throughput set-up to determine the absolute visual sensi-

tivity of R. temporaria and Lithobates pipiens, taking advantage
of the strong drive of the frogs to jump towards a light

source when confined in a dark environment. Here, we

adapted this set-up for the study of colour discrimination

down to the absolute visual threshold. The purpose was three-

fold: (i) to pin down unambiguously the contributions of the

two types of rods to colour vision, (ii) to get data from frogs,

and (iii) to elucidate task-specific motivation issues in the

previous experiments.

(a) Animals
We used R. temporaria collected in the wild in southern Finland

(seven females and 10 males). The animals were kept in basins

with access to water at 168C on a 12 L : 12 D photoperiod and

force-fed with chicken liver and nutritious fish food after

every experimental session. The basins were covered so that

the frogs received only dim light. The experiments were

performed during the light period (06.00 h–18.00 h), but the

animals were kept in total darkness for at least 2 h before testing.

The testing room temperature was kept constant at 188C.

(b) Colour stimuli and experimental design
In these experiments, the stimuli were not reflecting objects,

but two differently coloured lit windows (7 cm diam.) in diag-

onally opposite quadrants in the ceiling of a testing chamber

(black plastic bucket; figure 3a). The two remaining quadrants

were not open and are therefore referred to as ‘dark windows’.

The only experimental variable was the intensity of the light

homogeneously illuminating the entire arena (i.e. common to

all windows), which is expressed as photoisomerizations per

rod per second (R* rod21 s21) elicited over the retinal images

of the lit windows (see the electronic supplementary material,

part S6). The window colours were produced with Kodak

Wratten 2 optical filters (no. 98, ‘blue’ and no. 8, ‘green’;

Eastman Kodak Company, USA). The relative transmittances

of the two windows were separately adjusted with neutral den-

sity filters in such a way that the ‘blue’ and ‘green’ windows

stimulated GS rods equally. Given the spectral characteristics

of the colour filters, photoisomerization rates in BS rods from

the ‘blue’ window were then slightly (approx. 30%) higher

than in GS rods, while BS rod stimulation from the ‘green’

window was about 20-fold lower (see the electronic sup-

plementary material, part S7). For practical purposes, this is

close enough to our original simple goal that BS/GS rod stimu-

lation be�1 for the blue window and�0 for the green window.

Although we keep these minor deviations in mind, we gener-

ally use the photoisomerization rate in GS rods as our only

measure when considering the results (figure 3b).

The entire arena consisted of four testing chambers placed

in a square array homogeneously lit from above by a common

light. The primary light source was a 30 W halogen lamp

driven by a stabilized current source (GWInstek GPS-3030

run at 2.3 A), enclosed in a light-tight box 112 cm above the

roof of the arena and centred on the midpoint of the square

array. The light passed through an edge filter cutting off wave-

lengths above 550 nm, neutral density filters to set the overall

light intensity, and an acryl diffuser. In each of the four test

chambers, four infrared emitter-detector pairs recorded the

jumps into each of the quadrants (figure 3a). In each exper-

imental session, four frogs were tested in parallel, one in each

bucket. Each session was limited to last 1 h and each frog

was tested only once per day. Each frog was tested four to

eight times in each bucket and at least four times at
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each light intensity, adding up to a total of more than 20 000

recorded jumps.
(c) Results
Figure 3b displays the fractions of jumps towards the blue and

green window as function of light intensity. The orange curve

(‘light’ jumps) is the sum of the blue and green jump fractions;

‘dark’ jump fractions (not shown to avoid clutter) are the comp-

lement of the orange curve. Random jumping would produce

the fraction 0.5 of light jumps, distributed equally on blue and

green (i.e. fraction 0.25 for each). These random levels are indi-

cated by dashed lines in figure 3b. In total darkness (light

source turned off), the fractions did not deviate statistically sig-

nificantly from random, indicating that there was no inherent

bias. To our surprise, however, a slight but significant rise of

the green fraction was evident even from the lowest light inten-

sity tested (0.001 R* rod21 s21; x2-test of the distribution of

jump numbers: p , 0.001; see the electronic supplementary

material, part S8 for details about statistics). Given that the

absolute threshold for seeing light at the same temperature

reported by Aho et al. [45] is 0.01 R* rod21 s21 (albeit based

on a stricter threshold criterion), this leads to the remarkable

conclusion that frogs can discriminate colours as soon as they

start seeing anything. At the next higher intensity tested here

(0.02 R* rod21 s21), the green-blue difference becomes quite

substantial, as green jumps increase while blue jumps drop sig-

nificantly below chance level. Thus, ‘blueness’, i.e. a mere

increase in the isomerization rate in BS rods, in fact acts as an

aversive signal, making the blue window less attractive even

than the dark quadrants. The aversive effect of BS rod stimu-

lation at low intensities has the further paradoxical effect that

apparent discrimination of ‘light’ (green þ blue) from ‘dark-

ness’ at this intensity stays close to chance level (1 : 1) even

when there is very significant colour discrimination. From

0.2 R* rod21 s21 upwards blue jumps start increasing in paral-

lel with green, but not until around 10 R* rod21 s21 upwards
does blue become more attractive than green, as expected on

the basis of previous studies [41–44]. This is already a range

where the BS cones are active, and the relative role of the

BS rods is uncertain. Consistent with this, it is also where

human subjects (n ¼ 3) viewing the same stimuli at the same

distance as the frogs first reported seeing ‘blue’.

This remarkable sensitivity of colour discrimination lies

near the physical limits set by the quantum character of light,

as can be seen from the following estimations of signal-to-

noise ratios (SNR) in our experimental conditions. The retinal

image of the window covers about 30 000 GS rods and 3000

BS rods [47]. Over this area, the light intensity 0.001 R*

rod21 s21 (where green and blue are already distinguished)

produces a total of around 30 R* s21 in GS rods and 4 R* s21

in BS rods. Assuming 3 s integration time at this temperature

[45,46,48], the signal for discrimination of blue from green is

3 � 4 ¼ 12 R* and the noise (Poisson standard deviation of

quantal fluctuations) is
p

(90 þ 12) � 10 R*. The SNR based

on the photon flux alone is then SNRin ¼ 1.2 (cf. [46]).

This is by definition an upper limit. A more realistic

measure of discriminability requires that intrinsic neural

noise liable to obscure the signal be taken into account to

give a physiological signal-to-noise ratio (SNRout). The most

inexorable noise source is the random occurrence of spon-

taneous thermal activations of visual pigment molecules

causing electrical ‘dark events’ in the rod cells that cannot

even in principle be distinguished from responses to single

photons. Dark event rates have never been directly measured

in R. temporaria rods and extrapolation from other sources is

unusually difficult in this case. Reported dark event rates in

BS rods of the classical amphibian model, the toad R. poeppigii
(Bufo marinus), span two orders of magnitude (0.0003 versus

0.06 R* rod21 s21) [19,20]. For GS rods, the situation is not

much better: estimates in different species for 502-nm rod

pigments with A1 chromophore range from 0.02 (toad) to

0.001 (salamander) R* rod21 s21 [49]. The lower estimates

would enable high efficiency in the discrimination task
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(SNRout remarkably close to SNRin), whereas the higher

estimates would be associated with serious loss of reliability.

As a cautious solution, we may fall back on whole-

retina dark-noise estimates from ganglion-cell recordings in

R. temporaria, which translate into an equivalent rod event

rate of 0.017 R* rod21 s21 at the temperature of the present

experiments [45]. This would depress SNRout at our discrimi-

nation threshold to around 0.3. Such low values are not

generally considered useful in human detection tasks, but as

the number of trials ( jumps) is ‘unlimited’ here, it is enough

to produce a significant bias.
Phil.Trans.R.Soc.B
372:20160066
5. Discussion
(a) The use of colour by amphibians depends

on context and light levels
The results underscore how the use of colour as a visual cue

works differently for different behaviours and in different

illumination ranges (see fig. 3 from Kelber et al. [23] for com-

parison with other animals and approximate luminances of

natural light environments). These observations remind us

to be cautious in generalizing sensory thresholds from a par-

ticular behaviour, as limitations may have more to do with

the relevance of the specific cue and its interaction with

other sensory signals in a given situation than with funda-

mental physical and physiological mechanisms. Another

example known since the 1950s is that toads, as opposed to

frogs, do not use colour cues for the optomotor response,

even when the chromatic contrast is perfectly visible to

them in other behaviours [28,50,51].

The behavioural thresholds provide some hints about the

ecological relevance of colour. In the mate choice experiments,

the male toads used colour for choosing the female models

down to 0.3 cd m22, which is the approximate luminance of a

clear evening after sunset. Even if this species is primarily noc-

turnal or crepuscular, the diel pattern for breeding is flexible,

and some studies even suggest that B. bufo prefers to mate

under full moon rather than moonless nights [52]. A similar

reasoning can be applied to the prey-catching behaviour. The

luminance threshold for colour vision in this behaviour,

around 1024 cd m22, is equivalent to a moonless, clear, starlit

night. Still darker environments (e.g. prey-catching on a

cloudy moonless night or under a thick canopy at night) need

not be dealt with very often. Moreover, even if colour was a rel-

evant cue for prey-catching in nature, it is certainly dispensable:

toads will happily go on trying to catch prey in achromatic

mode even at such low light intensities that the slowness of

rod responses to the very sparse photon fluxes severely

degrades the accuracy of hitting moving targets [31,48].

The situation is quite different for the phototactic behav-

iour. The scenario of being inside a dark enclosure is totally

realistic and probably a frequent occurrence in nature. Finding

an exit is of vital importance and would be expected to draw on

all available information, including colour. Blue preference has

been demonstrated in tens of frog and toad species [43,44] at

photopic light levels, and it may be speculatively related to

the blueness of the sky. In the same vein, our seemingly para-

doxical finding that the wavelength preference is reversed at

the very lowest light levels might make sense, as the primary

nocturnal light sources—the stars and the moon—have com-

paratively reddish spectra [53]. Thus, phototactic orientation
towards light of longer wavelengths might be purposeful on

a dark night when only rods are active, whereas the blueness

of the sky even at twilight is bright enough to activate

BS cones. It is intriguing to think that signals from the spectrally

near-identical BS rods and cones are, at some level of the visual

system, wired for opposite phototactic responses to ‘blueness’.

(b) Photoreceptor mechanisms underlying colour
discrimination in the different tasks

A major goal of this study was to analyse the possibility of

amphibian colour discrimination being based on signals

from the two types of rods (BS and GS). In the mate choice

behaviour, the colour discrimination threshold lay within

the photopic range (even for the less sensitive human

cone system), and at lower light levels the choices relied on

achromatic cues and suggest no involvement of BS rods.

In the prey-catching experiments, the colour discrimination

threshold was certainly lower than in humans, but can still be

accounted for without rod involvement, as amphibian cones

and especially BS cones are remarkably sensitive [17,21,37].

Thus, the most parsimonious interpretation of the prey-catch-

ing results would be that colour vision and its threshold are

determined by the BS cones. Interestingly, in the mate choice

experiments the threshold of the RS channel was found to be

higher than that of the BS channel, consistent with the lower

sensitivity and higher noise of RS cones [21].

(c) Neural mechanisms of blueness discrimination
‘Blueness’ signals in anuran retinal ganglion cells and their

brain projections have been studied over several decades (e.g.

[8,42,54–57]). However, all these studies have been performed

at photopic light levels at a time before BS cones were discov-

ered [10,11], and thus the blue inputs were automatically

attributed to BS rods. The fact is that nothing is known about

the connectivity of BS rods. The observation that GS and BS sig-

nals have opposite behavioural effects allows no conclusions

about the neural level where the opponency is established.

The extreme blue-sensitivity of the phototactic response,

where just a few photoisomerizations in BS rods when added

to a 10 times higher rate in GS rods triggers aversive behaviour,

suggests that it could rely on comparison of signals transmitted

by parallel pathways up close to the motor output. If we trust

recent, exceptionally low estimates of dark event rates in

BS rods [19], the possibility of a privileged line from these to

the brain appears especially intriguing.

In the more general context of visual strategies, it comes

as a surprise that behaviour reflects opponency of signals

from spectrally different rods even at the absolute visual

threshold. According to common wisdom, all photon signals

should then be pooled to maximize absolute sensitivity.

However, investment in parallel pathways does make it

possible to ‘eat the cake and have it too’, i.e. get around

the trade-off between sensitivity (pooling all signals)

and resolution (splitting and comparing signals in the

spatio-temporal or, as here, the chromatic domain).

The frog retina is known to contain rare types of ganglion

cells [27] not accommodated in the classification by Lettvin

et al. [30]. For example, there is a type that sums ‘blue’

responses over receptive fields covering large parts of the

retina [57] (studied at photopic levels). The question of

neural circuits for colour signalling in amphibians really
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requires renewed investigation, including an overhaul of

ganglion-cell classification with the battery of state-of-the-

art methods that has been applied to mouse retina in the

last few years (e.g. [58]). As a result of that work, at least

30 functional classes of mouse ganglion cells are now distin-

guished, making the paradigmatic Lettvin complement of

amphibian ganglion-cell classes seem poor by comparison.

(d) Concluding remarks
The data presented here show the lowest intensity threshold for

colour discrimination in any animal species studied so far [23],

supporting the long-standing hypothesis of rod-based colour

discrimination in amphibians and highlighting the importance

of finding behavioural tasks that are relevant for the animals in

the experimental conditions in which they are tested [27]. On

the other hand, the threshold values obtained in the different

experiments show how a battery of different behaviours can

unveil the existence of different pathways for processing

colour information. Combining this kind of approach with elec-

trophysiological studies will undoubtedly be useful to elucidate

opponency mechanisms, connectivity of retinal networks and

dimensionality of colour vision in different species.
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Endnote
1A detailed review of the current knowledge about visual systems of
amphibians is beyond the scope of this article. However, it is worth
mentioning that despite a handful of other species being fairly well
studied (e.g. the South African clawed frog, Xenopus laevis, and a
few salamanders/newts), ‘complete’ datasets about the most basic
photoreceptor features are unavailable even for the most popular
model species.
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