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Abstract: Allergy is an immunoglobulin E (IgE)-mediated process, and its incidence and prevalence
have increased worldwide in recent years. Therapeutic agents for allergic diseases are continuously
being developed, but side effects follow when used for a long-term use. Therefore, treatments based on
natural products that are safe for the body are urgently required. Sword bean (Canavalia gladiata) pod
(SBP) has been traditionally used to treat inflammatory diseases, but there is still no scientific basis for its
anti-allergic effect. Accordingly, this study investigates the anti-allergic effect and its mechanism of SBP
in vitro and in vivo. SBP reduced the nitric oxide production and decreased mRNA and protein expres-
sion of inflammatory mediates (inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)),
and inhibited the phosphorylation of nuclear factor kappa B (NF-κB), a major signaling molecule
in the inflammatory response. Additionally, SBP extract treatment inhibited phosphatidylinositol-3-
kinase/mammalian target of rapamycin (PI3K/mTOR) signaling activity to further inhibit degranulation
and allergy mediator generation and control the balance of Th1/Th2 cells, which can induce an allergic
reaction when disrupted. Furthermore, the SBP extract exhibited anti-allergic effects in anti-dinitrophenyl
IgE-induced RBL-2H3 cells and ovalbumin-treated mice. These findings have potential clinical implica-
tions for the treatment as well as prevention of allergic diseases.

Keywords: sword bean pod; Canavalia gladiata; anti-allergic; anti-inflammatory

1. Introduction

Allergic diseases are immediate-type allergic reactions mediated by immunoglobin
E (IgE) [1]. IgE and antigen bind specifically to the surface receptor (FcεRI) induce de-
granulation of mast cells, and histamine and cytokines present in the granules are secreted
out of the cell. Through this process, atopic dermatitis, asthma, and rhinitis are induced
via smooth muscle contraction, vascular permeability enhancement, and inflammatory
response promotion [2–4]. The incidence of these allergic diseases is rapidly increasing
worldwide due to complex causes such as westernized diets, environmental pollution,
adult diseases, and genetic factors. In particular, the prevalence is reported to be extremely
high in children under the age of 10, which is a pressing health problem that needs a
solution [5].

Additionally, allergic reactions are related to a reduction in the production of anti-
inflammatory cytokines (interferon gamma (IFN-γ) and interleukin-12 (IL-12)) and an in-
crease in the production of proinflammatory cytokines (interleukin-4 (IL-4) and interleukin-
13 (IL-13)), which play an important part in the differentiation of T cells into T helper (Th) 1
and Th2 cells [6,7]. Each cytokine helps the T cells differentiation by activating a certain type
of transcription factor. For Th1 cells, IL-12 and IFN-γ activate the differentiation of naive
CD4+ T cells by increasing the expression of the transcription factors signal transducer and
activator of transcription 1 (STAT1) and T-box transcription factor TBX21 (T-bet). In Th2 cell
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differentiation, expression of the transcription factors STAT6 and GATA-3 is increased and
activated by IL-4 [8]. When the balance of Th1/Th2 cells is disrupted, an allergic reaction is
induced. Several studies are underway to improve allergic and inflammatory reactions by
regulating the activity of Th1/Th2 cells.

The Th1/Th2 cell balance is a major factor in the induction of allergic diseases, and T
cells rely on mammalian target of rapamycin (mTOR) signaling to maintain immune and
metabolic signals in appropriate states [9]. mTOR is a serine/threonine-specific protein
kinase belonging to the phosphoinositide 3-kinases (PI3K) family that plays a central role
in regulating cell growth and metabolism [10–12]. When a foreign antigen is recognized
in the body, the expression of mTOR, which activates CD4+ T cells to induce Th1, Th2,
or Th17 cell differentiation, is increased. This response promotes lymphocyte immune
regulation and airway smooth muscle growth via the PI3K/mTOR pathway during mast
cell degranulation and under asthmatic conditions [13,14]. As such, the ultimate treatment
for improving immune regulation and asthma could be to maintain the balance of Th1/Th2
cells, which depends on PI3K/mTOR activity.

Anti-allergic drugs of various components are being developed to suppress these
mechanisms. Histamine, a representative agent that causes allergy, was discovered in
the 1920s. Many drugs were developed that focus on blocking histamine activity (e.g.,
Azelastine, Levocabastine, Cyproheptadin, etc.). However, antihistamines provide partial
relief from symptoms and do not block other allergy mediators. In addition, leukotriene
and prostaglandins are released from mast cells at the same time as histamine is secreted.
Therefore, various drugs such as leukotriene inhibitors and mast cell stabilizers that can
inhibit these substances have been developed to improve allergy symptoms that reduce
quality of life [15]. However, the effect is temporary, and long-term use causes side
effects such as orthostatic hypotension, dementia, arrhythmias, etc. [16,17], so no drug
has been found that can calm all allergic reactions. In order to fundamentally solve these
problems, the development of anti-allergic agents and supplements using plant-derived
natural products such as licorice and green tea, which have no toxicity or side effects, is
attractive [18–21].

Sword bean (SB; Canavalia gladiata) is a leguminous annual plant native to Asia and
Africa and traditionally used as a food and medicine [22,23]. SB can be used on all parts
such as seeds, pods, stems, and roots, and contains a large number of functional compo-
nents including flavonoids, tannins, saponins, terpenoids, and steroids. The nutritional
components of dried soybeans and pods consist of general components such as protein,
fat, and moisture, as well as various vitamins and minerals, and the contents are shown
in Supplementary Materials Table S1. Recently, various functional activities of SB such
as anti-obesity [24], antioxidant [25], anti-inflammatory [26], hematopoietic expansion
improvement [27], hepatoprotective, and anti-angiogenic effects [28] have been reported.
However, scientific research using SB pods (SBP) has not been conducted except for anti-
inflammation and anti-obesity, and the mechanism is not yet clearly defined. [29,30].

Therefore, this study aims to investigate the anti-allergic and anti-inflammatory effects
of SBP using both in vitro and in vivo systems. Furthermore, we want to confirm the
potential of SBP as a major anti-allergy therapeutic agent through Th1/Th2 cell balance by
regulating the activity of the PI3K/mTOR mechanism. Through this study, it is to provide
basic data for the future development of health-functional foods using this natural product.

2. Materials and Methods
2.1. Materials

Dulbecco’s Modified Eagle Medium (DMEM), phosphate-buffered saline (PBS), and
penicillin-streptomycin antibiotics (P/S) were supplied by Gibco (Gaithersburg, MD, USA).
Fetal bovine serum (FBS) was obtained from GenDEPOT (Barker, TX, USA). Primary
antibodies and secondary antibodies were purchased from Abcam (Cambridge, MA,
USA). Lipopolysaccharide (LPS), ovalbumin (OVA) from chicken egg, aluminum hydrox-
ide (Alum), anti-dinitrophenyl (DNP) IgE, DNP-human serum albumin (HSA), 3-(4,5-
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dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and dimethyl sulfoxide
(DMSO) were purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Preparation of the Extract

SBP was purchased from Hwasun, Jeollanam-do, South Korea. Before extracting the
raw material, SBP was washed with water (to remove impurities) and then minced, dried at
50 ◦C for 8 h (Cheil Machinery, Icheon, Korea), and grinded (IKA, M20, Staufen, Germany).
The SBP powder added 30% ethanol and was stirred at 80 ◦C for 8 h. After the primary
extraction, secondary extraction was performed at 80 ◦C for 4 h by adding 30% ethanol.
The obtained extract was filtered, and the filtrate was concentrated using a vacuum rotary
evaporator (Doo Young High Technology, Seoul, Korea). Then, maltodextrin was added
in the same amount as the solid content of the concentrate, followed by stirring at 95 ◦C
for 1 h. The stirred concentrate was recovered as a dry powder using a hot air dryer and
stored at −20 ◦C before use.

2.3. Cell Culture

Raw264.7 as mouse macrophage cell and RBL-2H3 as rat mast cell were obtained from
the Korean Cell Line Bank (Seoul, Korea). Raw264.7 and RBL-2H3 cells were maintained
in DMEM contained supplemented with 10% FBS and 1% P/S at 37 ◦C in a 5% carbon
dioxide (CO2) incubator. Culture medium was changed every two days, and cell density
was maintained at 80–90% during subculture.

2.4. Cell Viability

Raw264.7 and RBL-2H3 cells were seeded in a 96-well-plate. Cells were incubated
with SBP extract (20, 40, 100, and 200 µg/mL) for 24 h. MTT reagent was added to each
well. After 4 h incubation, the medium was removed, and formazan were dissolved with
DMSO. The absorbance was subsequently measured at 540 nm. Results were expressed as
a percentage versus that in the untreated group.

2.5. Nitric Oxide (NO) Production

Raw264.7 cells were dispensed into a 96-well plate, treated with the SBP extract
in various concentrations, and then treated with LPS (1 µg/mL). After 24 h incubation,
supernatant was recovered, and the amount of NO production was measured using the
Griess reagent (Promega, Madison, WI, USA). The amount of NO produced was calculated
using sodium nitrite as a standard; a standard curve was created, and the absorbance value
was substituted into the calculation formula to calculate the amount of NO produced.

2.6. Quantitative Reverse Transcriptase-PCR (qRT–PCR)

mRNA expression of inflammatory genes (iNOS, COX-2, IL-4, IL-13, IFN-γ, and IL-
12,) and PI3K/mTOR mechanism genes (PI3K, Akt, mTOR) were measured. Raw264.7
were treated with LPS and SBP extract. RBL-2H3 cells were treated with anti-DNP IgE
(200 ng/mL), with the SBP extract, and then with DNP-HAS (20 ng/mL) for 1 h. The
total RNA was extracted from the cultured cells using the RNeasy plus Mini Kit obtained
from Qiagen (Valencia, CA, USA). After that, 500 ng of total RNA was synthesized as
cDNA using reverse transcriptase (Promega, Madison, WI, USA). qRT-PCR was performed
using SYBR Green master mix (Qiagen, Valencia, CA, USA) on the Rotor Gene Q (Qiagen,
Valencia, CA, USA). Gene expression levels were normalized using GAPDH and relative
gene expression was determined by the comparative CT (2−44Ct) method. The primer
sequences are listed in Table 1.
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Table 1. The primer sequence used for qRT-PCR.

Target Gene Primer Sequence (5′→3′)

mGADPH
Forward GTT GTC TCC TGC GAC TTC A

Reverse GGT GGT CCA GGG TTT CTT A

miNOS
Forward GGC AGC CTG TGA GAC CTT TG

Reverse GCA TTG GAA GTG AAG CGT TT

mCOX-2
Forward TTG CTG TAC AAG CAG TGG CAA AGG

Reverse TGG GAG GCA CTT GCA TTG CAT TGA

mPI3K
Forward GAA GTT GCT CTA CCC AGT GTC C

Reverse GAT AGC CGT TCT TTT CAT TTG G

mAkt
Forward ACT CAT TCC AGA CCC ACG AC

Reverse AGC CCG AAG TCC GTT ATC TT

mmTOR
Forward TGT GAA CGG AAC ATA CGA CC

Reverse TTG CTT GCC CAT CAG AGT CAG

rGADPH
Forward CCA CAG TCC ATG CCA TCA C

Reverse TCC ACC ACC CTG TTG CTG TA-

rIFN-γ
Forward AAT GGC AAC ATC AGG TCG GCC ATC ACT

Reverse GCT GTG TGT GTC ACA GAA GTC TCG AAC TC

rIL-12
Forward GGA GAG ACT ATC AAG ATA GT

Reverse ATG GTC AGT AGA CTT TTA CA

rIL-4
Forward CGA TGA TGC ACT TGC AGA AA

Reverse TGG AAA TTG GGG TAG GAA GG-

rIL-13
Forward AGC ACA GAA AGC ATG ATC CG

Reverse GTT TGC TAC GAC GTG CGC TA

rPI3K
Forward AAC ACA GAA GAC CAA TAC TC

Reverse TTC GCC ATC TAC CAC TAC

rAkt
Forward GTG GCA AGA TGT GTA TGA G

Reverse CTG GCT GAG TAG GAG AAC

rmTOR
Forward GGT GGA CGA GCT CTT TGT CA

Reverse AGG AGC CCT AAC ACT CGG AT
qRT-PCR, Real-Time Quantitative Reverse Transcription PCR. mGADPH, miNOS, mCOX-2, mPI3K, mAkt, mmTOR,
rGADPH, rIFN-γ, rIL-12, rIL-4, rIL-13, rPI3K, rAkt and rmTOR are gene names.

2.7. Western Blot Analysis

The LPS (1 µg/mL) or anti-DNP IgE (200 ng/mL) and SBP extract-treated cells were
lysed in a lysis buffer (50 mM Tris-hydrochloride (HCl), 150 mM sodium chloride, 0.5%
Triton X-100, 0.5% NP-40, 0.1% sodium deoxycholate, and 1 mM EDTA) for 40 min on
the ice. Then, the supernatant was collected through centrifugation (12,000× g, 4 ◦C,
20 min). Proteins were separated via 4–20% sodium dodecyl-sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) and then transferred onto a polyvinylidene fluoride (PVDF)
membrane. The membrane was blocked with skim milk for 1 h and then incubated
overnight at 4 ◦C with appropriate primary antibodies (iNOS, COX-2, STAT1, p-STAT1,
T-bet, interferon regulatory factor 1 (IRF1), STAT6, p-STAT6, GATA binding protein 3
(GATA3), c-maf, and β-actin). After incubation, the cells were washed with 1× TBST and
incubated with the secondary antibody for 1 h. Enhanced chemiluminescence was used
to develop protein bands, and the signal was detected using a Chemi-doc image detector
(Bio-Rad, Hercules, CA, USA).
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2.8. Degranulation in RBL-2H3 Mast Cells

RBL-2H3 cells were seeded in 96-well plates, incubated for 2 h, treated with anti-DNP
IgE (200 ng/mL), and then again incubated overnight. The samples were then washed
twice with PBS and cultured for 24 h; then, they were added with DNP-BSA (20 ng/mL) for
1 h, and the supernatants were recovered. The culture supernatant was placed on a plate
with 4-methylumbelliferly-N-acetyl-β-D-glucosaminide and allowed to react at 37 ◦C for
1 h. Then, the amount of β-hexosaminidase produced was measured using a colorimetric
method [31], and the results were expressed as a percentage.

2.9. Experimental Animals

BALB/c mice (male, 6 weeks old) were purchased from Samtako (Seoul, Korea).
Animals were provided with water and food ad libitum and maintained in a controlled
environment at 22 ± 2 ◦C for 12 h under light-dark cycle. After acclimatizing the animals
to the environment for one week, they were divided into five groups (eight animals per
group) as follows (Table 2): (1) normal group, no sensitization with PBS; (2) negative control
(NC) group, OVA/Alum-sensitized + 200 mg/kg maltodextrin; (3) positive control (PC)
group, OVA/Alum-sensitized + 0.5 mg/kg dexamethasone; (4) SBP low (SBP100) group,
OVA/Alum-sensitized + 100 mg/kg SBP; and (5) SBP high (SBP200) group, OVA/Alum-
sensitized + 200 mg/kg SBP via oral administration (p.o.) for four weeks. After four weeks,
mice were sacrificed and the blood plasma, tissues were collected. Then, a tracheostomy
was performed, 1 mL PBS was injected into the bronchial tubes, and the bronchoalveolar
lavage fluid (BALF) was recovered. The liver and BALF were immediately removed and
stored at −80 ◦C until use. This study was conducted with approval from the Institutional
Animal Care and Use Committee of Korea University (KUIACUC-2021-0061).

Table 2. Animal experimental groups and treatments.

Group (n = 8) Treatment (mg/kg) Condition

Normal PBS None

NC Maltodextrin (200 mg/kg)

OVA/Alum
PC Dexamethasone (0.5 mg/kg)

SBP100 SBP low (100 mg/kg)

SBP200 SBP high (200 mg/kg)
NC: negative control, PC: positive control, PBS: phosphate buffered saline, OVA/Alum: ovalbumin/aluminum
hydroxide; SBP: sword bean pod.

2.10. Sensitization and Challenge

Mice acclimatized for one week were intraperitoneally injected with 50 µg OVA
and 2 mg Alum in a 1:1 ratio at weeks 1 and 3 for allergy induction. After the second
intraperitoneal injection, a 5% OVA intranasal challenge was performed for three days to
establish an animal model of OVA/Alum-sensitized hypersensitivity immunity.

2.11. Measurement of Hepatotoxicity in the Plasma

The activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST)
in the blood and the activities of glutathione (GSH), and glutathione peroxidase (GPx) in
the liver collected after sacrifice of mice were measured using a colorimetric kit (Abcam,
Cambridge, MA, USA).

2.12. Measurement of IgE and Histamine Production

Total IgE levels and histamine concentration in the plasma and the cell supernatant
were performed using an ELISA kit (Abcam, Cambridge, MA, USA), according to the
manufacturer’s instructions.
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2.13. Measurement of Cytokine Levels in the BALF and Plasma

The levels of inflammatory cytokines (IFN-γ, IL-4, and interleukin-5 (IL-5)) in the
BALF and plasma of SBP extract-treated OVA-induced mice were measured using the
ELISA kit (Abcam, Cambridge, MA, USA), according to the manufacturer’s instructions.

2.14. Statistical Analysis

In this study, all data were expressed as mean ± standard error of the mean (SEM).
Data was statistically evaluated by Student’s t-test. (SPSS version 25.0, Chicago, IL, USA).
Differences were considered significant at p < 0.05.

3. Results
3.1. Cytotoxicity of the SBP Extract on Raw264.7 and RBL-2H3 Cells

Stimulation and toxicity to cells did not occur at any tested concentrations of the
SBP extract (Figure 1). Considering the use of this extract for the development of future
health-functional food materials, 200 µg/mL concentration of the SBP extract was deemed
safe and suitable and was used in the subsequent experiments.

Figure 1. Cytotoxic effects of sword bean pod (SBP) extract on (A) Raw264.7 and (B) RBL−2H3 cells.
Data are expressed as mean ± SEM. SEM, standard error of the mean; SBP, sword bean pod.

3.2. Effect of the SBP Extract on NO Production in LPS-Induced Raw264.7 Cells

The NO is a major mediator of the inflammatory response, and excessive production of
NO activates the expression of COX-2 [32]. Considering these findings, we investigated the
inhibition of NO production when Raw264.7 cells induced by LPS were treated with the SBP
extract. The amount of NO produced in the inflammation-induced group was increased
(35.5 µM) compared to that in the control group, and the amount of NO production was
reduced in a dose-dependent manner (* p < 0.05) upon treatment with the SBP extract
(Figure 2).

Figure 2. Effect of the SBP extract on production of nitric oxide in Raw264.7 cells. Data are expressed
as mean ± SEM. Significantly different from the LPS−treated group (* p < 0.05). SBP, sword bean
pod; LPS, lipopolysaccharide.



Nutrients 2022, 14, 2853 7 of 17

3.3. Effects of the SBP Extract on iNOS and COX-2 mRNA and Protein Expression in
LPS-induced Raw264.7 Cells

To determine whether the SBP extract had an inhibitory effect on NO production
because of the regulation of iNOS and COX-2, the mRNA and protein expression of iNOS
and COX-2 was measured. Treatment with the SBP extract significantly reduced iNOS and
COX-2 mRNA and protein expression in a concentration-dependent manner (* p < 0.05).
This indicated that the SBP extract could regulate the inflammatory reaction by suppressing
the expression of inflammation-mediator genes (Figure 3).

Figure 3. Effects of the SBP extract on mRNA and protein expression of iNOS and COX−2 in Raw264.7
cells. (A) mRNA and (B) protein expression. Data are expressed as mean ± SEM. Significantly
different from the LPS−treated group (* p < 0.05). SBP, sword bean pod; LPS, lipopolysaccharide;
iNOS, inducible nitric oxide synthase; COX-2, cyclooxygenase-2.

3.4. Effect of the SBP Extract on NF-κB Signaling in LPS-Induced Raw264.7 Cells

Under normal conditions, NF-κB binds to inhibitor of the transcriptional factor NF-κB
(IκBα) and maintains an inactive state. When stimulated by LPS, cytokines, and reactive
oxygen species, NF-κB is activated via phosphorylation of IκBα, resulting in the increased
expression of inflammatory cytokines, COX-2, and iNOS, and may lead to inflammatory
and degenerative diseases [33–36]. Therefore, the effect of SBP extract on NF-κB transcrip-
tional activity was studied using western blot analysis. The SBP extract dose-dependently
inhibited the expression of p-IκBα and p-p65 after activation by LPS (Figure 4).
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Figure 4. Effects of the SBP extract on NF−κB protein expression in Raw264.7 cells. Data are expressed
as mean ± SEM. Significantly different from the LPS-treated group (* p < 0.05). SBP, sword bean pod;
LPS, lipopolysaccharide. NF−κB, nuclear factor kappa B; IκBα, inhibitor of the transcriptional factor
NF-κB, p-, phosphorylated.

3.5. Effect of SBP Extract on the β-Hexosaminidase Release and Histamine Degranulation
Stimulated by Anti-DNP IgE in RBL-2H3 Cells

β-hexosaminidase is a key marker of degranulation of mast cells, and its secretion
is increased during the allergic inflammatory response [37]. We investigated the effect
of SBP extract on β-hexosaminidase degranulation; the results are shown in Figure 5A.
When allergen-induced RBL-2H3 cells were treated with 20, 40, 100, and 200 µg/mL of SBP
extract, the inhibitory effect on β-hexosaminidase secretion was evident at the maximum
concentration of the extract.

Figure 5. Effect of the SBP extract on β−hexosaminidase release and histamine production in
RBL−2H3 cells. (A) β−hexosaminidase activity and (B) histamine production. Data are expressed as
mean ± SEM. Significantly different from the LPS−treated group (* p < 0.05). SBP, sword bean pod
Anti-DNP, anti-dinitrophenyl; IgE, immunoglobulin E.

Histamine, a major cause of allergic diseases, is mainly stored in basophils and mast
cells. The secretion of histamine is elevated during allergic reactions and anaphylaxis [38].
In this study, the amount of histamine produced in allergenic cells was increased to
109.5 µg/mL compared to that in the control group. Nevertheless, the extent of histamine
production was significantly (* p < 0.05) suppressed after treatment with the SBP extract
(Figure 5B).

3.6. Effects of SBP Extract on the mRNA Expression of Pro- and Anti-Inflammatory Cytokines
Stimulated by Anti-DNP IgE in RBL-2H3 Cells

Cytokines are mediate signal transduction between cells. When mast cells are activated,
the pro-inflammatory cytokines such as IL-4 and IL-13, secreted from Th2 cells, activate B
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cells and generate an allergic reaction by producing IgE. Conversely, the anti-inflammatory
cytokines, IFN-γ and IL-12, secreted from Th1 cells suppress the differentiation of T lym-
phocytes and reduce the production of Th2 cell-secreted cytokines, thereby alleviating
allergic reactions by suppressing IgE production [39].

The mRNA expression of pro- and anti-inflammatory cytokines secreted from Th1/2
cells after the treatment of activated mast cells with the SBP extract was measured with Real-
Time Quantitative Reverse Transcription PCR (qRT-PCR). In the allergy-induced group, the
mRNA expression of IFN-γ and IL-12 was reduced, and the expression of IL-4 and IL-13 was
significantly increased after treatment with anti-DNP IgE. However, treatment with SBP
extract led to the recovery of the expression of anti-inflammatory cytokines (IFN-γ, IL-12)
to the level in the control group (* p < 0.05). Contrastingly, the extent of pro-inflammatory
cytokine secretion (IL-4, IL-13) was significantly (* p < 0.05) reduced upon treatment with
the SBP extract (Figure 6).

Figure 6. Effects of the SBP extract on mRNA expression of pro− (B) and anti−inflammatory
(A) cytokine in RBL−2H3 cells. Data are expressed as mean ± SEM. Significantly different from the
LPS−treated group (* p < 0.05). SBP, sword bean pod; IFN-γ, interferon gamma; Il-12, interleukin-12;
IL-4, interleukin-4; IL-13, interleukin-13.

3.7. Effects of SBP Extract on the mRNA Expression of PI3K/mTOR Signaling Factors Stimulated
by Anti-DNP IgE in RBL-2H3 Cells

When a foreign antigen invades the body, a normal or allergic state is established via
immune regulation, mainly by the activity of T cells. The growth of T cells, which are
mainly involved in immunity, is regulated by the activation of PI3K/mTOR signaling, and
degranulation of mast cells activates PI3K/mTOR sub-factors [40]. Based on this theory,
we measured the gene expression of PI3K/mTOR pathway factors in allergen-sensitized
mast cells (treated with anti-DNP IgE) treated with the SBP extract. The mRNA expression
of PI3K, Akt, and mTOR was increased by allergic stimulation; nevertheless, with SBP
extract treatment, this effect decreased in a dose-dependent manner (* p < 0.05) (Figure 7).
We speculate that the SBP extract is effective in regulating T-cell growth and immune
activity, because the highest concentration of the SBP extract restored the gene expression
of PI3K/mTOR pathway factors to a level like that in the non-allergic normal group.
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Figure 7. Effect of the SBP extract on mRNA expression of PI3K/mTOR in RBL−2H3 cells. Data are
expressed as mean± SEM. Significantly different from the LPS-treated group (* p < 0.05). SBP, sword bean
pod. PI3K, phosphoinositide 3-kinases; Akt, protein kinase B; mTOR, mammalian target of rapamycin.

3.8. Effect of SBP Extract on the Protein Expression of Th1/Th2 Differentiation Transcription
Factors in RBL-2H3 Cells Stimulated by Anti-DNP IgE

After confirming that the SBP extract can regulate the mRNA expression of anti-
inflammatory and pro-inflammatory cytokines and suppress that of the PI3K/mTOR
signaling factors that regulate T-cell differentiation, we finally investigated the mechanism
of Th1/Th2 cell differentiation using western blotting. The protein expression of Th1 cell
differentiation-related transcription factors p-STAT1, T-bet, and IRF1 was reduced, while
the expression of Th2 cell differentiation transcription factors p-STAT6, GATA3, and c-maf
was increased in the allergic group. The expression of p-STAT1, T-bet, and IRF1 increased
with increasing concentrations of the SBP extract in the allergic group, while the increase in
the expression of p-STAT6, GATA3, and c-maf was suppressed (Figure 8).

Figure 8. Cont.
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Figure 8. Effect of SBP extract on the protein expression of transcription factors related to the differen-
tiation of (A) Th1 and (B) Th2 cells in anti−DNP IgE-sensitized RBL−2H3 cells. Data are expressed as
mean ± SEM. Significantly different from the LPS−treated group (* p < 0.05). SBP, sword bean pod.
STAT1, signal transducer and activator of transcription; T-bet, T-box transcription factor TBX21; IRF1,
interferon regulatory factor 1; GATA3, GATA binding protein 3; c-maf, transcription factor.

3.9. Effects of the SBP Extract on Body and Tissue Weights of OVA/Alum-Sensitized Mice

Table 3 shows the effects of SBP extract on the body and tissue weights of experimental
animals. There was no significant difference in body weights among all the groups. This
was also the case for the weights of all tissues except the kidney, for which a significant
(* p < 0.05) difference was confirmed between the NC and normal groups. Other than that,
on kidney weight, the SBP extract did not show any significant effect on the weights of
tissues under the present experimental conditions.

Table 3. Body and tissue weights of OVA/Alum−sensitized mice.

Group Body (g) Liver (g) Spleen (g) Kidney (g) Heart (g) Lung (g)

Normal 26.71 ± 0.47 1.509 ± 0.025 * 0.101 ± 0.003 * 0.452 ± 0.024 0.146 ± 0.004 * 0.307 ± 0.010 *

NC 25.72 ± 0.37 1.269 ± 0.037 0.112 ± 0.003 0.396 ± 0.019 0.131 ± 0.003 0.356 ± 0.015

PC 24.32 ± 0.24 1.063 ± 0.049 * 0.045 ± 0.003 * 0.335 ± 0.012 0.118 ± 0.004 * 0.225 ± 0.025 *

SBP100 25.26 ± 0.32 1.138 ± 0.054 0.107 ± 0.005 0.326 ± 0.005 * 0.119 ± 0.004 0.338 ± 0.010

SBP200 25.19 ± 0.22 1.192 ± 0.015 0.113 ± 0.004 0.340 ± 0.010 * 0.119 ± 0.001 * 0.330 ± 0.010

Data are expressed as mean ± SEM. * p < 0.05, compared with the NC group. OVA: ovalbumin, Alum: aluminum
hydroxide, NC: negative control, PC: positive control, SBP: sword bean pod.

3.10. Hepatotoxicity of the SBP Extract in OVA/Alum-Sensitized Mice

When AST and ALT levels were measured to study the hepatotoxicity of the SBP ex-
tract, no significant differences were observed among the groups. In addition, GSH concen-
tration was confirmed in the liver tissue. The GSH content of the NC group was 4.451 µM, a
reduction of approximately 57% compared to that in the normal group (10.25 µM). Similar
to the GSH results, GPx concentration decreased in the NC group and increased after
administration of the SBP extract, but this increase was not statistically significant (Table 4).
These results indicate that the SBP extract is not toxic.
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Table 4. AST and ALT levels in the plasma and antioxidant enzyme levels in the livers of OVA/Alum-
sensitized mice.

Group AST (mU/mL) ALT (mU/mL) GSH (µM) GPx (mU/mL)

Normal 109.5 ± 5.142 61.52 ± 11.95 10.25 ± 1.750 * 672.3 ± 44.96 *

NC 118.4 ± 5.860 73.56 ± 8.811 4.451 ± 1.477 450.6 ± 104.2

PC 110.6 ± 8.071 61.94 ± 7.618 12.17 ± 0.941 * 651.1 ± 31.52 *

SBP100 109.7 ± 5.329 64.72 ± 8.760 9.414 ± 1.149 * 478.1 ± 47.16

SBP200 108.0 ± 7.734 63.48 ± 6.197 10.98 ± 1.070 * 548.6 ± 52.85
Data are expressed as mean± SEM. * p < 0.05, compared with the NC group. AST: aspartate aminotransferase, ALT:
alanine aminotransferase, OVA; ovalbumin, Alum: aluminum hydroxide, GSH; glutathione, GPx: glutathione
peroxidase, NC: negative control, PC: positive control, SBP: sword bean pod.

3.11. Effects of the SBP Extract on Allergy Mediators in OVA/Alum-Sensitized Mice

We measured plasma IgE and histamine concentrations in mice administered the SBP
extract and found that these concentrations were significantly (* p < 0.05) increased in the
NC group compared to those in the normal group. Allergy was induced, as evident by the
increase in the concentrations of the two compounds, and treatment with the SBP extract
reduced histamine and IgE concentrations similarly or more effectively than in the drug
administration group (PC) (* p < 0.05) (Figure 9).

Figure 9. Effect of SBP extract on allergy mediator production in OVA/Alum−sensitized mice. Levels
of (A) histamine and (B) IgE were measured in the plasma of OVA/Alum−sensitized mice treated
with the SBP extract for four weeks. Data are expressed as mean ± SEM. Significantly different from
the NC group (* p < 0.05). SBP, sword bean pod; NC, negative control; PC, positive control.

3.12. Effect of the SBP Extract on PI3K/mTOR Signaling in OVA/Alum-Sensitized Mice

Next, we investigated the mechanisms underlying the effects of SBP extract on PI3K,
Akt, and mTOR expression in OVA/Alum-induced mice. The NC group induced with
OVA/Alum showed increased PI3K, Akt, and mTOR expression compared with the normal
group without any treatment, and this effect was reversed in the drug-treated (PC) and SBP
extract-administered groups (* p < 0.05) (Figure 10).

Figure 10. Effects of SBP extract on the mRNA expression of PI3K/mTOR signaling factors in
OVA/Alum−sensitized mice liver tissue. Data are expressed as mean ± SEM. Significantly different
from the NC group (* p < 0.05). SBP, sword bean pod; NC, negative control; PC, positive control.
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3.13. Effect of the SBP Extract on Cytokine Production in OVA/Alum-Sensitized Mice

T cells are important immune cells that regulate allergic reactions and are differentiated
into Th1 and Th2 depending on the type of cytokine they encounter. T-cell differentiation-
regulating cytokines suppress the allergic reaction by maintaining the homeostasis of the
immune response, and when this balance is disturbed, an allergic reaction is induced [41].

Therefore, the effect of SBP extract on T-cell differentiation-regulating cytokine produc-
tion was investigated. Cytokine production was measured in the BALF and plasma. IFN-γ
(Th1 cell-differentiation cytokine) production increased in a concentration-dependent man-
ner (* p < 0.05) in the SBP extract group compared with that in the NC group. IL-4 and IL-5
(Th2 cell-differentiation cytokines) production was reduced (* p < 0.05) (Figure 11).

Figure 11. Effect of the SBP extract on T cell−differentiation cytokine production in
OVA/Alum−sensitized mice. (A) bronchoalveolar fluid and (B) plasma. Data are expressed as
mean ± SEM. Significantly different from the NC group (* p < 0.05). SBP, sword bean pod; NC,
negative control; PC, positive control.

4. Discussion

With increasing interest of individuals in a healthy lifestyle, effective prevention and
treatment methods for diseases are also attracting attention. In particular, the number
of consumers willing to maintain their health and avoid the risk of diseases through the
consumption of health-functional foods prepared from natural materials that can help
avoid the side effects of therapeutic agents and maximize their beneficial effect is steadily
increasing [42–44].

Therefore, in this study, the anti-allergic effect and action mechanism of SBP, a plant-
derived natural material, were investigated for the eventual treatment of allergic diseases,
which deteriorate the quality of life of modern people. In vitro, we confirmed the anti-
inflammatory effect of SBP extract through its inhibitory effects on phosphorylation of the
inflammatory mediators iNOS and COX-2 and the signaling factor NF-kB, a transcription
factor regulating the inflammatory response. In addition, the production of histamine
and β-hexosaminidase was inhibited in a concentration-dependent manner with SBP
extract treatment. It has been reported that these anti-inflammatory and anti-allergic
effects are regulated by Th1/2 cells [45]. Therefore, to elucidate the molecular basis for
these observations, we investigated the Th1/Th2 cell-differentiation signaling mechanisms
involved in inflammation and allergic responses.

The types of differentiation of T cells are divided according to the types of cytokines
they encounter. IFN-γ and IL-12, which differentiate Th1 cells, suppress the differentiation
of T lymphocytes to reduce the production of Th2 cell-secreting cytokines and reduce IgE
production, thereby alleviating allergic reactions. The IL-4 and IL-13 cytokines produce
IgE through increased secretion and action of B cells, which differentiates Th2 cells and
causes allergic reactions [46]. Similarly, our study results showed that an expression of
anti-inflammatory cytokines IFN-γ and IL-12 was reduced while that of pro-inflammatory
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cytokines IL-4 and IL-13 was increased upon allergic and inflammatory responses. SBP
extract treatment recovered the expression of these cytokines to the level in the normal group.
This finding is consistent with reports that it is associated with increased production of IL-4,
IL-5, and IL-13 and decreased production of IFN-γ, TNF-α, and IL-12 during inflammatory
and allergic reactions [47]. In addition, cytokines are regulated by various transcription
factors that differentiate T cells, thereby maintaining the Th1/Th2 cell balance. Specifically,
T-bet is a Th1 transcription factor that regulates the expression of IFN-γ, and GATA3 induces
STAT6 activation and the production of pro-inflammatory cytokines IL-4 and IL-5 while
inhibiting Th1 expression [20]. GATA3 expression is inhibited by IFN-γ and IL-12. Taken
together, we hypothesize that the SBP extract activated T-bet and suppressed GATA3 by
increasing the expression of IFN-γ, and the decrease in GATA3 activity inhibited IL-4 and
IL-5 production via inactivation of STAT6. Through these results, we predict that the SBP
extract can modulate the immune response by regulating the differentiation of T cells.

SBP suppressed the gene expression of the PI3K/mTOR mechanism of action that
regulates T cell differentiation and growth and inflammatory response, thereby restoring
the Th1/Th2 cell balance from the allergy state to the normal state and improving the
biomarker of allergic symptoms. This is a conclusion similar to the study results in that
mTOR activation in asthma was positively correlated with loss of Th17/Treg and Th1/Th2
balance [48].

Through the results of this study, the relationship between the immune regulation
mechanisms of SBP was confirmed. First, STATs directly or indirectly regulate NF-κB
activity [49]. Interestingly, STAT1 modulates the NF-κB-mediated signaling by inter-
acting with the overlapping region of the p300 cofactor of NF-κB and the p65 subunit.
Tyrosine-phosphorylated STAT6 directly binds to NF-κB in vitro and in vivo and activates
the inflammatory cytokine IL-4 [29]. In addition, OVA activates the TLR4 pathway and
its target, NF-κB, to exacerbate inflammation through increased secretion of Th2-secreted
pro-inflammatory cytokines. Hence, inhibition of NF-κB can reduce the asthma by OVA.
Accordingly, Helala et al. reported that the inhibitory signaling pathway of TLR4/NF-κB is
a promising target for asthma treatment [50]. Second, Akt and mTOR factors are activated
via the phosphorylation of PI3K under asthmatic conditions. In asthma, mTOR activation
is positively correlated with loss of Th17/Treg and Th1/Th2 balance [48]. We also demon-
strated that mTOR inhibitors effectively reduced the growth of airway-proliferating cells
and disturbed the Th17/Treg and Th1/Th2 imbalance.

Our previous findings have shown that SBP includes many phenolic compounds with
anti-inflammatory and anti-allergic activities. Sinapic acid and pyrogallol are found in
SBP [30]. Nakano et al. reported that pyrogallol can regulate the inflammatory response
in bronchial epithelial cells, and that pyrogallol extracted from Awatea exerts anti-allergic
effects by suppressing nasal symptoms and the expression of IL-9 gene expression [51].
In addition, sinapic acid inhibits the expression of iNOS, COX-2, and cytokines through
NF-κB inactivation, thereby providing a mechanism for its anti-inflammatory effect [52].
Additionally, methyl gallate, gallic acid, and ellagic acid among other phenolic compounds
in SBP have stronger antioxidant and anti-inflammatory effects than soybeans.

Finally, it is thought that SBP exhibits anti-inflammatory and anti-allergic effects
by functional ingredients such as various phenolic compounds. In addition, the anti-
inflammatory and anti-allergic effect leads to the regulation of cytokine secretion through
the regulation of Th1/Th2 cell differentiation activity, which acts as a major key to regulate
immune activity. In particular, it is thought that SBP corrects the balance of Th1/Th2 cells
and alleviates the symptoms by inhibiting PI3K/mTOR activity, a mediating mechanism of
action of allergic diseases such as asthma caused by hypersensitivity immunity.

5. Conclusions

In this study, SBP appears to exert anti-inflammatory and anti-allergic effects through
inhibition of NF-kB signaling (possibly via components such as phenolic compounds) and
regulation of STAT activation. The signaling pathway PI3K/mTOR, which is considered
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to be important in the treatment of asthma, is also involved in the effects of SBP, which
suggests that SBP is a promising potential target for the development of therapeutic agents.

As the current results have only been confirmed in vitro and in vivo, if the anti-allergic
and anti-inflammatory effects of SBP can be confirmed in additional human clinical trials,
this can be useful not only as a natural ingredient in health-functional foods but also as a
natural agent for developing allergy treatment strategies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu14142853/s1, Table S1: Nutritional composition of sword bean
and pod.
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