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ABSTRACT: In this article, we investigate the numerical and
theoretical aspects of the coupled-cluster method tailored by
matrix-product states. We investigate formal properties of the
used method, such as energy size consistency and the
equivalence of linked and unlinked formulation. The existing
mathematical analysis is here elaborated in a quantum
chemical framework. In particular, we highlight the use of
what we have defined as a complete active space-external
space gap describing the basis splitting between the complete
active space and the external part generalizing the concept of a
HOMO−LUMO gap. Furthermore, the behavior of the energy error for an optimal basis splitting, i.e., an active space choice
minimizing the density matrix renormalization group-tailored coupled-cluster singles doubles error, is discussed. We show
numerical investigations on the robustness with respect to the bond dimensions of the single orbital entropy and the mutual
information, which are quantities that are used to choose a complete active space. Moreover, the dependence of the ground-
state energy error on the complete active space has been analyzed numerically in order to find an optimal split between the
complete active space and external space by minimizing the density matrix renormalization group-tailored coupled-cluster error.

I. INTRODUCTION

The coupled-cluster (CC) theory has played a revolutionary role
in establishing a new level of high accuracy in electronic
structure calculations and quantum-chemical simulations.
Despite the immense progress made in the field, computational
schemes aiming at describing quasi-degenerate electronic
structures of chemical systems are still unreliable. These
multiconfiguration systems, also called strongly correlated
systems, form one of the most challenging computational
problems in quantum chemistry. Since these systems appear in
various research areas, a reliable computational scheme is of
major interest for the natural sciences. Recently, the computa-
tional advantages of the novel density matrix renormalization
group-tailored coupled-cluster (DMRG-TCC) method re-
stricted to single (S) and double (D) excitations were
demonstrated on large and statically correlated systems by
Veis et al.1,2 Furthermore, computations have shown that the use
of the DMRG-TCCSD method is indispensable for the DMRG
in order to determine the proper structure of the low lying

energy spectrum in strongly correlated systems.2 In addition to
these computational features, the DMRG-TCC approach is a
promising candidate for a black-box quasi multireference
scheme as considerable parts of the program already provide a
routine procedure up to a numerical threshold. This would
increase the accessibility for a broad class of researchers from
various fields of study.
Although DMRG implementations already allow high

precision multireference calculations on large complete active
spaces (CAS), covering the majority of strongly correlated
orbitals,3 there is still a need for further analysis and
developments in order to achieve a multireference routine
procedure. In the setting of the DMRG-TCC method, a CAS
DMRG solution is improved by means of an additional CC
calculation performed on the remaining (external) orbital space.
This CC correction, improving the description of dynamical
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correlation by the approximate solution, leaves the CAS part, i.e.,
the DMRG solution, invariant. We emphasize, however, that the
presented implementation of the external CC corrections only
take correlations with a single reference determinant into
account, i.e., the considered CC amplitude equations are
formulated with respect to one reference determinant. Despite
the method’s dependence on the reference determinant (in its
current version), we have noticed significant improvements for
systems with multireference character (∼0.05Eh) via the CCSD
correction on the external part compared to the single reference
CCSD method on the full space. Nonetheless, the simplistic
approach of the DMRG-TCC method to the multireference
problem comes with a price. The DMRG-TCC, as a CAS
method, does not correlate external amplitudes with the CAS
amplitudes, i.e., contributions from the external part to excited
determinants within the CAS are not present. Furthermore, in
situations where the choice of a reference determinant becomes
unclear, e.g., strong open-shell systems, the DMRG-TCC
method could run into potential problems since it is based on
a single reference formulation. Although the total spin can be
fixed for the CAS part in the DMRG calculations (spin-adapted
DMRG4−7), for the full orbital space it cannot be controlled
through the external CC corrections presented in this work.
Common approaches to the strong correlation problem are

provided by the multireference coupled-cluster (MRCC) theory
based on the Jeziorski−Monkhorst ansatz.8−10 The underlying
idea of this ansatz is to include higher cluster excitations that are
physically relevant but often more difficult to access in the usual
single reference approach. To that end multiple determinants
are employed in the reference state.11 These multireference
approaches can be roughly divided into three categories:12 first,
valence-universal approaches13−21 (often also called genuine
MRCC approaches); second, state-universal approaches;22−27

and third, state-specific approaches.28−49 Methods within the
first two categories commonly suffer from so-called intruder
states,50−53 which leads to divergent behavior. Such methods
furthermore require solving for a manifold of eigenstates,
including several solutions that are irrelevant to the problem.
These downsides can be overcome by state-specific approaches,
however, they rely on an explicit inclusion of higher excitations.
For a more detailed description of these active fields of research,
we refer the reader to ref 9 and the references therein. An
alternative multireference CC method that makes use of matrix
product states and a modified DMRG algorithm is the linearized
CCSD theory of Sharma and Alavi.54 Furthermore, the pair
CCD (pCCD) methoda CCD approach preserving electron
pairsbesides being computationally inexpensive, can describe
strong correlation, which the single reference CCD theory
cannot. Nonetheless, the pCCD scheme lacks adequate
dynamical correlation which was improved (by adding certain
amplitudes) based on seniority of a determinant (number of
unpaired electrons).55 However, pairing merely the double
excitations is not sufficient to describe the dissociation of the
triple bond in the nitrogen dimer,55 which is the content of this
article. Higher order pairing schemes, however, allow a more
effective treatment of strong correlations and are worth
mentioning at this point.56−62

The mathematical analysis of CC schemes is far from being
complete, especially with regard to multireference methods;
however, many important steps have already been taken. The list
of fundamental and mathematical chemistry articles aiming to
describe the existence and nature of solutions of CC equations is
too long to be summarized here. We will limit our discussion to a

short selection of publications addressing such fundamental
issues of chemistry.
As a system of polynomial equations the CC equations can

have real or, if the cluster operator is truncated, complex
solutions.63,64 A standard tool to compute a solution of these
nonlinear equations is the Newton−Raphson and the quasi-
Newton method. However, these methods may diverge if the
Jacobian or the approximated Jacobian become singular.65 This
is in particular the case when strongly correlated systems are
considered. These and other related aspects of the CC theory
have been addressed by Živkovic ́ and Monkhorst63,66 and
Piecuch et al.64 Significant advances in the understanding of the
nature of multiple solutions of single-reference CC have been
made by Kowalski and Jankowski67 and by Piecuch and
Kowalski.68 An interesting attempt to address the existence of
a cluster operator and cluster expansion in the open-shell case
was done by Jeziorski and Paldus.69

The first advances within the rigorous realm of local
functional analysis were performed by Schneider and
Rohwedder, providing analyses of the closed-shell CC method
for nonmulticonfiguration systems.70−72 Since then, the local
analysis of CC schemes was extended by Laestadius and Kvaal
analyzing the extended CC method73 and revisiting the
bivariational approach74,75 and Faulstich et al. providing the
first local mathematical analysis of a multireference scheme,
namely the CCmethod tailored by tensor network states (TNS-
TCC).76 As this mathematical branch of CC theory is very
young, channeling abstract mathematical results into the
quantum-chemistry community is a highly interdisciplinary
task merging both fields. A first attempt in this direction was
done by Laestadius and Faulstich linking the physical
assumption of a HOMO−LUMO gap to the somewhat abstract
Gårding inequality and in that context presenting key aspects of
refs 70−73 from a more quantum chemical point of view.77

With this article, we aim to bridge the mathematical results in
ref 76 of the TNS-TCC method into the quantum-chemistry
community and extend these results with a numerical study on
the complete active space dependence of the DMRG-TCCSD
error. Furthermore, we derive formal properties of the TCC
method.

II. DMRG-TCC METHOD
As a post-Hartree−Fock method, the TCC approach was
introduced by Kinoshita et al. in ref 28 as an alternative to other
multireference methods. It divides the cluster operator into a
complete active space part, denoted Ŝ, and an external (ext) part
T̂, i.e., the wave function is parametrized as

|Ψ ⟩ = ̂ ̂ |Ψ ⟩T Sexp( )exp( )TCC HF

Separating the cluster operator into several parts goes back to
Piecuch et al.78,79 Note that the operators Ŝ, T̂ commute since
this separation is merely a partition of the overall cluster
operator. In this formulation the linked CC equations are given
by

= ⟨Ψ | ̂ |Ψ ⟩

= ⟨Ψ | ̂ |Ψ ⟩μ
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Computing |ΨCAS⟩ = eŜ|ΨHF⟩ first and keeping it fixed for the
dynamical correction via the CCSD method restricts the above
equations to |Ψμ⟩ not in the CAS, i.e., ⟨Ψ|Ψμ⟩ = 0 for all |Ψ⟩ in
the CAS (we say that |Ψμ⟩ is in the L

2-orthogonal complement of
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the CAS). We emphasize that this includes mixed states, e.g.,
|ΨIJ

AB⟩ where |ΨI
A⟩ is an element of the CAS but |ΨJ

B⟩ is not. We
consider a CAS of N-electron Slater-determinants formed from
the set of spin-orbitals χ χ= { }B , ..., kCAS 1 . This is, in the
mathematical sense, a subspace of the full configuration
interaction (FCI) space, i.e., the space of all N-electron Slater-
determinants formed from the entire set of spin-orbitals

χ χ χ= { }B , ..., , ...,k K1 . We here assume the spin-orbitals to be
eigenfunctions of the system’s Fock operator. Note that the
following analysis can be applied to any single-particle operator
fulfilling the properties used in ref 76not only the Fock
operator. This mathematical analysis, among other things, rests
on the structure of a one-particle operator with a distinct (and
furthermore steerable) CAS-ext gap. As described below (in
connection to Assumption A), choosing the Fock operator
might lead to the inclusion of diffuse functions in the CAS.
Based on the single reference approach, the TCC method

needs a large CAS to cover most of the static correlations. Since
the size of the CAS scales exponentially with respect to the
number of particles N, i.e., ∈ kdim(CAS) ( )N (for more
details we refer the reader to ref 70), an efficient approximation
scheme for strongly correlated systems is indispensable for the
TCC method to have practical significance. One of the most
efficient schemes for static correlation is the DMRG method.80

Going back to the physicists White and Martin,3 it was
introduced to quantum chemistry as an alternative to the CI
or CC approach. However, the major disadvantage of the
DMRG is that in order to compute dynamical correlation high
bond dimensions (tensor ranks) may be necessary, making the
DMRG a potentially costly method.2,80 Nevertheless, as a TNS-
TCCmethod, the DMRG-TCC approach is an efficient method
since the CAS is supposed to cover the statically correlated
orbitals of the system. This avoids the DMRG method’s weak
point and allows to employ a much larger CAS compared to the
traditional CI-TCC method. We remark here that some
terminology has different meaning in mathematics, physics,
and chemistry. The number of legs of a tensor is called the order
of the tensor in mathematics, while it is called the rank of the
tensor in physics. The rank of the matrix corresponds to the
number of nonzero singular values after matricization in
mathematics, i.e., the Schmidt number in physics.
A notable advantage of the TCC approach over some MRCC

methods is that all excitation operators commute by
construction. This is due to the fact that the Hartee−Fock
method yields a single reference solution |ΨHF⟩, which implies
that separating the cluster operator corresponds to a partition of
excitation operators. Hence, Ŝ and T̂ commute. This makes the
DMRG-TCC method’s analysis much more accessible than
internally contracted MRCC methods and therewith facilitates
establishing sound mathematical results.76 We remark, however,
that the computationally most demanding step of the DMRG-
TCC calculation is the DMRGpart, and its cost increases rapidly
with k. Alternative to the dynamical correction via the CC
approach, the DMRG-MRCI method in ref 81 utilizes an
internally contracted CI algorithm different from a conventional
CI calculation.

III. FORMAL PROPERTIES OF THE DMRG-TCC
METHOD

It is desired that quantum-chemical computations possess
certain features representing the system’s chemical and physical
behavior. Despite their similarity, the CC and TCC method

have essentially different properties, which are here elaborated.
A basic property of the CC method is the equivalence of linked
and unlinked CC equations. We point out that this equivalence
is in general not true for the DMRG-TCCSD scheme. This is a
consequence of the CAS ansatz since it yields mixed states, i.e.,
two particle excitations with one excitation into the CAS. The
respective overlap integrals in the unlinked CC equations will
then not vanish unless the single excitation amplitudes are equal
to zero. Generalizing this result for rank complete truncations of
order n we find that all excitation amplitudes need to be zero but
for the nth one. This is somewhat surprising as the equivalence
of linked and unlinked CC equations holds for rank complete
truncations of the single-reference CC method.
For the sake of simplicity we show this results for the DMRG-

TCCSD method. The general case can be proven in similar a
fashion. We define the matrix representation T with elements
Tμ,ν = ⟨Ψμ|e

T̂|Ψν⟩ for μ, ν ∉ CAS. Note that, as T̂ increases the
excitation rank, T is an atomic lower triangular matrix and
therefore not singular. Assuming that the linked CC equations
hold, the nonsingularity of T yields

∑

∑
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As the full projection manifold is complete under de-excitation,
we obtain that

∑= ⟨Ψ | ̂ |Ψ ⟩ − ⟨Ψ | |Ψ ⟩⟨Ψ | ̂ |Ψ ⟩μ μ
γ

μ γ γ
̂

∈

̂ ̂
A He e HeT T T

HF
CAS

HF
(2)

Note that the first term on the r.h.s. in eq 2 together with the
Hartree−Fock contribution from the sum, i.e., E0⟨Ψμ|e

T̂|ΨHF⟩,
describe the unlinked CC equations. To analyze the remaining
terms on the r.h.s. in eq 2 we expand the inner products, i.e.,

⟨Ψ | |Ψ ⟩ = ⟨Ψ |Ψ ⟩ + ⟨Ψ | ̂|Ψ ⟩ + ⟨Ψ | ̂ |Ψ ⟩ +μ γ μ γ μ γ μ γ
̂e T T

1
2

...T 2

The first term in this expansion vanishes due to orthogonality.
The same holds true for all terms where T̂ enters to the power of
two or higher since an excitation of order two or higher acting on
an at least singly excited Slater-determinant |Ψγ⟩ yields an at least
3-fold excited Slater-determinant. However, as the external
space contains mixed states, we find that ⟨Ψμ|T̂|Ψγ⟩ is not
necessarily zero, namely, for ⟨Ψμ| = ⟨Ψα| ∧ ⟨Ψβ| and |Ψγ⟩ = |Ψβ⟩
with α ∈ ext and β ∈ CAS. This proves the claim.
Subsequently, we elaborate the size consistency of the

DMRG-TCCSD method. Let two DMRG-TCCSD wave
functions for the individual subsystems A and B be

|Ψ ⟩ = ̂ ̂ |Ψ ⟩

|Ψ ⟩ = ̂ ̂ |Ψ ⟩

−
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The corresponding energies are given by

= ⟨Ψ | ̅̂ |Ψ ⟩ = ⟨Ψ | ̅̂ |Ψ ⟩E H E H,A
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and the amplitudes fulfill

= ⟨Ψ | ̅̂ |Ψ ⟩ = ⟨Ψ | ̅̂ |Ψ ⟩μ μH H0 , 0A
A

A B
B

B( )
HF
( ) ( )

HF
( )

in terms of the effective, similarity-transformed Hamiltonians

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00960
J. Chem. Theory Comput. 2019, 15, 2206−2220

2208

http://dx.doi.org/10.1021/acs.jctc.8b00960


̅ ̂ = − ̂ − ̂ ̂ ̂ + ̂
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TheHamiltonian of the compound system of the noninteracting
subsystems can be written as ĤAB = ĤA + ĤB. Since the TCC
approach corresponds to a partitioning of the cluster amplitudes

we note that ̅ ̂ = ̅̂ + ̅̂H H HAB A B for
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(B)⟩, the energy of the compound

systems can be written as
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It remains to show that

|Ψ ⟩ = ̂ + ̂ + ̂ + ̂ |Ψ ⟩− S S T Texp( )AB
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solves the Schrödinger equation, i.e., for all ⟨Ψμ
(AB)|, it holds that

⟨Ψ | ̅̂ |Ψ ⟩ =μ H 0AB
AB

AB( )
HF
( ) . Splitting the argument into three cases,

we note that
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where ⟨Ψ(A)Ψ(B)| = ⟨Ψ(A)| ∧ ⟨Ψ(B)|. This proves the energy size
consistency for the untruncated TCC method. From this we
conclude the energy size consistency for the DMRG-TCCSD
scheme, because the truncation only affects the product states
⟨Ψμ

(A)Ψμ
(B)| and these are zero in the above projection.

Looking at TCC energy expression we observe that due to the
Slater−Condon rules, these equations are independent of CAS
excitations higher than order three, i.e., amplitudes of Ŝn for n >
3. More precisely, due to the fact that in the TCCSD case
external space amplitudes can at most contain one virtual orbital
in the CAS, the TCCSD amplitude expressions become
independent of Ŝ4, i.e.,

⟨Ψ | ̂ |Ψ ⟩ =′ ′ ′ ′ ′H 0ij
A A

klmn
B c d e

where the primed variables a′, b′, c′, d′, e′ describe orbitals in the
CAS, the nonprimed variable a describes an orbital in the
external part and i, j, k, l, m, n are occupied orbitals. Note, this
does not imply that we can restrict the CAS computation to a
manifold characterizing excitations with rank less or equal to
three as for strongly correlated systems these can still be relevant.
However, it reduces the number of terms entering the DMRG-
TCCSD energy computations significantly.
This work aligns with the originally introduced CI-TCCSD

method taking only Ŝn for n = 1, 2 into account.
28 We emphasize

that the additional consideration of Ŝ3 corresponds to an exact
treatment of the CAS contributions to the energy. Furthermore,
this consideration does not change the TCC method’s
complexity, if the Ŝ3 amplitudes are available. This is due to

the fact that including the CAS triple excitation amplitudes will
not exceed the dominating complexities of the CCSD
approach82 nor of the DMRG method. However, the extraction
of the CI-triples from the DMRG wave function is costly and a
corresponding efficiency investigation is left for future work.

IV. ANALYSIS OF THE DMRG-TCC METHOD
In the sequel we discuss and elaborate mathematical properties
of the TCC approach and their influence on the DMRG-TCC
method. The presentation here is held brief and the interested
reader is referred to ref 76 and the references therein for further
mathematical details.

IV.A. Complete Active Space Choice. As pointed out in
the previous section, the TCC method relies on a well-chosen
CAS, i.e., a large enough CAS that covers the system’s static
correlation. Consequently, we require a quantitative measure-
ment for the quality of the CAS, which presents the first obstacle
for creating a nonempirical model since the chemical concept of
correlation is not well-defined.83 In the DMRG-TCC method,
we use a quantum information theory approach to classify the
spin-orbital correlation. This classification is based on the
mutual-information

ρ ρ ρ= + −| { } { } { }I S S S( ) ( ) ( )i j i j i j,

This two particle entropy is defined via the von Neumann entropy
S(ρ) = −Tr(ρ ln ρ) of the reduced density operators ρ{X}.

84

Note that the mutual-information describes two-particle
correlations. For a more general connection between multi-
particle correlations and ξ-correlations, we refer the reader to the
work of Szalay et al.84 We emphasize that in practice this is a
basis dependent quantity, which is in agreement with the
chemical definition of correlation concepts.83 We identify pairs
of spin-orbitals contributing to a high mutual information value
as strongly correlated, the pairs contributing to the plateau
region, i.e., a region in which the mutual information profile is
constant, as nondynamically correlated and the pairs contribu-
ting to themutual information tail as dynamically correlated (see
Figure 3). The mutual-information profile can be well
approximated from a prior DMRG computation on the full
system. Due to the size of the full system we only compute a
DMRG solution of low bond dimension (also called tensor rank).
These low-accuracy calculations, however, already provide a
good qualitative entropy profile, i.e., the shapes of profiles
obtained for low bond dimension, M, agree well with the ones
obtained in the FCI limit. Here, we refer to Figures 2 and 3
showing the single orbital entropy and mutual information
profiles, respectively, for variousM values and for three different
geometries of the N2 molecule. The orbitals with large entropies
can be identified from the low-M calculations providing a
routine procedure to form the CAS including the strongly
correlated orbitals.85−87 In practice this is achieved by using the
following dimension reduction protocol: We start with a very
low bond dimension calculation carried out on the full orbital
space. Based on the corresponding entropy profile and an a
priori defined numerical threshold, a smaller set of orbitals is
selected. In a subsequent step the same procedure is repeated on
the reduced orbital set but with a larger bond dimension. This
iterative dimension reduction protocol is a typical renormaliza-
tion group based approach to refine the entropy spectrum that is
also used in condensed matter physics.
A central observation is that, for χ χ= { }B , ..., NCAS 1 (i.e., k =

N), the DMRG-TCCSD becomes the CCSD method and, for
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χ χ= { ··· }B , , KCAS 1 (i.e., k = K), it is the DMRG method. We
recall that the CCSD method can not resolve static correlation
and the DMRGmethod needs high tensor ranks for dynamically
correlated systems. This suggests that the error obtains a
minimum for some k withN≤ k≤ K, i.e., there exists an optimal
choice of k determining the basis splitting and therewith the
choice of the CAS. Note that this feature becomes important for
large systems since high bond dimensions become simply
impossible to compute with available methods.
IV.B. Local Analysis of the DMRG-TCCMethod. The CC

method can be formulated as nonlinear Galerkin scheme,70 which
is a well-established framework in numerical analysis to convert
the continuous Schrödinger equation to a discrete problem. For
the DMRG-TCC method a first local analysis was performed in
ref 76. There, a quantitative error estimate with respect to the
basis truncation was established. Faulstich et al. showed under
certain assumptions (Assumption A and B in the sequel) that the
DMRG-TCC method possesses a locally unique and quasi-
optimal solution (cf. section 4.1 in ref 76). In case of the DMRG-
TCCmethod the latter means: On a fixed CAS, the CC method
tailored by a DMRG solution provides a truncation hierarchy
that converges to the best possible dynamical correction to the
given CAS. For a fixed basis set the CC solution tailored by a
DMRG solution on a fixed CAS is up to amultiplicative constant
the best possible solution in the approximation space defined by
the basis set. In other words, the CC method provides the best
possible dynamical correction for a given CAS solution such as a
DMRG solution.
Note that local uniqueness ensures that for a fixed basis set,

the computed DMRG-TCC solution is unique in a neighbor-
hood around the exact solution. We emphasize that this result is
derived under the assumption that the CAS solution is fixed.
Consequently, for different CAS solutions we obtain in general
different TCC solutions, i.e., different cluster amplitudes.
Subsequently, parts of the results in ref 76 are explained in a

setting adapted to the theoretical chemistry perspective. The
TCC function is given by f(t; s) = ⟨Ψμ|e

−Ŝe−T̂ĤeT̂eŜ|ΨHF⟩, for
|Ψμ⟩ not in the CAS. Note that we use the convention where
small letters s, t correspond to cluster amplitudes, whereas
capital letters Ŝ, T̂ describe cluster operators. The corresponding
TCC energy expression is given by

= ⟨Ψ | ̂ |Ψ ⟩− ̂ − ̂ ̂ ̂t s He e( ; ) e eS T T S
HF HF

Consequently, the linked TCC eqs 1 then become

=

=

l
m
ooo
n
ooo

E t s

f t s

( ; )

0 ( ; )

(TCC)

Within this framework the locally unique and quasi-optimal
solutions of the TCC method were obtained under two
assumptions (see Assumption A and B in ref 76).
First, Assumption A requires that the Fock operator F̂ is

bounded and satisfies a so-called Gårding inequality. Note that
spectral gap assumptions (cf. HOMO−LUMO gap) are
standard in the analysis of dynamically correlated systems, and
for a more detailed description of these properties in this
context, we refer readers to ref 77. Second, in the theoretical
framework76 it is assumed that there exists a CAS-ext gap in the
spectrum of the Fock operator, i.e., there is a gap between the kth
and the k + 1st orbital energies. The CAS-ext gap (although in
practice possibly very small) was sufficient for the analysis since
the main purpose was to remove the HOMO−LUMO gap

assumption and allow for quasi-degeneracy, which makes the
general TCC approach applicable to multiconfiguration
systems. Intuitively, this gap assumption means that the CAS
captures the static correlation of the system.
However, in practice, an arbitrarily small gap is insufficient

and needs to be complemented by a more detailed discussion
(see Remark 10 in ref 76). The crucial stability constant is not
directly related to the CAS-ext gap εk+1 − εk, nor to the
HOMO−LUMO gap εN+1 − εN. Due to the frozen CAS-
amplitudes this stability constant becomes much larger and is
roughly estimated by εk+1− εN. This improved stability provides
accurate CC amplitudes and the improved gap is not destroyed
e.g. by the existence of many diffuse functions around the
LUMO-level (Fermi level). In this case, the CAS includes the
diffuse functions. This might not be optimal but is the simplest
choice and most importantly fulfills the stability condition. The
issue of basis set optimization is discussed briefly in the
conclusion but a more detailed discussion is left for future work.
Assumption B is concerned with the fluctuation operator Ŵ =

Ĥ− F̂. This operator describes the difference of theHamiltonian
and a single particle operator, here chosen to be the Fock
operator. Using the similarity transformed Ŵ and fixing the CAS
amplitudes s, the map

is assumed to have a small enough Lipschitz-continuity constant
(see eq 20 in ref 76). The physical interpretation of this Lipschitz
condition is at the moment unclear.

IV.C. Error Estimates for the DMRG-TCC Method. A
major difference between the CI and CC method is that the CC
formalism is not variational. Hence, it is not evident that the CC
energy error decays quadratically with respect to the error of the
wave function or cluster amplitudes. Note that the TCC
approach represents merely a partition of the cluster operator;
however, its error analysis is more delicate than the traditional
CC method’s analysis. The TCC-energy error is measured as a
difference to the FCI energy. Let |Ψ*⟩ describe the FCI solution
on the whole space, i.e., Ĥ |Ψ*⟩ = E|Ψ*⟩. Using the exponential
parametrization and the above introduced separation of the
cluster operator, we have

|Ψ*⟩ = ̂* *̂ |Ψ ⟩T Sexp( )exp( ) HF (3)

An important observation is that the TCC approach ignores the
coupling from the external space into the CAS. It follows that the
FCI solution on the CAS |ΨFCI

CAS⟩ = exp(ŜFCI)|ΨHF⟩ is an
approximation to the projection of |Ψ*⟩ onto the CAS

|Ψ ⟩ ≈ |̂Ψ*⟩ = *̂ |Ψ ⟩P Sexp( )FCI
CAS

HF

where P̂ =∑μ∈CAS|Ψμ⟩⟨Ψμ| is the L
2-orthogonal projection onto

the CAS. For a reasonably sized CAS the FCI solution |ΨFCI
CAS⟩ is

rarely computationally accessible and we introduce the DMRG
solution on the CAS as an approximation of |ΨFCI

CAS⟩

|Ψ ⟩ = ̂ |Ψ ⟩ ≈ |Ψ ⟩Sexp( )DMRG
CAS

DMRG HF FCI
CAS

Tailoring the CC method with these different CAS solutions
leads in general to different TCC solutions. In the case of |ΨFCI

CAS⟩,
the TCC method yields the best possible solution with respect
to the chosen CAS, i.e., f(tCC* ;sFCI) = 0. This solution is in general
different from tCC fulfilling f(tCC;sDMRG) = 0 and its truncated
version tCCSD satisfying PGal f(tCCSD;sDMRG) = 0, where PGal
denotes the l2-orthogonal projection onto the corresponding
Galerkin space. In the context of the DMRG-TCC theory, the
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Galerkin space represents a truncation in the excitation rank of
the cluster operator, e.g., DMRG-TCCD, DMRG-TCCSD, etc.
For the following argument, suppose that an appropriate CAS

has been fixed. The total DMRG-TCC energy error ΔE can be
estimated as76

ε ε ε

Δ = | − * * |

≤ Δ + Δ + Δ *
E t s t s( ; ) ( ; )CCSD DMRG

CAS CAS (4)

where each term on the r.h.s. in eq 4 is now discussed. As a
technical remark, the norms on either the Hilbert space of
cluster amplitudes or wave functions are here simply denoted as
∥·∥. These norms are not just the l2- or L2-norm, respectively,
but also measure the kinetic energy. It should be clear from
context which Hilbert space is in question and we refer to ref 71
for formal definitions. The first term is defined as

εΔ = | − |t s t s( ; ) ( ; )CCSD DMRG CC DMRG

which describes the truncation error of the CCSD method
tailored by |ΨDMRG

CAS ⟩. We emphasize that the dynamical
corrections via the CCSD and the untruncated CC method
are here tailored by the same CAS solution. Hence, the energy
error Δε corresponds to a single reference CC energy error,
which suggests an analysis similar to that of refs 70 and 72.
Indeed, the Aubin−Nitsche duality method88−90 yields a
quadratic a priori error estimate in ∥tCCSD − tCC∥ (and in
terms of the Lagrange mulitpliers; see Theorem 29 in ref 76).
Second, we discuss the term

εΔ = | − |t s t s( ; ) ( ; )CAS CC DMRG CC FCI

Here, different CAS solutions with fixed external solutions are
used to compute the energies. This suggests that ΔεCAS is
connected with the error

Δ = |⟨Ψ | ̂ ̂ ̂ − ̂ ̂ ̂ |Ψ ⟩|− ̂ ̂ − ̂ ̂
E e PHPe e PHPeS S S S

DMRG HF HF
DMRG DMRG FCI FCI

(5)

describing the approximation error of the DMRG solution on
the CAS (see Lemma 27 in ref 76). Indeed

∑
ε

ε

Δ ≲ Δ + − *

+ ̂ − ̂ |Ψ ⟩ + *
μ

μ μ
| |=

E t t

S S t( ) ( )
CAS DMRG CC CC

2

DMRG FCI HF
2

1
CC

2

(6)

with εμ = εI1...In
A1···An =∑j=1

n (λAj
− λIj), for 1 ≤ n ≤ k, where λi are the

orbital energies. The εμ are the (translated) Fock energies, more
precisely, F̂ |Ψμ⟩ = (Λ0 + εμ)|Ψμ⟩, withΛ0 =∑i=1

N λi. Note that the
wave function |ΨFCI

CAS⟩ is in general not an eigenfunction of Ĥ;
however, it is an eigenfunction of the projected Hamiltonian
P̂ĤP̂. Equation 5 involves the exponential parametrization. This
can be estimated by the energy error of the DMRG wave
function, denoted Δ DMRG, namely

Δ ≤ Δ + ̂ |Ψ ⟩ − |Ψ ⟩E H2 LDMRG DMRG DMRG
CAS

FCI
CAS

2

(7)

In section V the energy error of the DMRG wave function is
controlled by the threshold value δεTr, i.e., δεΔ ( )DMRG Tr .
Hence, for well chosen CAS the difference ∥|ΨDMRG

CAS ⟩ −
|ΨFCI

CAS⟩∥L2 is sufficiently small such that Δ ≲ ΔE 2DMRG DMRG
holds. This again shows the importance of a well-chosen CAS.
Furthermore, the last term in eq 6 can be eliminated via orbital
rotations, as it is a sum of single excitation amplitudes.

Finally, we consider

εΔ * = | − * * |t s t s( ; ) ( ; )CAS CC FCI (8)

Since (t*, s*) is a stationary point of we have * * =D t s( ; ) 0.
A calculation involving Taylor expanding around (t*, s*) (see
Lemma 26 in ref 76) yields

εΔ * ≲ ∥ − *∥ + ∥ − *∥t t s s lCAS CC
2

FCI
2
2 (9)

Note that the above error is caused by the assumed basis
splitting, namely, the correlation from the external part into the
CAS is ignored. Therefore, the best possible solution for a given
basis splitting (tCC* , sFCI) differs in general from the FCI solution
(t*, s*).
Combining now the three quadratic bounds gives an overall

quadratic a priori energy error estimate for the DMRG-TCC
method. The interested reader is referred to ref 76 for a more
detailed treatment of the above analysis.

IV.D. On the k-Dependence of the Error Estimates.The
error estimate outlined above is for a fixed CAS, i.e., a particular
basis, splitting and bounds the energy error in terms of truncated
amplitudes. Because the TCC solution depends strongly on the
choice of the CAS, it is motivated to further investigate the k-
dependence of the error ΔE. However, the above derived error
bound has a highly complicated k-dependence since not only the
amplitudes but also the implicit constants (in ≲) and norms
depend on k. Therefore, the analysis in ref 76 is not directly
applicable to take the full k-dependence into account.
In the limit where sDMRG→ sFCI we obtain that tCC→ tCC* since

the TCC method is numerically stable, i.e., a small perturbation
in s corresponds to a small perturbation in the solution t.
Furthermore, if we assume that tCCSD ≈ tCC, which is reasonable
for the equilibrium bond length of N2, the error can be bound as

∑Δ ≤ + − * *
μ

μ
| |=

i

k

jjjjjjj
y

{

zzzzzzzE C t t s t s( ) ( , ) ( , )k k l
1

CCSD
2

CCSD DMRG
2
2

(10)

Here the subscript k onΔEk andCk highlights the k-dependence.
We remark that we here used the less accurate l2-structure on the
amplitude space compared to the H1-structure in eq 9. This
yields k-independent vectors (tCCSD, sDMRG) and (t*, s*), as well
as an k-independent l2-norm. The k-depenence of Ck will be
investigated numerically in more detail in section B.5.

V. SPLITTING ERROR FOR N2

Including the k-dependence in the above performed error
analysis explicitly is a highly nontrivial task involving many
mathematical obstacles and is part of our current research.
Therefore, we here extend the mathematical results from section
IV with a numerical investigation on this k-dependence. Our
study is presented for the N2 molecule using the cc-pVDZ basis,
which is a common basis for benchmark computations
developed by Dunning and co-workers.91 Here we remark that
in our calculations all electrons are correlated as opposed to the
typical frozen-core calculation, where the two 1s orbitals are
omitted from the full orbital space.We investigate three different
geometries of the nitrogen dimer by stretching the molecule,
thus the performance of DMRG-TCCSD method is assessed
against DMRG and single reference CC methods for bond
lengths r = 2.118a0, 2.700a0, and 3.600a0. In the equilibrium
geometry the system is weakly correlated implying that single
reference CCmethods yield reliable results. For increasing bond
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length r the system shows multireference character, i.e., static
correlations become more dominant. For r > 3.5a0 this results in
the breakdown of single reference CC methods.92 This
breakdown can be overcome with the DMRG-TCCSD method
once a large and well chosen CAS is formed, we therefore refer to
the DMRG-TCCSD method as numerically stable with respect
to the bond length along the potential energy surface (PES).
As mentioned before, the DMRG method is in general less

efficient to recover dynamic correlations since it requires large
computational resources. However, due to the specific CAS
choice the computational resource for the DMRG part of the
TCC scheme is expected to be significantly lower than a pure
DMRG calculation for the same level of accuracy.
V.A. Computational Details. In practice, a routine

application of the TCCmethod to strongly correlated molecular
systems, i.e., to multireference problems, became possible only
recently since it requires a very accurate solution in a large CAS
including all static correlations. Tensor network state methods
fulfill such a high accuracy criterion, but the efficiency of the
TNS-TCCSD method strongly depends on various parameters
of the involved algorithms. Some of these are defined rigorously
while others are more heuristic from the mathematical point of
view. In this section we present the optimization steps for the
most important parameters of the DMRG-TCCSD method and
outline how the numerical error study in section V.B is
performed.
As elaborated in sections II and IV.A, the CAS choice is

essential for the computational success of TNS-TCC methods.
In addition, the error of the TNS method used to approximate
the CAS part depends on various approximations. These include
the proper choice of a finite dimensional basis to describe the
chemical compound, the tensor network structure, and the
mapping of the molecular orbitals onto the given network.93

Fortunately, all these can be optimized by utilizing concepts of
quantum information theory, introduced in section IV.A (see
also the included references). In the following, we restrict the
numerical study to the DMRG-TCCSD method but the results
presented here should also hold for other TNS approaches.93−97

In the DMRG-TCCSD case, the tensor network topology in
the CAS corresponds to a single branched tensor tree, i.e., a one-
dimensional topology. Thus, permutations of orbitals along such
an artificial chain effect the convergence for a given CAS
choice.98,99 This orbital-ordering optimization can be carried
out based on spectral graph theory100,101 by minimizing the
entanglement distance,102 defined as Idist =∑ij Ii|j |i− j|2. In order
to speed up the convergence of the DMRG procedure the
configuration interaction based dynamically extended active
space (CI-DEAS) method is applied.93,99 In the course of these
optimization steps, the single orbital entropy (Si = S(ρ{i})) and
the two-orbital mutual information (Ii|j) are calculated iteratively
until convergence is reached. The size of the active space is
systematically increased by including orbitals with the largest
single site entropy values, which at the same time correspond to
orbitals contributing to the largest matrix elements of the mutual
information. Thus, the decreasingly ordered values of Si define
the so-called CAS vector, which provides a guide in what order
to extend the CAS by including additional orbitals. The bond
dimensionsM (tensor rank) in the DMRG method can be kept
fixed or adapted dynamically (dynamic block state selection
(DBSS) approach) in order to fulfill an a priori defined error
margin.103,104 Accurate extrapolation to the truncation free limit
is possible as a function of the truncation error δεTr.

103,105

In our DMRG implementation106 we use a spatial orbital
basis, i.e., the local tensor space of a single orbital is d = 4
dimensional. In this 4-representation an orbital can be empty,
singly occupied with either a spin up or spin down electron, or
doubly occupied with opposite spins. Note, in contrast to
section IV we needN/2 spatial orbitals to describe anN-electron
wave function and similar changes apply to the size of the basis
set so that we use K ≡ K/2 from here on. The single orbital
entropy therefore varies between 0 and ln d = ln 4, while the two-
orbital mutual information varies between 0 and ln d2 = ln 16.
Next we provide a short description how to perform DMRG-

TCCSD calculations in practice. Note that we leave the
discussion on the optimal choice of k for the following sections.

(1) First the CAS is formed from the full orbital space by
setting k = K. DMRG calculations are performed
iteratively with fixed low bond dimension (or with a
large error margin) in order to determine the optimal
ordering and the CAS vector as described above. Thus,
the corresponding single-orbital entropy and mutual
information are also calculated. These calculations already
provide a good qualitative description of the entropy
profiles with respect to the exact solution, i.e., strongly
correlated orbitals can be identified.

(2) Using a given N/2 < k < K we form the CAS from the
Hartree−Fock orbitals and the first k − N/2 virtual
orbitals from the CAS vector, i.e., orbitals with the largest
single orbital entropy values. We emphasize that these
orbitals contribute to the largest matrix elements in Ii|j. We
carry out the orbital ordering optimization on the given
CAS and perform a large-scale DMRG calculation with a
low error threshold margin in order to get an accurate
approximation of the |ΨFCI

CAS⟩. Note that the DMRG
method yields a normalized wave function, i.e., the
overlap with the reference determinant |ΨHF⟩ is not
necessarily equal to one.

(3) Using the matrix product state representation of |ΨDMRG
FCI ⟩

obtained by the DMRG method we determine the zero
reference overlap, single and double CI coefficients of the
full tensor representation of the wave function. Next,
these are used to calculate the Ŝ1 and Ŝ2 amplitudes, which
form the input of the forthcoming CCSD calculation.

(4) In the following step the cluster amplitudes for the
external part, i.e., T̂1 and T̂2, are calculated in the course of
the DMRG-TCCSD scheme.

(5) As we discus in the next section, finding the optimal CAS,
i.e., k-splitting, is a highly nontrivial problem, and at the
present stage we can only present a solution that is
considered as a heuristic approach in terms of rigorous
mathematics. In practice, we repeat steps 2−4 for a large
DMRG-truncation error as a function ofN/2 < k <K, thus
we find local energy minima (see Figure 4) using a
relatively cheap DMRG-TCCSD scheme. Around such a
local minimum we perform more accurate DMRG-
TCCSD calculations by lowering the DMRG-truncation
error in order to refine the optimal k. We also monitor the
maximum number of DMRG block states required to
reach the a priori defined DMRG-error margin as a
function of k. Since it can happen that several k values lead
to low error DMRG-TCCSD energies, while the
computational effort increases significantly with increas-
ing k we select the optimal k that leads to low DMRG-
TCCSD energy but also minimizes the required DMRG
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block states. Using the optimal k value we perform large-
scale DMRG-TCCSD calculation using a relatively tight
error bound for the DMRG-truncation error.

We close this section with a brief summary of the numerically
accessible error terms and relate them to equations presented in
section IV. Note that the error analysis in section IV is presented
for a given k, thus here the k dependence is also omitted.
For a given k split, the accuracy of |ΨDMRG

CAS ⟩ depends on the
DMRG truncation error, δεTr. As has been shown in refs 103 and
105, the relative error, ΔErel = (EDMRG(δεTr)

CAS − EFCI
CAS)/EFCI

CAS is a
linear function of δεTr on a logarithmic scale. Therefore,
extrapolation to the FCI limit can be carried out as a function of
δεTr. In addition, the error term

δεΔ = −δεE E( )DMRG Tr DMRG( )
CAS

FCI
CAS

Tr

appearing in eq 7 can be controlled.
Note that terms appearing in eqs 6 and 7 include FCI

solutions of the considered system. However, for small enough
and dynamically correlated systems, these FCI solutions can be
well approximated. This is in particular the case for the nitrogen
dimer near the equilibrium geometry with the here chosen basis
set. The CI-coefficients are then extractable from the matrix
product state representation of a wave function, e.g., |ΨDMRG

CAS ⟩ or
|ΨFCI

CAS⟩. Note that calculating all CI-coefficients scales
exponentially with the size of the CAS. However, since the
system is dynamically correlated zeroth order, single and double
excitation coefficients are sufficient. Hence, the error terms
∥|ΨDMRG

CAS ⟩− |ΨFCI
CAS⟩∥L2 and ∥(ŜFCI− ŜDMRG(δεTr))|ΨHF⟩∥ in eqs 6

and 7, respectively, can be well approximated. We remark that
this exponential scaling with the CAS size also effects the
computational costs of the CAS CI-triples, which are needed for
an exact treatment of the TCCSD energy equation. However,
investigations of the influence of the CAS CI-triples on the
computed energies are left for future work.
V.B. Results and Discussion. In this section, we investigate

the overall error dependence of DMRG-TCCSD as a function of
k and as a function of the DMRG-truncation error δεTr. For our
numerical error study we perform steps 1−4 discussed in section
V.A for each N/2 < k < K. For each geometry r = 2.118a0,
2.700a0, and 3.600a0, we also carry out very high accuracy
DMRG calculations on the full orbital space, i.e., by setting the
truncation error to δεTr = 10−8 and k = K. This data is used as a
reference for the FCI solution.
B.1. Entropy Study on the Full Orbital Space. We start our

investigation by showing DMRG results for the full orbital space,
i.e., the CAS is formed from k = K = 28 orbitals, and for various
fixed M values and for δεTr = 10−8. In the latter case the
maximum bond dimension was set toM = 10 000. In Figure 1 a,
we show the relative error of the ground-state energy as a
function of the DMRG-truncation error on a logarithmic scale.
For the FCI energy, EFCI, the CCSDTQPH reference energy is
used given in ref 107. It is visible that the relative error is a linear
function of the truncation error on a logarithmic scale, thus
extrapolation to the truncation free solution can be carried out
according to refs 103 and 105.
In Figures 2 and 3, we present the sorted values of the single

orbital entropy and of the mutual information obtained for fixed
M = 64, 256, 512 and with δεTr = 10−8 for the three geometries.
As can be seen in the figures, the entropy profiles obtained with
low-rank DMRG calculations already resemble the main
characteristics of the exact profile (M ≃ 10000). Therefore,
orbitals with large single orbital entropies, also contributing to

large matrix elements of Ii|j, can easily be identified from a low-
rank computation. The ordered orbital indices define the CAS

Figure 1. (a) Relative error of the ground-state energy as a function of
the DMRG-truncation error on a logarithmic scale obtained for the full
orbital space (k = K) with r = 2.118a0. (b) Maximum number of block
states as a function of k for the a priori defined truncation error δεTr =
10−8 with r = 2.118a0 (blue), 2.700a0 (green), and 3.600a0 (red).

Figure 2. Single orbital entropy for r = 2.118a0 (blue), 2.700a0 (green),
3.600a0 (red) obtained for the full orbital space (k = 28) with DMRG
for fixed M = 64, 256, 512 and for δεTr = 10−8, Mmax = 10 000.

Figure 3. Mutual information for r = 2.118a0 (blue), 2.700a0 (green),
3.600a0 (red) obtained for the full orbital space (k = 28) with DMRG
for fixed M = 64, 256, 512 and for δεTr = 10−8, Mmax = 10 000.
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vector, and the CAS for the DMRG-TCCSD can be formed
accordingly as discussed in section V.A.
Taking a look at Figure 2, it becomes apparent that Si shifts

upward for increasing r indicating the higher contribution of
static correlations for the stretched geometries. Similarly the first
50−100 matrix elements of Ii|j also take larger values for larger r
while the exponential tail, corresponding to dynamic correla-
tions, is less effected. The gap between large and small values of
the orbital entropies gets larger and its position shifts rightward
for larger r. Thus, for the stretched geometries more orbitals
must be included in the CAS during the TCC scheme in order to
determine the static correlations accurately.We remark here that
the orbitals contributing to the high values of the single orbital
entropy and mutual information matrix elements change for the
different geometries according to chemical bond forming and
breaking processes.108

B.2. Numerical Investigation of the Error’s k-Dependence.
In order to obtain |Ψ*⟩ in the FCI limit, we perform high-
accuracy DMRG calculations with δεTr = 10−8. The CAS was
formed by including all Hartee−Fock orbitals and its size was
increased systematically by including orbitals with the largest
entropies according to the CAS vector. Orbitals with degenerate
single orbital entropies, due to symmetry considerations, are
added to the CAS at the same time. Thus, there are somemissing
k points in the following figures. For each restricted CAS we
carry our the usual optimization steps of a DMRG scheme as
discussed in section V.A, with low bond dimension followed by a
high-accuracy calculation with δεTr = 10−8 using eight sweeps.93

Our DMRG ground-state energies for 7 < k < 28 together with
the CCSD (corresponding to a DMRG-TCCSD calculation
where k =N/2 = 7) and CCSDTQ reference energies, are shown
in Figure 4 near the equilibrium bond length, r = 2.118a0. The
single-reference coupled cluster calculations were performed in
NWChem,109 we employed the cc-pVDZ basis set in the
spherical representation. For k = K = 28 the CCSDTQPH
energy was taken as a reference for the FCI energy.107

TheDMRG energy starts from theHartree−Fock energy for k
= 7 and decreases monotonically with increasing k until the full
orbital solution with k = 28 is reached. It is remarkable, however,
that the DMRG-TCCSD energy is significantly below the
CCSD energy for all CAS choices, even for a very small k = 9.
The error, however, shows an irregular behavior taking small
values for several different k values. This is due to the fact that
the DMRG-TCCSD approach suffers from a methodological
error, i.e., certain fraction of the correlations are lost, since the
CAS is frozen in the CCSD correction. This supports the
hypothesis of a k-dependent constant as discussed in section
IV.D. Therefore, whether orbital k is part of the CAS or external
part provides a different methodological error. This is clearly
seen as the error increases between k = 10 and 15 although the
CAS covers more of the system’s static correlation with
increasing k. This is investigated in more detail in section B.4.
Since several k-splits lead to small DMRG-TCCSD errors, the

optimal k value from the computational point of view, is
determined not only by the error minimum but also by the
minimal computational time, i.e., we need to take the
computational requirements of the DMRG into account. Note
that the size of the DMRG block states contributes significantly
to the computational cost of the DMRG calculation. The
connection of the block size to the CAS choice is shown in
Figure 1b, where the maximal number of DMRG block states is
depicted as a function of k for the a priori defined truncation
error margin δεTr = 10

−8. Note that max(M) increases rapidly for
10 < k < 20. The optimal CAS is therefore chosen such that the
DMRG block states are not too large and the DMRG-TCCSD
provides a low error, i.e., is a local minimum in the residual with
respect to k.
It is important to note that based on Figure 4 the DMRG-

TCCSD energy got very close to, or even dropped below, the
CCSDT energy for several k values. Since close to the
equilibrium geometry the wave function is dominated by a
single reference character, it is expected that DMRG-TCCSD
leads to even more robust improvements for the stretched
geometries, i.e., when the multireference character of the wave
function is more pronounced. Our results for the stretched
geometries, r = 2.700a0 and 3.600a0, are shown in Figures 2, 3, 5,
and 6. As mentioned in section B.1, for larger r values static
correlations gain importance signaled by the increase in the
single orbital entropy in Figure 2. Thus, the multireference
character of the wave function becomes apparent through the
entropy profiles. According to Figure 5 the DMRG-TCCSD
energy for all k > 7 values is again below the CCSD computation
and for k > 15 it is even below the CCSDT reference energy. For
r = 3.600a0 the CC computation fluctuates with increasing
excitation ranks and CCSDT is even far below the FCI reference
energy, revealing the variational breakdown of the single-
reference CC method for multireference problems. In contrast
to this, the DMRG-TCCSD energy is again below the CCSD
energy for all k > 7, but above the CCSDT energy. The error
furthermore shows a local minimum around k = 19. For the
stretched geometries static correlations are more pronounced,
there are more orbitals with large entropies, thus the maximum
number of DMRG block states increases more rapidly with k
compared to the situation near the equilibrium geometry (see
Figure 1b). Thus, obtaining an error margin within 1 μEh for k =
19 ≪ 28 leads to a significant save in computational time and
resources. Here we remark that DMRG-TCCSD is a single-
reference multireference method thus the choice of the
reference determinant can effect its performance. In the our

Figure 4.Ground-state energy of the N2 molecule near the equilibrium
geometry, r = 2.118a0, obtained with DMRG-TCCSD for 7 ≤ k ≤ 28
and for various DMRG truncation errors δεTr. The CCSD, CCSDT,
and CCSDTQ reference energies are shown by dotted, dashed, and
dashed−dotted lines, respectively. The CCSDTPQH energy (k = 28) is
taken as a reference for the FCI energy. For δεTr = 10−5 the CAS was
additionally formed by taking k orbitals according to increasing values
of the single-orbital entropy values, i.e., inverse to the other CAS
extensions. This is labeled by CAS↑ (see also Sec. V.B.3).
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current study, however, we have verified that for d≤ 4 and for all
k values the weight of the Hartree−Fock determinant was
significantly larger than all other determinants.
B.3. Effect of δεTr on the DMRG-TCCSD. In practice, we do

not intend to carry out DMRG calculations in the FCI limit, thus
usually a larger truncation error is used. Therefore, we have
repeated our calculations for larger truncation errors in the range
of 10−4 and 10−7. Our results are shown in Figures 4, 5, and 6.
For small k the DMRG solution basically provides the Full-CI
limit since the a priori set minimum number of block statesMmin

≃ 64 already leads to a very low truncation error. Therefore, the
error of the DMRG-TCCSD is dominated by the methodo-
logical error. For k > 15 the effect of the DMRG truncation error
becomes visible and for large k the overall error is basically
determined by the DMRG solution. For larger δεTr between
10−4 and 10−5 the DMRG-TCCSD error shows a minimumwith
respect to k. This is exactly the expected trend, since the CCSD
method fails to capture static correlation while DMRG requires
large bond dimension to recover dynamic correlations, i.e., a low
truncation error threshold. In addition, the error minima for
different truncation error thresholds δεTr happen to be around
the same k values. This has an important practical consequence:
the optimal k-split can be determined by performing cheap
DMRG-TCCSD calculations using large DMRG truncation
error threshold as a function of k.
The figures furthermore indicate thatΔEGS has a high peak for

9 < k < 16. This can be explained by the splitting of the FCI space
since this yields that the correlation from external orbitals with
CAS orbitals is ignored. Thus, we also performed calculations for
δεTr = 10

−5 using a CAS formed by taking k orbitals according to
increasing values of the single orbital entropy values in order to
demonstrate the importance of the CAS extension. The
corresponding error profile as a function of k near the
equilibrium geometry is shown in Figure 4 labeled by CAS↑.
As expected, the improvement of DMRG-TCCSD is marginal
compared to CCSD up to a very large k ≃ 23 split since ψDMRG

CAS

differs only marginally from ψHF.
B.4. Numerical Investigation on CAS-ext Correlations.

Taking another look at Figure 2, we can confirm that already for
small k values the most important orbitals, i.e., those with the
largest entropies, are included in the CAS. In Figure 7, the sorted

values of the mutual information obtained by DMRG(k) for 9≤
k ≤ 28 is shown on a semilogarithmic scale. It is apparent from
the figure that the largest values of Ii|j change only slightly with
increasing k, thus static correlations are basically included for all
restricted CAS. The exponential tail of Ii|j corresponding to
dynamic correlations, however, becomes more visible only for
larger k values. We conclude, for a given k split the DMRG
method computes the static correlations efficiently and the
missing tail of the mutual information with respect to the full
orbital space (k = 28) calculation is captured by the TCC
scheme.

Figure 5.Ground-state energy of the N2 molecule with bond length r =
2.7a0, obtained with DMRG-TCCSD for 7 ≤ k ≤ 28 and for various
DMRG truncation errors δεTr. The CCSD, CCSDT, and CCSDTQ
reference energies are shown by dotted, dashed, and dashed−dotted
lines, respectively. The DMRG energy with δεTr = 10−8 on the full
space, i.e., k = 28, is taken as a reference for the FCI energy. For δεTr =
10−5, the CAS was additionally formed by taking k orbitals according to
increasing values of the single-orbital entropy, i.e., inverse to the other
CAS extensions. This is labeled by CAS↑ (see also section B.3).

Figure 6.Ground-state energy of the N2 molecule with bond length r =
3.6a0, obtained with DMRG-TCCSD for 7 ≤ k ≤ 28 and for various
DMRG truncation errors δεTr. The CCSD, CCSDT, and CCSDTQ
reference energies are shown by dotted, dashed, and dashed−dotted
lines, respectively. The DMRG energy with δεTr = 10−8 on the full
space, i.e., k = 28, is taken as a reference for the FCI energy. For δεTr =
10−5, the CAS was additionally formed by taking k orbitals according to
increasing values of the single-orbital entropy, i.e., inverse to the other
CAS extensions. This is labeled by CAS↑ (see also section B.3).

Figure 7. (a) Sorted values of the mutual information obtained by
DMRG(k) for 9 ≤ k ≤ 28 on a semilogarithmic scale for N2 at r =
2.118a0. (b) Sorted 40 largest matrix elements of the mutual
information obtained by DMRG(k) for 9 ≤ k ≤ 28 on a lin−lin scale
for N2 at r = 2.118a0.
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Correlations between the CAS and external parts can also be
simulated by a DMRG calculation on the full orbital space using
an orbital ordering according to the CAS vector. In this case, the
DMRG left block can be considered as the CAS and the right
block as the external part. For a pure target state, for example, the
ground state, the correlations between the CAS and external part
is measured by the block entropy, S(ρCAS(k)) as a function of k.
Here ρCAS(k) is formed by a partial trace on the external part of
|ΨDMRG

FCI ⟩. The block entropy is shown in Figure 8a. The block

entropy decays monotonically for k > 7, i.e, the correlations
between the CAS and the external part vanish with increasing k.
In contrast to this, when an ordering according to CAS↑ is used
the correlation between CAS and external part remains always
strong, i.e., some of the highly correlated orbitals are distributed
among the CAS and the external part. Nevertheless, both curves
are smooth and they cannot explain the error profile shown in
Figure 4.
B.5. Numerical Values for the Amplitude Error Analysis.

Since correlation analysis based on the entropy functions cannot
reveal the error profile shown in Figure 4, here we reinvestagate
the error behavior as a function of N/2 ≤ k ≤ K but in terms of
the CC amplitudes. Therefore, we also present a more detailed
description of eq 10 in section IV which includes the following
terms:
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Here the valid index-pairs are μ = (i, a), with i = (i1, ..., in)∈ {1, ...,
N/2}n, and a = (a1, ..., an) ∈ {N/2 + 1, ..., K}n. The excitation
rank is given by |μ| = n where n = 1 stands for singles, n = 2 for
doubles, and so on. The μ values are the labels of excitation
operators τ̂i

a ≔ aâ
†aî, and τ̂i1,...,in

a1,...,an ≔ τ̂in
an ... τ̂i1

a1. The corresponding

amplitudes are given as ti1,...,in
a1,...,an. For invalid index-pairs, i.e., index-

pairs that are out of range, the amplitudes are always zero. The
various amplitudes appearing in eq 11 are calculated according
to the following rules:

(1) The tensor sk*: amplitudes in the CAS(k) obtained by
DMRG(δεTr* = 10−8) solution (represented by CI
coefficients c*) for CAS(K)
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where i, i1, i2∈ {1, ...,N/2} and a, a1, a2∈ {N/2 + 1, ..., k}.
(2) The tensor tk*: amplitudes not in the CAS(k) obtained

from the DMRG(δεTr* = 10−8) solution (represented by CI
coefficients c*) for CAS(K) projected onto CAS(k), i.e.,
the complement (with respect to valid index-pairs) of sk*.

(3) The tensor sDMRG(k, δεTr): amplitudes in the CAS(k) are

obtained by the DMRG(δεTr) solution (represented by CI

coefficients c) for CAS(k). The amplitudes sDMRG(k, δεTr)i
a,

sDMRG(k, δεTr)i1,i2
a1,a2 are the same as eq 12, but with c* → c,

where i, i1, i2∈ {1, ...,N/2} and a, a1, a2∈ {N/2 + 1, ..., k}.
(4) The tensor tCCSD(k, δεTr): amplitudes not in the CAS(k)

obtained by TCCSD, i.e., the complement (with respect
to valid index-pairs) of sDMRG(k, δεTr).

In Figure 8b we show the error e(k, δεTr) as a function of k of
the nitrogen dimer near the equilibrium bond length. Note that
the quantitative behavior is quite robust with respect to the bond
dimension since the values only differ marginally. We emphasize
that the error contribution in Figure 8 is dominated by second
term in eq 11 since this is an order of magnitude larger than the
contribution from the first and third terms in eq 11, respectively.
The first term in eq 11 is furthermore related to the usual T1
diagnostic in CC,110 so it is not a surprise that a small value,
∼10−3, was found. Comparing this error profile to the one
shown in Figure 4 we can understand the irregular behavior and
the peak in the error inΔEGS between k = 9 and 17, and the other
peaks for k > 17 but the error minimum found for k = 19 remains
unexplained. Furthermore, we can conclude from Figure 8b that
the quotient ΔEGS(k)/e(k, δεTr) is not constant. This indicates
that the constants involved in section IV in particular the
constant in eq 10 in section IV.D is indeed k-dependent.

VI. CONCLUSION
In this article we presented a fundamental study of the DMRG-
TCCSD method. We showed that, unlike the single-reference
CC method, the linked and unlinked DMRG-TCC equations
are in general not equivalent. Furthermore, we showed energy
size consistency of the TCC, DMRG-TCC, and DMRG-
TCCSD method and gave a proof that CAS excitations higher
than order three do not enter the TCC energy expression.
In addition to these computational properties of the DMRG-

TCCSD method, we presented the mathematical error analysis
performed in ref 76 from a quantum chemistry perspective. We
showed local uniqueness and quasi optimality of DMRG-TCC
solutions and highlighted the importance of the CAS-ext gapa
spectral gap assumption allowing to perform the analysis
presented here. Furthermore, we presented a quadratic a priori

Figure 8. (a) Block entropy, S(ρCAS(k)), as a function of k for r = 2.118
ordering orbitals along the DMRG chain according to the same CAS
and CAS↑ vectors as used in Figure 4. (b) e(k, δεTr) as a function of k of
the nitrogen dimer near the equilibrium bond length for DMRG
truncation error thresholds δεTr between 10−4 and 10−8.
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error estimate for the DMRG-TCC method, which aligns the
error behavior of the DMRG-TCC method with variational
methods except for the upper bound condition. We emphasize
that the DMRG-TCC solution depends strongly on the CAS
choice. Throughout the analysis we neglected this dependence
as we assumed an optimal CAS choice as indicated in section
IV.A. The explicit consideration of this dependence in the
performed error analysis carries many mathematical challenges,
which are part of our current research. Therefore, we extended
this work with a numerical study of the k-dependence of the
DMRG-TCCSD error which showed also that the constants
involved in the error estimation are most likely k-dependent.
This stresses the importance of further mathematical work to
include this dependence explicitly in the analysis.
We furthermore presented computational data of the single-

site entropy and the mutual information that are used to choose
the CAS. Our computations showed that these properties are
qualitatively very robust, i.e., their qualitative behavior is well
represented by means of a low-rank approximation, which is a
computational benefit. The numerical investigation of the k-
dependence of the DMRG-TCCSD error revealed that the
predicted trend in section IV.A is correct. We demonstrated that
the error indeed first decays (7≤ k≤ 9) and then increases again
(25 ≤ k ≤ 28) for low-rank approximations, i.e., 10−4

respectively 10−5. This aligns with the theoretical prediction
based on the properties of the DMRG and single reference CC
method. Additional to this general trend, the error shows
oscillations. A first hypothesis is that this behavior is related to
the ignored correlations in the transition k → k + 1. However,
this was not able to be proven so far using entropy based
measures but a similar irregular behavior can be detected by a
cluster amplitude error analysis. Furthermore, such oscillations
can be related to a bad reference function. Nonetheless, this
scenario has here been ruled out since the Hartree−Fock
determinant was found to be dominant in the CAS solution, i.e.,
the weight of the Hartree−Fock had largest weight in the CAS
solution. The irregular behavior of the error minimum found for
the DMRG-TCCSD method, therefore, could not be explained
within this article and is left for future work. Despite the
unknown reason for this behavior, we note that the error minima
are fairly robust with respect to the bond dimension. Hence, the
DMRG-TCCSD method can be extended with a screening
process using low bond-dimension approximations to detect
possible error minima.
On the other hand, an important feature that we would like to

highlight here is that a small CAS (k = 9) yields a significant
improvement of the energy and that the energies for all three
geometries and all CAS choices outrun the single-reference CC
method. In addition, the DMRG-TCCSD method avoids the
breakdown of the CC approach even for multireference
(strongly correlated) systems and, using concepts of quantum
information theory, allows an efficient routine application of the
method. Since the numerical error study showed a significant
improvement for small CAS, we suspect the DMRG-TCCSD
method to be of great use for larger systems with many strongly
correlated orbitals as well as a many dynamically correlated
orbitals.1,2

Finally, we remark, that besides the advantageous properties
of the method there is a need for further analysis and
developments in order to achieve our ultimate goal, i.e., to
provide a black-box implementation of the DMRG-TCC
method. Among these we highlight orbital rotations in the
CAS through Fermionic mode transformation,111 an automatic

calculation of the best rank-1 representation of the DMRGwave
function to be used as a reference state and the investigations of
the influence of the CAS CI-triples on the computed energies.
All these tasks are in progress.
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verfahrens. Numer. Math. 1968, 11, 346−348.
(90) Oganesyan, L. A.; Rukhovets, L. A. Study of the rate of
convergence of variational difference schemes for second-order elliptic
equations in a two-dimensional field with a smooth boundary. USSR
Comput. Math. Math. Phys. 1969, 9, 158−183.
(91) Dunning, T. H., Jr Gaussian basis sets for use in correlated
molecular calculations. I. The atoms boron through neon and
hydrogen. J. Chem. Phys. 1989, 90, 1007−1023.
(92) Kowalski, K.; Piecuch, P. Renormalized CCSD (T) and CCSD
(TQ) approaches: Dissociation of the N2 triple bond. J. Chem. Phys.
2000, 113, 5644−5652.
(93) Szalay, S.; Pfeffer, M.; Murg, V.; Barcza, G.; Verstraete, F.;
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