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Abstract: Sn is a promising candidate anode material with a high theoretical capacity (994 mAh/g).
However, the drastic structural changes of Sn particles caused by their pulverization and aggregation
during charge–discharge cycling reduce their capacity over time. To overcome this, a TiNi shape
memory alloy (SMA) was introduced as a buffer matrix. Sn/TiNi SMA multilayer thin films were
deposited on Cu foil using a DC magnetron sputtering system. When the TiNi alloy was employed
at the bottom of a Sn thin film, it did not adequately buffer the volume changes and internal stress
of Sn, and stress absorption was not evident. However, an electrode with an additional top layer of
room-temperature-deposition TiNi (TiNi(RT)) lost capacity much more slowly than the Sn or Sn/TiNi
electrodes, retaining 50% capacity up to 40 cycles. Moreover, the charge-transfer resistance decreased
from 318.1 Ω after one cycle to 246.1 Ω after twenty. The improved cycle performance indicates that
the TiNi(RT) and TiNi-alloy thin films overall held the Sn thin film. The structure was changed so
that Li and Sn reacted well; the stress-absorption effect was observed in the TiNi SMA thin films.

Keywords: Sn anode; TiNi shape memory alloy; stress-absorption effect; multilayer thin film

1. Introduction

Rechargeable Li-ion batteries (LIBs) are widely used in portable electronics, electric ve-
hicles, and energy storage systems [1]. However, to meet the rising electric-power demand,
new LIBs must be developed with high capacity and long cycle performance [2]. Current
commercial graphite anodes have an unsuitably low theoretical capacity of 372 mAh/g [3,4].
Therefore, other anode materials with higher capacity such as Si, Sn, SnO2, and Li have
attracted interest [5–16].

Sn is a promising material for metal-based anodes; it is economical and has a high
theoretical capacity of 994 mAh/g and a moderate operation potential [6]. However, as
illustrated in Figure 1a, the lager volume expansion and contraction of Sn particles during
lithiation–delithiation causes pulverization and cracking, and thus, fading capacity. To
overcome this problem and improve the cycle life, volume change and internal stress need
to be suppressed or alleviated [7–9].

Recently, many attempts have been made to minimize the larger volume change
and internal stress of the Sn anode. Zhang et al. manufactured a Sn–Ni–Cu alloy by
electrodeposition and subsequent heat treatment, which enhanced electroconductivity and
effectively buffered the volume change of the Sn anode [10]. Polat et al. reported that the
multilayer cycle performance of a Ni–Sn–C anode was enhanced by Ni and C, which also
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increased resistance against volume expansion [11]. Multilayer Sn/graphitized-carbon
fabricated by Chang et al. showed enhanced cycle stability because of the structural solidity
of graphitized carbon [12].
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Figure 1. Schematic of the volume-change mechanism in (a) Sn anodes; (b) Sn-TiNi thin-film anodes 
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Figure 1. Schematic of the volume-change mechanism in (a) Sn anodes; (b) Sn-TiNi thin-film anodes
during charge/discharge cycling.

TiNi shape-memory alloy (SMA) has also been reported to inhibit volume expansion
and absorb stress. Joo et al. demonstrated that Si thin film deposited on a TiNi-alloy thin
film improved cycle performance through the stress-absorption effect of TiNi SMA. The
problems of Sn anodes are similar to those of Si anodes; thus, it would be expected that
the volume expansion and internal stress of Sn anodes could also be minimized by TiNi
SMA [13].

In this study, TiNi SMA was employed as a buffer matrix to suppress the volume
change and internal stress of a Sn anode. The stress-absorption effect was caused by the
superelasticity, in turn caused by the stress-induced martensitic transformation of TiNi
SMA [17,18]. When the B2 phase of the TiNi SMA is stressed, it is converted into a B19′-
martensite, but it changes back when the stress is removed. The internal stress of the
Sn anode is then able to convert the TiNi SMA phase to appear superelastic. Hu et al.
reported that the expansion stress generated when Sn is converted into Li2Sn5 is approxi-
mately 2.91 GPa, whereas the critical stress of the B2–B19′ transition at room temperature
is 35.5 MPa; therefore, the stress generated from the volume expansion of the Sn anode
may cause the martensite phase conversion [19]. As shown in Figure 1b, if TiNi SMA is
introduced into a Sn anode, volume expansion and stress are generated during lithiation,
but the TiNi SMA absorbs the stress and changes from B2 to B19′-martensite. Later, stress
is removed because of volume contraction during delithiation, and the martensite returns
to the B2 phase. Therefore, the structure of the Sn anode may be maintained, and its
electrochemical properties improved.

Sn/TiNi SMA multilayer thin films were fabricated in this study using a DC magnetron
sputtering system. The effect of the superelasticity of the TiNi SMA on the electrochemical
performance of the Sn anode was investigated through electrochemical and material analy-
sis. Superelastic TiNi SMAs can accommodate the volume changes and stress occurring in
the Sn electrode during lithiation–dilithiation.

2. Experimental
2.1. Production of Sn/TiNi Multilayer Thin Films

Sn/TiNi multilayer thin films were deposited on Cu foil by a DC magnetron sputtering
system using pure Sn (99.99%), Ti (99.99%), and Ni (99.99%) targets. The target-substrate
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distance was 80 mm. Before deposition of the thin film, the surface of each Cu foil was
washed with acetone and alcohol. The base and working pressures in the chamber were
5.0 × 10−6 and 2.0 × 10−3 torr, respectively. The Ar gas-flow rate was 20 sccm. The surface
of each target was pre-sputtered for 15 min to eliminate impurities. First, the TiNi-alloy
thin film was deposited with Ti power of 180 W and Ni power of 60 W for 120 min on Cu
foil at 580 ◦C. Then, the Sn thin film was deposited with Sn power of 50 W for 15 min at
room temperature. Finally, the TiNi-alloy thin film was deposited with the same Ti and
Ni power conditions as above for 60 min at room temperature (the TiNi-alloy thin film
deposited at room temperature will be called TiNi(RT)) Sn, Sn/TiNi, and TiNi(RT)/Sn/TiNi
thin films were produced.

2.2. Materials Characterization

The morphology and composition of the thin films were observed through a field-
emission scanning electron microscope (FE-SEM, Mira3 LM, TESCAN, Kohoutovice Czech
Republic) with an energy-dispersive spectrometer (EDS) at 15 kV. The crystallographic
structure was determined with an X-ray diffractometer (XRD, Ultima IV, Rigaku, Tokyo,
Japan) with Cu Kα radiation.

2.3. Electrochemical Characterization

For the electrochemical test, coin cells (CR2032) were assembled in an Ar-filled glove
box. A specific area (1 cm2) of the sample was used as the working electrode. The thin
films were used directly as binder-free working electrodes without conductive additives.
The counter electrode and electrolyte used were, respectively, Li foil and 1 M LiPF6 in a
mixture of ethylene carbonate and diethyl carbonate (DEC) (1:1 vol%). A constant-current
(CC) charge–discharge test was performed with a current of 180 µA (0.5C) in a voltage
window from 0.01 to 1.2 V (vs. Li+/Li). Cyclic voltammetry (CV) was conducted at a scan
rate of 0.1 mV/s in a voltage window from 0.01 to 2.0 V (vs. Li+/Li). Electrochemical
impedance spectroscopy was performed at an amplitude of 10 mV in the frequency range
of 1 MHz~10 mHz.

3. Results and Discussion

The surface, cross-section, and composition of the deposited Sn/TiNi thin films were
investigated by FE-SEM and EDS. Figure 2a shows the surface of the Cu foil substrate.
Figure 2b shows the surface image of a TiNi-alloy thin film deposited on Cu foil. The surface
morphology was very rough: the TiNi grain size was approximately 180 nm. As shown in
Figure 2c, the Sn thin film deposited on the TiNi-alloy thin film was also rough; the grain
size of Sn was approximately 780 nm. Figure 2d shows a cross-sectional image of Sn/TiNi
deposited on a glass slide. The thicknesses of the Sn and TiNi thin films were 0.5 µm and
2.5 µm, respectively. Figure 3 presents the EDS results for TiNi thin film: Ti-49.91 at.% and
Ni-50.09 at.%. Ti and Ni were uniformly distributed on the surface.

The crystal structures of the deposited TiNi and Sn/TiNi thin films were analyzed
by XRD (Figure 4). The diffraction peak of the (110) plane of the B2 phase was observed
at 42.2◦ in the XRD pattern of TiNi. In that of Sn/TiNi, the diffraction peak of the B2
phase was also at 42.2◦; additional diffraction peaks at 30.4◦, 31.8◦, 43.8◦, 44.7◦, 55.1◦, 62.5◦,
63.6◦, and 64.5◦ were assigned to the (200), (101), (220), (211), (301), (112), (400), and (321)
planes, respectively, of tetragonal Sn (JCPDS-#862265). Sn and B2-phase TiNi alloys were
successfully deposited as there were no impurity peaks in the XRD pattern.
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The electrochemical reactions of the Sn and Sn/TiNi electrodes were examined by
CV. Figure 5a,b, respectively, show the CV-test results of the Sn and Sn/TiNi electrodes
evaluated at a scan rate of 0.1 mV/s in the voltage range 0.01–2.0 V. The lower-right insets
of Figure 5a,b are the corresponding first-cycle CV-test results. In the lower-right inset of
Figure 5a, there was a reduction peak at 1.23 V during discharge; this corresponded to
the formation of a solid-electrolyte interface (SEI) [20]. The SEI was formed in the first-
cycle discharge, which led to a large irreversible capacity loss. The second-cycle-discharge
reduction peaks at 0.65, 0.4, 0.28, and 0.01 V may be attributed to the alloying of Li-Sn;
the second-cycle-charge oxidation peaks at 0.5, 0.59, 0.71, and 0.79 V correspond to the
dealloying of LixSn [21]. The CV graphs of the second and third cycles overlapped well,
which indicates high reversibility. The CV results with the Sn/TiNi electrode (Figure 5b)
resembled those with the Sn electrode, indicating that the TiNi-alloy thin film had little
effect on the electrochemical reaction at the Sn anode.

The electrochemical properties of the Sn and Sn/TiNi electrodes were investigated
by CC discharge–charge testing. Figure 6a,b exhibits the discharge–charge curves of the
Sn and Sn/TiNi electrodes at 0.5 C in the range of 0.01 V–1.2 V, respectively. Plateaus
occurred at certain potentials during charging and discharging; these were attributed to
alloying/dealloying of Li-Sn and corresponded to the potential-peaks in the CV results
for the Sn electrode. The first-cycle discharge capacities of the Sn and Sn/TiNi electrodes
were 493 and 506 mAh/g, respectively; the second-cycle-discharge capacities were 442 and
447 mAh/g. The difference was due to the large irreversible capacity loss caused by SEI
formation.

Figure 7 shows the cycle performance of the Sn and Sn/TiNi electrodes. The capacity
of the Sn electrode was constant up to 10 cycles, but rapidly degraded thereafter. Until
the 19th cycle, 50% capacity was maintained. The rapid degradation of capacity was the
result of pulverization and cracking due to the rapid volume expansion and internal stress
of the Sn electrode during charging and discharging. The Sn/TiNi electrode sustained
constant capacity for five cycles; this declined to 50% capacity by the seventh cycle. The
high rate of capacity degradation only slowed significantly after the ninth cycle. Despite
the introduction of the TiNi alloy, the cycle performance did not improve compared to that
of the Sn electrode. When the TiNi-alloy thin film was introduced into the lower part of the
Sn thin film, it evidently failed to accommodate the volume expansion and internal stress
of the Sn, and superelasticity did not appear.
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Figure 7. Cycle performance of the Sn and Sn/TiNi electrodes at 0.5 C.

To accommodate the volume expansion and internal stress of Sn in the Sn/TiNi
electrodes more effectively, a different TiNi-alloy thin film—TiNi(RT)—was deposited on
the Sn thin film. However, Sn has a melting point of 232 ◦C and a temperature of 580 ◦C
when depositing the TiNi-alloy thin film, so the upper TiNi-alloy thin film was deposited
at room temperature. The composition of the TiNi(RT) alloy thin film was the same as that
of the TiNi-alloy thin film according to the EDS results. In general, TiNi alloys deposited at
room temperature are well known to be amorphous [22] and not to exhibit superelasticity;
the new film was thus only intended to suppress volume expansion of Sn. The total
TiNi(RT)/Sn/TiNi thin film was manufactured as an electrode and its electrochemical
properties were analyzed.

Figure 8 shows the CV-test results for the TiNi(RT)/Sn/TiNi electrode. There were
four reduction peaks at 0.66, 0.33, 0.12, and 0.01 V and four oxidation peaks at 0.51, 0.67,
0.75, and 0.81 V, similar to those of the Sn electrode. The four reduction peaks were related
to the alloying of Li-Sn, and the four oxide peaks to dealloying. Electrochemical reactions
occurred even when the TiNi(RT)-alloy thin film that did not react with Li was deposited on
the Sn thin film, as shown in Figure 8. It is possible that the TiNi(RT) alloy does not interfere
with the diffusion of Li ions into the active Sn material. Therefore, the TiNi(RT)-alloy thin
film does not affect the electrochemical reaction of Sn.
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The electrochemical performance of the TiNi(RT)/Sn/TiNi electrode was measured
by CC testing. Figure 9 shows the discharge–charge curves. Plateaus appeared at certain
potentials during the charge–discharge process in the TiNi(RT)/Sn/TiNi electrode, at
locations almost identical to those of the peaks in the CV graph. These plateaus may be
attributed to the alloying/dealloying of Li-Sn. The first-cycle discharge capacity of the
TiNi(RT)/Sn/TiNi electrode was 497 mAh/g.
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Figure 9. Discharge–charge curve of the TiNi(RT)/Sn/TiNi electrode at 0.5 C in the voltage window
of 0.01~1.2 V (vs. Li+/Li).

Figure 10 compares the cycle performance of the Sn, Sn/TiNi, and TiNi(RT)/Sn/TiNi
electrodes. The TiNi(RT)/Sn/TiNi electrode maintained constant capacity from one to
10 cycles, after which the capacity decreased slowly, unlike those of the Sn and Sn/TiNi
electrodes. In addition, 50% capacity was still maintained by TiNi(RT)/Sn/TiNi at the 40th
cycle; this performance was approximately twice as good as that of the Sn electrode. The
cycle performance improved because the TiNi(RT) and TiNi-alloy thin films effectively
suppressed the volume expansion generated during charge and discharge, and the internal
stress was absorbed because of the superelasticity of the TiNi-alloy thin film. Thus, the
electrode structure was maintained.

Materials 2022, 15, x FOR PEER REVIEW 9 of 12 
 

 

 
Figure 9. Discharge–charge curve of the TiNi(RT)/Sn/TiNi electrode at 0.5 C in the voltage window 
of 0.01~1.2 V (vs. Li+/Li). 

Figure 10 compares the cycle performance of the Sn, Sn/TiNi, and TiNi(RT)/Sn/TiNi 
electrodes. The TiNi(RT)/Sn/TiNi electrode maintained constant capacity from one to 10 
cycles, after which the capacity decreased slowly, unlike those of the Sn and Sn/TiNi elec-
trodes. In addition, 50% capacity was still maintained by TiNi(RT)/Sn/TiNi at the 40th cy-
cle; this performance was approximately twice as good as that of the Sn electrode. The 
cycle performance improved because the TiNi(RT) and TiNi-alloy thin films effectively 
suppressed the volume expansion generated during charge and discharge, and the inter-
nal stress was absorbed because of the superelasticity of the TiNi-alloy thin film. Thus, the 
electrode structure was maintained. 

 
Figure 10. Cycle performance of Sn, Sn/TiNi, and TiNi(RT)/Sn/TiNi electrodes at 0.5 C. 

To find the cause of the cycle-performance improvement in the TiNi(RT)/Sn/TiNi 
electrode, electrochemical impedance spectroscopy was performed at a voltage amplitude 

Figure 10. Cycle performance of Sn, Sn/TiNi, and TiNi(RT)/Sn/TiNi electrodes at 0.5 C.



Materials 2022, 15, 2665 9 of 11

To find the cause of the cycle-performance improvement in the TiNi(RT)/Sn/TiNi
electrode, electrochemical impedance spectroscopy was performed at a voltage amplitude
of 10 mV in a frequency range of 1 MHz to 0.01 Hz. Figure 11a shows the Nyquist
impedance graphs for the Sn, Sn/TiNi, and TiNi(RT)/Sn/TiNi electrodes after first-cycle
discharge. The diameter of the semicircle indicates the charge-transfer resistance (Rct). For
Sn, Sn/TiNi, and TiNi(RT)/Sn/TiNi electrodes, the Rct values after first-cycle discharge
were 321, 333.9, and 318.1 Ω, respectively. Thus, the TiNi(RT) alloy thin film did not
interrupt Li-ion diffusion as the Rct of the TiNi(RT)/Sn/TiNi electrode was similar to those
of the Sn and Sn/TiNi electrodes. Figure 11b shows the impedance graphs of the electrodes
after 20th-cycle discharge. The Rct values of the Sn, Sn/TiNi, and TiNi (RT)/Sn/TiNi
thin-film electrodes were 339.1, 305.83, and 246.13 Ω, respectively. After the 20th-cycle
discharge in the TiNi(RT)/Sn/TiNi electrode, the Rct decreased more than that after the
first-cycle discharge because the electrode structure of Sn was maintained to some extent.
This confirms the superelasticity of the TiNi-alloy and TiNi(RT)-alloy thin films, and shows
that Li and Sn were changed to react well. Li ions were better transferred during cycles,
improving the cycle performance.
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In this study, the cycle increase effect was obtained by utilizing the stress absorption
effect of the TiNi thin film as opposed to using the existing Cu current collector. In future,
performance improvements may be possible by experimenting with the thickness ratio
of the Sn and TiNi thin films to achieve maximum stress absorption efficiency, and by
depositing a crystalline TiNi thin film on the upper layer.

4. Conclusions

In this study, TiNi SMA was introduced into a Sn thin film as a buffer matrix. Sn-TiNi
multilayer thin films were manufactured using a DC magnetron sputtering system. The
Sn/TiNi thin-film electrode did not improve the cycle performance compared to the Sn
thin-film electrode. When a TiNi alloy was introduced only at the bottom of a Sn thin film,
it did not accommodate the volume expansion and internal stress of Sn well, and the effect
of the superelasticity was not clearly apparent. A TiNi(RT)/Sn/TiNi electrode underwent
slower capacity degradation than the Sn or Sn/TiNi electrodes and maintained at least 50%
capacity up to 40 cycles. Furthermore, the Rct of TiNi(RT)/Sn/TiNi electrode decreased
from 318.1 Ω after one cycle to 246.1 Ω after 20 cycles. The cycle performance improved
because the TiNi(RT) and TiNi-alloy thin films effectively buffered the volume expansion
of Sn, and because Li and Sn were transformed to react well. The stress-absorption effect
appeared in the TiNi SMA thin films.
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