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A B S T R A C T

Enzymatic and non-enzymatic oxidation of unsaturated fatty acids gives rise to reactive species that covalently
modify nucleophilic residues within redox sensitive protein sensors in a process called lipoxidation. This triggers
adaptive signaling pathways that ultimately lead to increased resistance to stress. In this graphical review, we
will provide an overview of pathways affected by protein lipoxidation and the key signaling proteins being
altered, focusing on the KEAP1-NRF2 and heat shock response pathways. We review the mechanisms by which
lipid peroxidation products can serve as second messengers and evoke cellular responses via covalent mod-
ification of key sensors of altered cellular environment, ultimately leading to adaptation to stress.

1. Introduction

Post-translational regulation of signaling proteins via oxidation-re-
duction (redox) status of certain amino acids, cysteines in particular,
has expanded our understanding of the role of reactive oxygen species
mediating cellular signaling events in cells [1]. Oxidation of thiol re-
sidues within proteins to yield multiple oxidative states or disulfide
formation by hydrogen peroxide (H2O2) has been widely studied, but
the concept has now expanded to include thiol reactions with reactive
electrophilic species formed e.g. via enzymatic and non-enzymatic
oxidative reactions with unsaturated fatty acids [2,3]. In this graphical

review, we provide a brief overview of the key adaptive pathways re-
sponsive to stress elicited by lipoxidation products (Fig. 1), the thiol
targets of lipid-derived electrophiles (LDEs) identified in signaling
proteins, as well as introduce novel methods to identify additional
targets for lipid-derived electrophiles. Specifically, this review will
focus on KEAP1-NRF2 and HSF1 pathways and highlights the protein
targets modified by lipoxidation affecting these pathways.

2. Stress signaling by lipoxidation

Oxidation of polyunsaturated fatty acids generate different
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Fig. 1. Activation of the KEAP1-NRF2 and
HSF1 pathways by electrophilic lipoxida-
tion products. To survive, cells have devel-
oped an intricate set of stress signaling path-
ways that are activated by endogenous or
exogenous signals [63]. Central to these de-
fenses are the KEAP1-NRF2 and HSF1 path-
ways that together regulate hundreds of genes
via binding to antioxidant response and heat
shock elements, respectively [64,65]. A) The
main signaling proteins of KEAP1-NRF2
pathway are the transcription factor NRF2 and
its negative regulator protein KEAP1, which is
a cullin-3 (CUL3)-RING ubiquitin ligase
adaptor/scaffold protein enabling rapid pro-
teasomal degradation of NRF2 during un-
stressed conditions. NRF2 is bound by the BTB
domains of the KEAP1 dimer via DLG and
ETGE motifs residing in NRF2 Neh2 domain.
During the activation by e.g. lipid-derived
electrophiles, the proteasomal degradation
machinery is disrupted and de novo synthe-
tized NRF2 is free to enter the nucleus to het-
erodimerize with the members of the muscu-
loaponeurotic fibrosarcoma oncogene homolog
protein family (sMAF) and drive the expression
of cytoprotective genes [66]. SH; Sulfhydryl
group of free cysteine residue, Ub; Ubiquitin.
B) The HSF1 pathway consists of inactive HSF1
monomer that is bound by heat shock proteins
from HSP90α [67] and HSP70 [68] families.
HSF1 is negatively regulated by HSPs [69].
During stress, the interaction is disrupted and
HSF1 trimerizes and enters the nucleus to
regulate the heat shock response genes [70].
While the two pathways are largely distinct,

they converge at the level of shared stimulus (e.g. electrophilic lipid peroxidation products) and mode of action (i.e. modification of redox-active cysteines that are
regarded as molecular “switches”) [63].

Fig. 2. Cysteine residues are critical med-
iators of the antioxidant and heat shock
responses. A) In the KEAP1-NRF2 pathway,
the KEAP1 protein is responsible for sensing
oxidant/electrophile stress. Human KEAP1 has
27 cysteines in total, enriched in the IVR-do-
main [17,18]. Cysteine modification leads to
conformational changes in KEAP1, resulting in
disruption of KEAP1-mediated ubiquitination
of NRF2 [71]. B) There are seven cysteine re-
sidues in human NRF2, implicated to take part
in oxidant/electrophile sensing [72]. However,
no studies have addressed their impact on LDE-
mediated NRF2 activation. C) Human HSF1
contains five cysteines, two of which (C35 and
C135) have been shown to form a dimer upon
heat stress or by H2O2 [73,74]. However, no
studies to date have identified LDE targets in
HSF1. D) Molecular chaperone family of
HSP70s are one of the more abundant HSPs
that regulate HSF1 [75,76]. HSP70s have five
cysteines. E) Human HSP90α family of HSPs
contain seven cysteines that are reactive to-
wards heat shock and oxidative stress [73,77].
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electrophilic lipoxidation products. These electrophilic products de-
rived from lipids can interact with nucleophilic protein residues cova-
lently through Michael addition reaction, leading to conformational
changes in proteins that can affect their function [4]. Some target
proteins that can be modified by the interaction with electrophilic lipids
are transcription factors, proteins involved in cell defense, enzymes
(such as glutathione S-transferase, GST) and regulators of signaling
pathways (such as RAS) [4,5]. Importantly, electrophilic lipids exert
biphasic effects, low concentrations being able to elicit adaptive cell
signaling pathways that are cytoprotective and anti-inflammatory,
while higher concentrations can aggravate inflammation and cause cell
death. These effects depend not only on the concentration but also the
cell type being affected, as well as the chemical nature of the lipid
species [2,6,7].

Several stress-activated pathways are key targets for regulation by
lipoxidation. These include the antioxidant response pathway governed
by the KEAP1-NRF2-system [8] and the heat shock response via HSF
transcription factors [9], that are in the focus of this review. However,
protein lipoxidation can also affect stress kinase pathways, as kinases,
phosphatases and/or their regulators can be targeted by lipoxidation
[10]. Affected pathways include the c-Jun N-terminal kinase (JNK)
pathway, as well as the structurally similar p38 pathway, which belong
to the mitogen-activated protein kinase cascades. These pathways reg-
ulate e.g. differentiation, motility and apoptosis [2,11], and can be
modulated by LDEs such as 4-HNE and cyclopentenone prostaglandins
[10,12].

3. Activation of the KEAP1-NRF2 signaling pathway by lipid-
derived electrophiles

The KEAP1-NRF2 pathway (Fig. 1A), is the key pathway mediating
the transcriptional response to oxidative and electrophilic stress [13].
Under unstressed conditions, the transcription factor NRF2 (NF-E2-re-
lated factor 2) is tethered by KEAP1 (Kelch-like ECH-associated protein
1), an adaptor protein within the CUL3 (cullin-3)-ubiquitin E3 ligase
complex, resulting in proteasomal degradation of NRF2 via the 26S
proteasome [8,14,15]. NRF2 binds to KEAP1 via two different and
highly conserved motifs present in Neh2 domain: a weak affinity, DLG
motif and a high affinity, ETGE motif (Fig. 1 A). Upon exposure to
stimuli, ubiquitination is disrupted and newly synthetized NRF2
translocates to the nucleus, where it binds to the antioxidant response
element (ARE) within the regulatory regions of NRF2 dependent genes
driving their expression [13,16].

KEAP1 has four functional domains: Bric-a-Brac, tram-track, broad
complex (BTB) domain, the intervening region (IVR), the Kelch domain
and the C-terminal region. [13] The human KEAP1 protein contains
altogether 27 cysteine residues, of which three have unambiguously
shown to have functional importance (Fig. 2A) [17,18]. These are
Cys151 in BTB domain and Cys273 and Cys288 in the IVR region
[13,19].

LDEs are produced endogenously by both enzymatic and non-en-
zymatic reactions from unsaturated fatty acids [2,20]. Given their
electrophilic character, they are able to activate NRF2 in a KEAP1-de-
pendent manner. With respect to the mechanism of activation, arachi-
donic acid-derived cyclopentenone prostaglandins and isoprostanes
(prostaglandin A2, PGA2; 15-deoxy-Δ-12,14-prostaglandin J2, 15d-PGJ2
and structurally similar cyclopentenone isoprostanes produced by
nonenzymatic oxidation), lipid-derived aldehydes, especially 4-hydro-
nonenal (4-HNE), and nitroalkenes (nitro-oleic acid, OA-NO2; ni-
trolinoleic acid, LNO2; nitro-conjugated linoleic acid, NO2-CLA) have
been studied in some detail. There are discrepant findings of KEAP1 and
NRF2 thiols that are modified by LDEs (Fig. 2A,B and Table 1). Parti-
cularly in the case of 15d-PGJ2, PGA2 and OA-NO2, it is clear that C151
in KEAP1 is not the primary target unlike with C151-preferring acti-
vators such as cyclic cyanoenones, some of which are currently in
clinical stages of drug development [21]. In addition to free oxidized

lipid species, oxidized phospholipids can activate NRF2 [22–24]. 1-
palmitoyl-2-(5,6-epoxy isoprostane E2)-sn-glycero-3-phosphocholine
(PEIPC), the major active component of oxidized 1-palmitoyl-2-ara-
chidonoyl-sn-Glycero-3-phosphorylcholine (oxPAPC), has been shown
to activate NRF2 in a thiol-dependent manner, but the mechanism of
action and thiol targets are currently unknown [22,23].

4. Lipoxidation targets of the HSF1 pathway

Heat shock response (HSR) is an evolutionarily conserved pathway
that has evolved to provide protection to eukaryotic cells against heat,
oxidative and other forms of proteotoxic stress [9,25]. HSR includes a
sequence of events in which heat shock proteins (HSPs), acting as
molecular chaperones and heat shock factors 1 and 2 (HSF1 and 2),
transcription factors mediating transcriptional responses coordinate to
maintain protein homeostasis in affected cells [26]. Though there are
different HSF family members (HSF1–4 in mammals), HSF1 is the factor
primarily orchestrating protein homeostasis [27,28]. HSR (Fig. 1B) is a

Table 1
Cysteine targets of LDEs. The compound abbreviations:
10-nitro-octadec-9-enoic acid (OA-NO2), prostaglandin
A2 (PGA2), 4-hydroxynonenal (4-HNE), and 15-deoxy-
Δ-12,14-prostaglandin J2 (15d-PGJ2) [19,40,41,81,82,109].
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transcriptional response, where HSF1 binds to DNA to regulate tran-
scription of hundreds of genes including a number of HSPs [29]. Under
basal conditions, HSF1 is bound to an inhibitory complex consisting of
HSP40, HSP70 and HSP90 existing only as latent and transcriptionally
inactive monomer in the cytoplasm [30,31]. During HSR, HSF1 is re-
leased from the complex and it forms transcriptionally active trimer by
binding to two other HSF family members via hydrophobic repeats in
leucine zipper (LZ1–3 and LZ4) domains [32]. After trimerization, the
complex translocates to the nucleus and utilizing specialized DNA
binding domains the trimer binds to heat shock elements (HSE) that
contain conserved inverted repeats of nGAAn pentamers to regulate
transcription [27,33]. Along with post-translational modifications such
as sumoylation, phosphorylation and acetylation, electrophilic adduc-
tion of cysteine amino acid residues by LDEs can also regulate the ac-
tivity of HSF1 and HSPs (Fig. 2C,D,E) [34,35].

It has long been known that LDEs can trigger HSR in cells. One of the
earliest reports found that cyclopentenone prostaglandins PGA2 and 15d-
PGJ2 increase the expression of inducible HSP70, the key marker of HSR
in K562 erythroleukemia cells [36] and later on, other LDEs such as 4-
HNE and OA-NO2 have been shown to evoke HSR in an HSF1 dependent
manner [34,37,38]. Though the exact mechanism by which HSF1 is ac-
tivated by LDEs is not well understood at the moment, it is widely be-
lieved that LDEs target cysteines within HSPs resulting in HSF1 release
and activation [2,38]. Other mechanisms contributing to the modulation
of this pathway by LDEs, include the lipoxidation of histone deacetylases
which affects the expression of HSP70 [39]. Cysteine residues, C572 and

C267 respectively, of rat HSP90 and HSP70 are modified by 4-HNE
(Figs. 2D,E and 3) [40,41]. HSF1 has also been shown to contain redox-
sensitive cysteines, as a disulfide bridge can be formed between C35 and
C105 in recombinant human HSF1 upon exposure to heat shock or H2O2
[42] (Fig. 2C). However, their role in LDE-mediated HSR is not known. In
addition to cysteine modifications, also histidine residues in HSP90α and
β proteins can be modified by 4-HNE oxidation: targeted purification and
mass spectrometry analysis in human colorectal cancer cells identified
H450 and H442 to be adducted in HSP90α and β, respectively [43]. In
addition, both HSP70 and Hsp90 have been shown to be modified with
cyclopentenone prostaglandins, 15d-PGJ2 and or PGA2 [44–46].

5. Novel methods to identify cysteine targets of lipoxidation

Identification of novel signaling pathways affected by protein li-
poxidation warrants the use of unbiased methods to identify target
proteins in a manner that allows quantitative analysis of thiols that are
most sensitive to electrophilic adduction. The well-established methods
used to detect thiol modification by LDEs have been comprehensively
reviewed by Aldini et al. [47,48]. The methods available include direct
detection and quantitation of LDE-protein adducts from experimental or
clinical samples by label-free mass spectrometry (MS) approaches, as
well as detection of modified proteins by antibodies recognizing LDE-
protein adducts such as 4-HNE-modified proteins [10,49], tagging
methods such as biotinylated analogs of cyPGs [49,50], as well methods
utilizing “click” chemistry [51,52]. These methods to capture LDE-

Fig. 3. Targets of LDEs in the KEAP1-NRF2
and HSF1 pathways. The ability of LDEs to
activate cell signaling pathways depend on
their reactivity with sulfhydryl groups.
Lipoxidation is a process that does not affect
cellular proteins randomly as it is directed by
the differences in the binding strength, pKa,
type of the Michael acceptors, shape of the
electrophilic molecule, and the presence of
other amino acids close to the reactive cysteine
[19,23,40,41,78–83]. Modification of thiol
targets elicit downstream transcriptional re-
sponses that alleviate oxidant and proteotoxic
stress [84]. NRF2 encodes a myriad of anti-
oxidant genes by binding to highly conserved
ARE sites within enhancer regions of genes
after forming a heterodimer with a small MAF
protein in the nucleus [85]. The highly con-
served NRF2 target genes providing protection
against xenobiotics include NAD(P)H:quinone
oxidoreductase 1 (NQO1) [86–89], Phase II
enzyme Glutathione S-transferase (GST) [90]
and Multidrug-resistance-associated proteins
(MRPs) [91]. Additionally, NRF2 regulates
gene expression of enzymes involved in glu-
tathione metabolism as well as antioxidants.
These include glutamate-cysteine ligase cata-
lytic (GCLC) [92] and modifier (GCLM) sub-
units [93], thioredoxin reductase 1 (TXNRD1)
[94] and antioxidant enzymes from peroxir-
edoxin family (e.g. PRDX1) [95,96]. NRF2 also
encodes autophagosome cargo protein seques-
tome 1 (SQSTM1), which binds other proteins

for specific autophagy [97]. Upon activation of the heat shock response, HSF1 forms first an active trimer and activating genes having a HSE regulatory element, such
as immediate early response 5 (IER5) [97] and multiple heat shock proteins (chaperones) that have various different functions. These genes include heat shock
protein family A (HSP70) member 8 (HSPA8) [98], Heat shock protein family D/E (HSP60/HSP10) member 1 (HSPD1/E1) [99], 40-kDa heat shock proteins from
HSP40 family (HSP40) [100]. HSF1 can also provide the means to repair already damaged DNA by encoding DNA polymerase kappa (POLK) [101] and through a
complex with Poly(ADP-ribose) polymerase 1 and 13 (PARP1 and PARP13) [102–104]. KEAP1-NRF2 and HSF1 pathways co-activate and/or regulate heme oxy-
genase 1 (HMOX1). Both pathways are thus complementary and overlapping in their functions [105–108].
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modified proteins can be then coupled with high resolution mass
spectrometry (MS) for identification of protein targets [48].

For a more quantitative analysis of protein targets, Wang et al. have
developed an affinity based protein profiling (ABPP) method using
isotope-labeling for quantifying the reactivity of 4-HNE and 15d-PGJ2
in the human proteome [53]. In this approach, human breast cancer
cells were first treated with LDEs or DMSO (control), followed by al-
kynylated iodoacetamide (IA) probe, and conjugated by copper-

catalyzed azide-alkyne cycloaddition (“click”) chemistry to light and
heavy protease–cleavable biotin tags. After enrichment with strepta-
vidin and sequential on-bead protease digestions, the probe-labeled
peptides were analyzed by liquid chromatography–tandem mass spec-
trometry (LC-MS/MS). (Fig. 4A) [53]. This approach showed differ-
ential reactivity of LDEs with redox sensitive cysteines in proteome, and
allowed identification of novel targets such as active site cysteine
within ZAK kinase modified by 4-HNE [53].

Fig. 4. Emerging novel methods to identify
thiol targets of LDEs. A) In competitive ac-
tivity-based profiling method with isotope la-
beling, cells are treated with DMSO or LDE,
after which the proteins are labeled with an
iodoacetamide alkyne probe and isotopically-
labeled, TEV protease-cleavable biotin tags are
incorporated with click chemistry. After en-
richment with streptavidin, sequential on-bead
protease digestion is done to yield probe-la-
beled peptides for MS analysis. B) T-REX
(Targetable reactive electrophiles and oxi-
dants) assisted RES delivery utilizes RES linked
signaling molecules to increase on-target sig-
naling output [54,58]. Unlike conventional
methods of dosing, where the cells are exposed
to extracellular RES dosing, T-REX method
aims to limit the activation of multiple sig-
naling pathways simultaneously. This is
achieved with functional Halo-fusion protein
complexes expressed by the live cell, which are
activated via photo-uncaging to release the
RES [56]. Identification of cysteine targets is
performed from the cell lysate using LC-MS.
POI; protein of interest. C) G-REX (Genome-
Wide reactive electrophiles and oxidants) is a
high-throughput version of T-REX that
achieves similar results while utilizing cell
lines that express only HaloTag [56]. The cells
are subsequently treated with specifically de-
signed photocaged probes before MS-analysis

of total proteome. D) To identify targets of endogenously produced LDEs, stable isotope labeling with amino acids in cell culture (SILAC) is performed, which is
coupled with incorporation of alkyne-labeled linoleic acid (aLA). The cells are subsequently activated with Kdo2-lipidA to produce terminal alkyne labeled RES
through lipid peroxidation [57]. After copper-mediated click chemistry, modified proteins are affinity purified and analyzed by MS.

Fig. 5. Biological consequences of activa-
tion of KEAP1-NRF2 and HSF1 pathways by
lipid-derived electrophiles. Both KEAP1-
NRF2 and HSF1 pathways are modified with
diverse set of exo- or endogenous compounds
[19,23,40,80–83,109–111]. In the light of
maintaining redox-homeostasis, both pathways
reduce proteotoxic stress and inflammation.
There are evidences of cross-talk between these
two pathways by certain compounds and also
cross-protection by encoded genes during the
course of their diverse signaling mechanisms.
Reviewed: [112]. These pathways perform and
maintain important cellular functions as well
as some key regulatory effects, which make
them interesting in the context of health and
disease. The KEAP1-NRF2 pathway can mod-
ulate apoptosis [113], metabolic control [114],
mitochondrial biogenesis [115] and critical
steps in the development of organisms
[105,116,117]. Like NRF2, HSF1 also has im-
portant role in the normal development
[42,118], regulation of normal chaperone ma-
chinery and glucose metabolism [119].
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Historically, the established methods to detect LDE modifications
are based on bolus treatment, which may represent poorly the actual
lipoxidation events occurring within cells, but in return can identify
many RES sensors [54]. These methods use excess amounts of LDEs and
can thus identify protein targets not encountered when more physio-
logical levels of electrophiles are present [55]. Recently, novel methods
with more sophisticated dosing and detection procedures have been
introduced to reduce the inherent bias due to bolus dosing and to
provide new means to quantitatively detect endogenous modifications
[54,56–58].

To avoid bolus treatment with a high concentration of LDEs, a
method in which the LDE in question is delivered inside the cells as a
photocaged precursor (Fig. 4B and C) and then liberated in situ to allow
local delivery of LDE within cells has been developed [59]. The method
can be coupled to proteomics to identify novel thiol targets in an un-
biased manner [60] or to a specific signaling protein of interest [61].
Intriguingly, the method appears to produce modifications that have
very little overlap with those evoked by external bolus addition. For
instance, 4-HNE modified C513 and C518 within KEAP1, neither of
which have been identified as sensitive cysteines in previous studies nor
to have functional importance [3].

Also, methods to identify the modifications by endogenously pro-
duced lipid electrophiles need to be developed in order to address the
(patho)physiological role of these in cellular processes. Beavers et al.
combined stable isotope labeling with amino acids in cell culture, click
chemistry, and ABPP techniques to explore adduction of lipid electro-
philes endogenously generated during macrophage activation (Fig. 4D)
[57]. In this study, mitochondria was identified as both the source and
target of LDEs in activated macrophages, indicating the role of mi-
tochondrial protein modifications in inflammatory diseases [57]. Si-
milar approach has been used to identify targets of 12/15-Lipoxygenase
(LOX-12/15) derived LDEs in macrophages [62]. It is enticing to
speculate that LDEs could mediate also other stress responses and
therefore it is necessary to expand the selection of stressors and cell
types further.

6. Conclusions

It is now clear that reactive lipid electrophiles elicit signaling
functions that are specific and biologically relevant, adding to the re-
pertoire of post-translational modifications affecting cellular functions.
Especially well studied are the KEAP1-NRF2 and HSR pathways, which
have cytoprotective, anti-inflammatory and proteostatic functions
(Fig. 5). While the techniques highlighted in this review will be im-
portant in elucidating novel targets in an unbiased manner, it is critical
to identify which modifications ultimately have physiological re-
levance. Also, the methods that rely on the addition of exogenous lipid
electrophile, either in bolus or intracellularly delivered, may not reflect
a biologically meaningful situation. Therefore, the techniques to iden-
tify modifications by endogenously produced lipoxidation products
need to be further developed, which in combination with unbiased
omics approaches and functional studies will then reveal the biological
relevance of findings.
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