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PURPOSE. To determine the effect of voluntary exercise on choroidal neovascularization
(CNV) in mice.

METHODS. Age-matched wild-type C57BL/6J mice were housed in cages equipped with or
without running wheels. After four weeks of voluntary running or sedentariness, mice
were subjected to laser injury to induce CNV. After surgical recovery, mice were placed
back in cages with or without exercise wheels for seven days. CNV lesion volumes were
measured by confocal microscopy. The effect of wheel running only in the seven days
after injury was also evaluated. Macrophage abundance and cytokine expression were
quantified.

RESULTS. In the first study, exercise-trained mice exhibited a 45% reduction in CNV volume
compared to sedentary mice. In the replication study, a 32% reduction in CNV volume in
exercise-trained mice was observed (P = 0.029). Combining these two studies, voluntary
exercise was found to reduce CNV by 41% (P = 0.0005). Exercise-trained male and female
mice had similar CNV volumes (P = 0.99). The daily running distance did not correlate
with CNV lesion size. Exercise only after the laser injury without a preconditioning period
did not reduce CNV size (P = 0.41). CNV lesions of exercise-trained mice also exhibited
significantly lower F4/80+ macrophage staining and Vegfa and Ccl2 mRNA expression.

CONCLUSIONS. These findings provide the first experimental evidence that voluntary exer-
cise improves CNV outcomes. These studies indicate that exercise before laser treatment
is required to improve CNV outcomes.
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Pathological neovascularization underlies dozens of
vision-threatening diseases including age-related macu-

lar degeneration (AMD), corneal neovascularization, glau-
coma, diabetic retinopathy, and retinopathy of prematu-
rity. Although intraocular anti-Vascular Endothelial Growth
Factor A (VEGFA) therapies are a clinical success, they are
not a panacea. For example, 12% to 25% of neovascular AMD
patients, representing hundreds of thousands of individuals
in the United States,1 have 20/200 vision or worse despite
treatment.2–4 Prolonged exposure to anti-VEGFA is accom-
panied by loss of initial visual acuity gains,5–8 and a signif-
icant portion of anti-VEGFA-exposed eyes develop untreat-

able central retinal atrophy.4,9 Moreover, between 2013 and
2015, 3.75 million doses of anti-VEGFA drugs approved by
the Food and Drug Administration were administered in
the United States, costing patients, taxpayers, insurers, and
providers approximately $7.5B.10 Thus there is a compelling
need for new, inexpensive antiangiogenic strategies that can
target the molecular drivers of neovascularization.

Physical activity is a noninvasive, patient-controlled, and
inexpensive intervention that improves numerous health
outcomes both in healthy people and in those suffering from
diverse clinical conditions (systematically reviewed in).11,12

In contrast to prevalent conditions, such as diabetes,13
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cardiovascular disease,14,15 and neurocognitive disease,16 the
relationship between exercise and AMD is far less estab-
lished. Numerous epidemiologic studies have attempted
to characterize this impact, with the majority reporting a
positive influence of physical activity on AMD and related
outcomes (e.g., large macular drusen).17–33 A recent system-
atic meta-analysis of nine studies on exercise and AMD in
white subjects found that physical activity was associated
with modest reduction in early AMD (odds ratio 0.92; 95%
confidence interval [CI], 0.86–0.98) and a dramatic reduc-
tion in late AMD (odds ratio 0.59; CI, 0.49–0.72).34 Together,
these findings suggest that physical activity may represent a
significant modifiable risk factor for AMD.

Voluntary wheel running, a model of endurance exercise
in mice, has been widely used to study physiological adap-
tations, including muscle fiber transformation, angiogenesis,
mitochondrial biogenesis, and mitophagy with significantly
improved physiological and metabolic functions and protec-
tion against chronic diseases.35–41 A voluntary regimen
allows mice to exercise during their normal active dark
cycle,42 which would be disrupted by forced exercise, such
as treadmill running and swimming.43–45 Forced exercise is
reported to cause acute and chronic stress responses that
can manifest systemically46–49 and may confound results.
Finally, perhaps because of these issues, direct comparison
of voluntary and forced exercises has found voluntary
exercise superior in improving other pathological pheno-
types.50–52 Therefore we sought to examine the effects of
voluntary wheel running on laser photocoagulation-induced
CNV in a rigorous and controlled experimental setting.

MATERIALS AND METHODS

Mice

All animal protocols were approved by the Institutional
Animal Care and Use Committee of the University of Virginia.
Animal studies adhered to the ARVO Statement for the
Use of Animals in Ophthalmic and Vision Research. Male
and female C57BL/6J mice were housed in temperature-
controlled (21°C) cages in a pathogen-free room with a
12:12-hour light/dark cycle and free access to water and
normal chow.

Voluntary Running

Voluntary running was conducted as established previ-
ously.41 Briefly, mice in the exercise group were housed
individually in cages equipped with running wheels and
sedentary mice were housed in cages not equipped with
running wheels. Daily running was recorded via a computer-
ized monitoring system, as described in previous studies.35,37

Laser Photocoagulation Induced Choroidal
Neovascularization

Laser photocoagulation (532 nm, 180 mW, 100 ms, 75 μm)
(OcuLight GL; IRIDEX Corp., Mountain View, CA, USA) was
performed bilaterally (four spots per eye) on day 0 to induce
CNV as previously described.53 Irrespective of the exercise
protocol, mice were three months old at the time of laser
injury.

CNV Volume and F4/80 Labeling

After laser injury, mice were euthanized, and eyes were
enucleated and fixed with 4% paraformaldehyde for 30
minutes at 4°C. Eyecups were incubated with 0.7% fluo-
rescein isothiocyanate (FITC)-isolectin B4 (Vector Laborato-
ries, Burlingame, CA, USA), and R-phycoerythrin-conjugated
anti-F4/80 (Bio-Rad, Hercules, CA, USA) and the flat mounts
of RPE-choroid-sclera were mounted in antifade medium
(Immu-Mount Vectashield Mounting Medium; Vector Labo-
ratories). CNV volume was visualized using a scanning
laser confocal microscope (Nikon A1R, Nikon Instruments).
Volumes were quantified using Image J software (http://
imagej.nih.gov/ij/; provided in the public domain by the
National Institutes of Health, Bethesda, MD, USA) as previ-
ously reported.53 F4/80 labeling was quantified by densito-
metry of the F4/80 signal in the maximum z-projection of
the CNV lesion.

Fluorescent in Situ Hybridization

Enucleated mouse eyes were embedded in optimal
cutting temperature medium (Sakura Finetek USA,
Torrance, CA, USA) and snap-frozen in liquid nitrogen-
supercooled isopentane. Seven-micrometer–thick sections
were hybridized with RNAscope probes for Ccl2 (ID:
311791), Il6 (ID: 315891), and Vegfa (ID: 412261) accord-
ing to manufacturer’s instructions (ACDBio, Newark, CA,
USA). Sections were mounted in Invitrogen ProLong
Gold Antifade Mountant with DAPI (Thermo Scientific,
Waltham, MA, USA) and imaged on a Nikon A1R inverted
confocal microscope (Nikon Instruments Inc., Melville,
NY, USA). Quantification of absolute transcripts was
performed in ImageJ. The integrated density of an indi-
vidual punctum was measured as the first peak in the
intensity histogram of each 8-bit grayscale image, thresh-
olded to reduce background. Then, the following equation
was used to calculate the total number of transcripts:

∑
integrated density

average intensity o f single dot x area of image x section thicknes.

RESULTS

Effect of Voluntary Exercise on CNV in Mice

The first study design is depicted in Figure 1A. Age- and
sex-matched wild-type C57BL/6J mice were singly housed in
cages equipped with or without running wheels (N = 3 male
sedentary, N = 3 female sedentary, N = 3 male exercise, N
= 3 female exercise). After four weeks of voluntary running,
mice were anesthetized and subjected to laser injury to
induce CNV. After surgical recovery, mice were placed back
in cages with or without exercise wheels for seven days, at
which time animals were euthanized, and CNV lesions were
analyzed. Seven days after injury was selected as an endpoint
because the lesion is sufficiently large to measure accurately,
and the lesion is actively expanding, with a peak volume
occurring at 14 days,54 allowing us to quantify pathology in
a state that is both established and expanding.

In total, N = 40 CNV lesions from sedentary and N = 48
lesions from exercise-trained mice were included for analysis
in Study 1. One mouse in the sedentary group was excluded
because the procedure failed, possibly due to its poor health.
We observed a 45% reduction in CNV volume in exercise-
trained mice compared with sedentary mice (P = 0.017 by
two-tailed Mann-Whitney U test, Fig. 1B). We did not find a

http://imagej.nih.gov/ij/
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FIGURE 1. Exercise-trained mice develop less CNV than sedentary mice, independent of sex. (A) Study design for Studies 1 and 2: C57BL/6J
mice were housed with (voluntary wheel running) or without (sedentary) an exercise wheel for 28 days. After laser photocoagulation on
day 29, mice were returned to their respective cages for seven days. (B) CNV volume in sedentary and exercise-trained mice in Study 1. (C)
CNV volume in exercise-trained male and female mice (P = 0.99, Mann-Whitney U test). (D) CNV volume in sedentary and exercise-trained
mice in Study 2. (E) CNV volumes from Studies 1 and 2 combined. N = 65 sedentary, N = 67 exercise. *P < 0.05, ** P < 0.01.

FIGURE 2. CNV volume and average distance traveled. (A) The average CNV volume of each mouse plotted against its average distance
traveled throughout the duration of the experiment. Arrow on y-axis denotes the average CNV volume in sedentary mice. (B) The average
CNV volume of each mouse plotted against its average distance traveled prior to laser photocoagulation surgery. (C) The average CNV
volume of each mouse plotted against its average distance traveled after laser photocoagulation surgery.

significant difference in body weights of exercise or seden-
tary mice (25.1 ± 0.8 g vs. 25.5 ± 1.1 g, P = 0.76).

Exercise-trained male and female mice had similar CNV
volumes (P = 0.99, Fig. 1C). No significant difference was
observed between CNV in sedentary male and female mice
in Study 1 (P= 0.42, Supplementary Figure S1).We validated
this interpretation by comparing male and female mice in the
remaining studies finding no significant difference (P= 0.70,
Supplementary Figure S1). This finding is consistent with a
previous study reporting no significant effect of sex on CNV
volumes in mice younger than nine months of age.55

We conducted a replication study of similar design, with
the exceptions that only male mice were used and that
sedentary mice were not individual-housed, because CNV
volumes from individual-housed mice were not significantly
different from group-housed mice as established in prior

baseline studies (P = 0.81, Supplementary Figure S2). We
validated this interpretation by comparing individual- and
group-housed mice in the remaining studies finding no
significant difference (P = 0.96, Supplementary Figure S2).
In the replication study, an additional N = 25 CNV lesions
from sedentary mice and N = 19 CNV lesions from exercise-
trained mice were analyzed. In this second study, we again
observed a reduction in CNV volumes in exercise-trained
compared to sedentary mice (P = 0.029, Fig. 1D). Combining
these two studies, voluntary exercise was found to reduce
CNV by 41% (P = 0.0005, Fig. 1E).

Dose Effect of Wheel Running on CNV

Throughout both studies, mice with exercise wheels trav-
eled an average of 8.2 km/day, comparable to C57BL/6J in
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FIGURE 3. Post-injury exercise and CNV. (A) Study design for Studies 3 and 4: C57BL/6J mice were housed with or without an exercise
wheel for 3 days to acclimate. Then, mice were subjected to laser photocoagulation surgery, and returned to their respective cages for seven
(Study 3) or six days (Study 4). (B) CNV volume in sedentary and post-injury, exercise-trained mice in Study 3. N = 44 sedentary, N = 45
post-injury, exercise-trained, P = 1.0 by Mann-Whitney U test. (C) CNV volume in sedentary and post-injury, exercise-trained mice in Study 4.
N = 54 sedentary, N = 23 post-injury, exercise-trained. P = 0.32 by Mann-Whitney U test. (D) CNV volumes from Studies 3 and 4 combined.
P = 0.41 by Mann-Whitney U test.

previous studies.42,56 Quantifying the relationship between
running activity and CNV volume in individual mice, the
average daily distance traveled did not correlate strongly
with CNV volume (R = −0.11, P = 0.80, Fig. 2A). Daily
distance traveled was significantly greater in mice before
laser photocoagulation surgery (P = 0.03 by two-tailed
paired Student’s t-test). Neither the daily distance traveled
before nor after surgery significantly correlated with CNV
volume (Figs. 2B, 2C), although there was a slight negative
relationship between run distance after surgery and CNV
volume that did not reach statistical significance (R = −0.21,
P = 0.64).

Effect of Postinjury Voluntary Exercise on CNV in
Mice

We sought to determine whether exercise undertaken
concurrent with pathology, without preinjury precondition-
ing, was sufficient to improve CNV outcomes. To isolate
the effects of postinjury exercise, a second study design
was conducted as depicted in Figure 3A. Here, mice were
allowed a brief three-day acclimation period with the exer-
cise wheel, followed by laser injury to induce CNV, and then
permitted to exercise throughout the recovery period with
or without exercise wheels. Once again, a replication study
of similar design was performed. In the first of two inde-
pendent postinjury exercise trials (Study 3), a total of N =
44 CNV lesions from sedentary and N = 45 lesions from
postinjury exercise-trained mice were included for analysis.
We observed a 21% reduction in CNV volume in exercise-
trained mice compared with sedentary mice, although this
effect did not achieve statistical significance (P = 1.0 by
two-tailed Mann-Whitney U test, Fig. 3B). In a replication
study of similar design (Study 4), an additional N = 54
CNV lesions from sedentary mice and N = 23 CNV lesions
from exercise-trained mice were analyzed. In this second
study, we again observed a nonsignificant reduction in CNV
volumes in exercise-trained mice compared with sedentary
mice (8% reduction, P = 0.32, Fig. 3C). Combining these two
studies, postinjury exercise did not significantly reduce CNV
(P = 0.41, Fig. 3D).

Reduced F4/80+ Cells and Cytokine Transcription
in CNV in Exercise-Trained Mice

Immune cells, including macrophages, are prevalent in
human CNV57–60 and critically contribute to experimental
CNV.61–63 We quantified the effect of exercise training on
immune cell infiltration in CNV seven days after injury
by measuring F4/80 immunolabeling in RPE/CNV whole
mounts. In mice undergoing preinjury and postinjury exer-
cise, we observed a dramatic 72% reduction in F4/80 posi-
tive staining in the CNV lesions of exercise-trained mice
compared with sedentary mice (P = 0.037, Fig. 4A). Addi-
tionally, we used in situ hybridization to quantify the abso-
lute number of transcripts of angiogenic cytokines in CNV
lesions of exercise-trained and sedentary mice. In exercise-
trained eyes, we observed a 38% reduction in Vegfa mRNA
(P = 0.012 by two-tailed t-test) and 71% reduction in Ccl2
mRNA (P = 0.021) in CNV lesions of exercise-trained eyes
compared with lesions from sedentary mice (Fig. 4B). We
also observed a 32% reduction in Il6 mRNA in lesions
of exercise-trained eyes, although this was not statistically
significant (P = 0.18).

DISCUSSION

This study provides the first experimental evidence on the
influence of physical activity on CNV, supporting the find-
ings of epidemiologic studies reporting beneficial effects
of exercise on AMD-related pathologies. The dose effect of
exercise was modest and did not achieve statistical signifi-
cance. We interpret these findings to mean that the amount
of exercise undertaken in this experimental design exceeded
the threshold to achieve the maximal effect. Limiting exer-
cise training to the CNV lesion growth period did not signif-
icantly reduce lesion size. We interpret this finding to mean
that exercise preconditioning before the initiation of CNV is
necessary to achieve a salutary effect.

In contrast to CNV, prior studies in mice report that
exercise promotes angiogenesis and vascularity in skele-
tal muscle,31 brain,57 and subcutaneous adipose tissue.58 It
appears that the mechanisms by which exercise affects blood
vessel homeostasis in these tissues may differ from CNV.
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FIGURE 4. Voluntary exercised-trained mice and macrophage infiltration in CNV. (A) Fluorescent micrographs of choroid-RPE-sclera flat
mounts from sedentary (top) and exercise-trained (bottom) mice seven days after laser injury. Isolectin-B4 depicted in green in overlay and
F4/80 depicted in red in overlay. Quantification of F4/80+ staining depicted at right. N = 14 lesions from sedentary and N = 15 from
exercise-trained mice (following the protocol in Fig. 1A). (B) Representative images (top) and quantification (bottom) of in situ hybridization
of mRNA in retina of sedentary and exercise-trained mice (following the protocol in Fig. 1A) seven days after laser injury. N = 3 lesions per
condition. *P < 0.05 by two-tailed Student’s t-test.

We observed that lesions of exercise-trained mice exhibited
reduced F4/80+ labeling and cytokine expression, suggest-
ing that exercise may impart immunomodulatory effects.
Indeed, exercise has been shown to ameliorate macrophage
mobilization in a murine aging model64 and in high-fat diet-
induced inflammation.65–67 Whether reduced immune cell
recruitment is a driver of the beneficial effects of voluntary
exercise on CNV is an important avenue of future study, as
is identifying molecular intermediates of this effect.

Voluntary exercise induces a variety of systemic changes
that may modulate CNV size, including food consumption
and plasma cholesterol. Interestingly, short-term voluntary
exercise is reported to induce an anorexic effect in mice,
with reduced food consumption68,69 whereas prolonged
voluntary wheel running increases food consumption.70,71

Voluntary exercise is reported to lower plasma triglycerides

in humans72 and triglycerides and cholesterol turnover in
mice.73

Prior studies have found that voluntary exercise does not
affect fasting blood glucose levels in normal, nondiabetic
mice.74,75 We found no significant difference in body weights
of exercise and sedentary mice. Therefore we find it unlikely
that blood glucose or body weight per se is responsible for
the effect of exercise on CNV we observed. The extent to
which these exercise-modifiable biomarkers correlate with
CNV lesion size is an important avenue of future study.

Apart from our findings in CNV, exercise has also been
reported to prevent retinal degeneration in normal aged
mice,76,77 in light-induced retinal degeneration,78 and in a
light injury model of retinitis pigmentosa.79 Thus the bene-
ficial effects of exercise on the retina may extend beyond
suppressing pathologic angiogenesis.
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A recent study found that Korean men, but not women,
self-reporting five or more sessions of vigorous exercise per
week were significantly more likely to develop neovascu-
lar AMD (hazard ratio, 1.54; CI, 1.15-2.06).80 However, limi-
tations in the methodology of this study include survival
bias of the low physical activity cohort (“left truncation”),
and potential disproportionate underreporting of neovas-
cular AMD in the nonactive group.81 Other studies have
also reported marginal positive associations between phys-
ical activity and risk of developing AMD.82,83 It should also
be noted that the definitions of “adequate,” “moderate,”
“strenuous,” and “vigorous” physical activity are nonuniform
between studies. In general, it is challenging to draw conclu-
sions from epidemiologic studies of this nature because of
the potential unreliability of questionnaire-based data84 and
the confounding effects that vision loss may have on the
amount and type of exercise an individual undertakes.85

Thus the continued study of exercise on AMD-relevant
phenotypes in experimental models may provide clarity as
to the nature of the effect and mechanistic drivers of physical
activity in this condition.

Physical activity may be a low-cost, effective, and nonin-
vasive treatment option in prevention of a number of eye
diseases, including AMD. Identifying the molecular media-
tors that couple physical activity and CNV is an important
avenue of research to understand the relationship between
this complex modifiable risk factor and retinal disease. This
study presents an experimental platform from which such
investigations may be undertaken in future studies. The
translational relevance of this study must be considered in
the context of the limitations of mouse voluntary wheel
running as a model for human exercise and laser photocoag-
ulation as a model of CNV in human patients. Ultimately, the
extent to which exercise proves beneficial for humans suffer-
ing with or at risk for development of CNV must be tested
in the context of controlled, prospective clinical trials.
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