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Brown adipose tissue (BAT), a unique tissue, plays a key role in metabolism and energy
expenditure through adaptive nonshivering thermogenesis. It has recently become a
therapeutic target in the treatment of obesity and metabolic diseases. The thermogenic
effect of BAT occurs through uncoupling protein-1 by uncoupling adenosine triphosphate
(ATP) synthesis from energy substrate oxidation. The review discusses the recent
developments and progress associated with the biology, function, and activation of
BAT, with a focus on its therapeutic potential for the treatment of polycystic ovary
syndrome (PCOS). The endocrine activity of brown adipocytes affects the energy
balance and homeostasis of glucose and lipids, thereby affecting the association of
BAT activity and the metabolic profile. PCOS is a complex reproductive and metabolic
disorder of reproductive-age women. Functional abnormalities of adipose tissue (AT) have
been reported in patients with PCOS. Numerous studies have shown that BAT could
regulate the features of PCOS and that increases in BAT mass or activity were effective in
the treatment of PCOS through approaches including cold stimulation, BAT
transplantation and compound activation in various animal models. Therefore, BAT may
be used as a novel management strategy for the patients with PCOS to improve women’s
health clinically. It is highly important to identify key brown adipokines for the discovery and
development of novel candidates to establish an efficacious therapeutic strategy for
patients with PCOS in the future.
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INTRODUCTION

Adipose tissues (ATs), including brown (BAT), white (WAT), and beige (BeAT) tissues, perform
essential functions in the maintenance of whole-body energy homeostasis (1). BAT is a specialized
fat tissue that serves as the primary site for adaptive nonshivering thermogenesis to generate heat
under cold stress in mammals. BAT participates in primary metabolism and energy expenditure
n.org May 2022 | Volume 13 | Article 8472491
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(EE), and it can be quickly stimulated by thermal or dietary
stimulation (2). A recent study showed that an increase in BAT
mass and/or function could be an effective therapeutic target for
the treatment of obesity and other related metabolic diseases in
patients (3).

BAT depots in the interscapular region of infants have been
clearly visualized by magnetic resonance imaging (MRI), and
BAT could be detected and quantified in the supraclavicular,
cervical, and paravertebral regions of adults by positron emission
tomography–computer tomography (PET-CT) with 18F-
fluorodeoxyglucose (FDG) (4–7) (Figure 1). PET-CT imaging
revealed a strong positive correlation between BAT activity and
the basal metabolic rate. In addition, the level of BAT activation
is inversely correlated with age, body mass index (BMI) (7, 8),
and adiposity in adults. The young lean and females possess
higher metabolically active BAT (9).

Brown adipocytes have unique features, such asmultilocular lipid
droplets, upregulated uncoupling protein-1 (UCP1), rich
mitochondria and capillarity (3). The thermogenesis of BAT is
largely dependent on UCP1 (a marker of BAT) on the
mitochondrial inner membrane for energy dissipation (10, 11).
UCP1 “uncouples” adenosine triphosphate (ATP) synthesis from
theoxidationof energy substrates, therebypromotingnonproductive
EE through increased mitochondrial uncoupling (5, 9, 10). The
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activity and development of brown adipocytes are regulated by the
sympathetic nervous system (SNS). Thermogenesis mediated by the
SNS is highly regulated by neurons in the hypothalamus and
brainstem, and brown adipocyte thermogenesis is controlled by the
leptin-melanocortin pathway (12, 13).
BAT-SECRETED FACTORS —

ADIPOKINES IMPROVE
METABOLIC HEALTH

Brown Adipokines
Brown adipokines are regulatory factors secreted by brown
adipocytes that posses autocrine, paracrine, and endocrine
activities and regulate BAT differentiation (14). Some adipokines
display hormonal functions that increase BAT activity, improve the
metabolic profile of glucose and lipid homeostasis, andmediate the
browning ofWAT (15–17). Moreover, thermogenic stimuli induce
brown adipocytes to secrete signalling molecules targeting the
sympathetic nerve, vasculature, and immune cells for tissue
remodelling. Adipokines also activate distant organs and cells, to
execute various local and systemic functions (Figure 2) (14, 18).

BAT can release signalling peptides, lipokines, and exosomal
miRNAs to regulate metabolism in distant tissues to coordinate
FIGURE 1 | A drawing showing representative BAT occurrence in the interscapular region in an infant and in the supraclavicular, cervical, and paravertebral regions
in an adult human.
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the metabolic function of the whole body (19, 20). BAT
contributes to metabolic homeostasis via UCP1-mediated
thermogenesis and secretory cytokines such as adiponectin and
fibroblast growth factor 21 (FGF-21) (21). A total of 101 proteins
were found from the secretome of brown adipocytes, and
ependymin-related protein 1 (EPDR1) functions in brown
adipocyte development (22). The thermogenesis of BAT could
significantly impact the long-term regulation of energy
homeostasis and body weight; therefore, an increase in BAT
volume and/or activity may become a novel therapeutic strategy
in the treatment of patients with obesity and metabolic diseases.

Therapeutic Potential of BAT
BAT is a powerful sink to drain and oxidize glucose and
triglycerides from the blood; therefore, it has therapeutic
potential for the treatment of various metabolic diseases
through its anti-glycaemic, anti-lipidaemic, and anti-obesity
effects (4, 23). Brown fat can produce 300-fold more heat per
unit mass than any other organ in the body after maximal
stimulation, accounting for approximately 10% of the total
daily heat (24). One of the major focuses of BAT-related
pharmacological research is the treatment of obesity resulting
Frontiers in Endocrinology | www.frontiersin.org 3
from a prolonged energy imbalance due to calorie consumption
exceeding calorie expenditure, consequently leading to a range of
metabolic diseases, including hyperglycaemia, type 2 diabetes
mellitus (T2DM), and hyperlipidaemia (25, 26).

Vascular lipoprotein homeostasis is regulated by BAT via
enhancing triglyceride-rich lipoprotein (TRL) turnover and
transporting lipids into BAT. Thus, high triglyceride levels may
be effectively reduced by the activation of BAT (27). BAT has
therapeutic potential in the treatment of cardiovascular diseases
because of its effects on increasing fatty acid catabolism and
reducing plasma triglycerides, atherosclerosis, and inflammation
in obese patients (28). In addition to the potential effects of
stimulating BAT, beige adipocytes secrete insulin-like growth
factor-binding protein 2 (IGFBP-2), which has an anabolic effect
on bone tissues, so it may be effective for the treatment of skeletal
deformities (28).

Taken together, human thermogenic adipocytes could serve
as therapeutic targets by three different approaches: 1) an
increase in BAT mass by inducing BAT progenitors; 2) an
increase in WAT browning by enhancing the formation of
beige adipocytes; and 3) an increase in BAT function through
upregulating the regulatory pathways of BAT (29).
FIGURE 2 | Adipokines secreted from BAT. Contribute to the regulation of various functions. FGF-21, fibroblast browth factor 21; BMP-8b, bone morphogenetic
protein 8b; IL-6, interlukin-6; NGF, nerve growth factor; NRG-4, neuregulin 4; IGFBP2, insulin-like growth factor-binding protein 2; VEGF-A, vascular endothelial
growth factor A; IGF-1, insulin growth factor-1, METRNL, meteorin-Like; CXCL14, chemokine (C-X-C motif) ligand 14; GDF-15, Growth and differentiation factor 15;
SLIT2-C, C-terminal fragment of SLIT-2.
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“Browning” of WAT
BAT and BeAT are the primary sites for adaptive nonshivering
thermogenesis and are vital for metabolic regulation through the
sec re t ion of ad ipok ines in re sponse to d i ff e r en t
pathophysiological stimuli. Classical brown adipocytes are
localized in developmentally programmed BAT depots both in
rodents and human infants. “Beige” (from “brown-in-white”)
adipocytes are brown adipocytes that, in response to
thermogenic stimuli such as chronic cold exposure, undergo
the “browning” process in white fat and are important
components of BAT depots in adults and may become a novel
therapeutic target for the treatment of obesity, insulin resistance
(IR), and T2DM (30, 31). No evidence has shown that the
thermogenic function and mechanisms are different between
beige and brown adipocytes (32). WAT contains a single lipid
droplet, fewer mitochondria, and UCP1 negative (33). WAT is
responsible for storing fat as energy. It stores energy in the form
of triglycerides and causes obesity and multiple metabolic
diseases (34). It also releases energy into the body in the form
of free fatty acids and glycerol (35). WAT, including
subcutaneous fat and visceral fat, can undergo browning.
However, the subcutaneous fat (e.g., inguinal) is particularly
prone to browning and exhibited significantly increased levels of
UCP1. The browning of WAT, as a therapeutic strategy,
commonly refers to the process of long-term therapy with
peroxisome proliferator-activated receptor (PPAR) agonists
and increases the formation of beige adipocytes (30).

Activation of BAT
The SNS controls the activity of BAT, and BAT is activated by
metabolic and hormonal signals (11, 36). Activation of brown
and/or beige fats increases EE and decreases hyperglycaemia and
hyperlipidaemia. The activation of BAT/BeAT leads to
increasing lipolysis and inhibits the processes of autophagy and
mitophagy (37).

Cold Exposure
Prolonged or chronic exposure to cold could recruit and activate
BAT with an EE increase and rapid lipid and glucose oxidation.
Studies indicate that cold exposure stimulates the expression of
UCP1 and that the effect is greater in women than in men (7).
BAT becomes activated by cold exposure in the extrauterine
environment and by strong endocrine stimulation at birth
(2, 38). In contrast, acute and repeated exposure to mild cold
(17-19°C) could increase the volume and activity of BAT in
adults. These effects are mediated by the SNS and transient
receptor potential (TRP) channels.

Diet-Induced Thermogenesis (DIT)
In addition to cold exposure, meal intake, particularly with food
rich in protein and chemicals such as capsinoids, could induce
BAT thermogenesis, namely DIT, and represents a relatively
large component of daily total EE (39). TRP members frequently
serve as chemical receptors for plant and food metabolites; for
example, TRP vanilloid 1 (TRPV1) agonists, including capsaicin
and capsinoids, could mimic the effects of cold exposure on the
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reduction in body fat by activating and recruiting BAT. The
antiobesity effect of food ingredients, including catechins, in tea
may occur through the TRP-SNS-BAT activation axis (40, 41).

Other Channels
In addition to DIT, the activity of BAT could be enhanced by
other factors via both central and peripheral actions. For
example, thyroid hormone could activate BAT centrally
through binding to thyroid receptors in brown adipocytes to
directly induce the expression of thermogenic genes. The
neurotransmitter orexin can enhance the function of BAT by
modulating sympathetic outflow and inducing the differentiation
of brown fat precursors (42). b-Adrenergic agents can activate
BAT thermogenesis and induce the browning of WAT (43).
Thiazolidinedione, a PPAR gamma (PPARg) activator, could
induce WAT browning by recruiting existing BAT depots (44–
46), but its effect depends on the concurrent activation of
noradrenergic signals by effective thermogenic induction (47).
Studies have shown that both irisin and melatonin can activate
BAT and that transplantation of brown adipocyte stem cells may
increase thermogenesis from both brown and beige adipocytes
(48). Ginseng extract (GE) can activate BAT and enhance energy
metabolism (49). Metformin may improve UCP1 and
mitochondrial biogenesis in the BAT, however, it’s ineffective
for body mass (50). The differentiation of brown adipocytes
requires several receptors/transcription factors, including
PPARg, PPARg-coactivator-1alpha (PGC1alpha), PRD1-BF1-
RIZ1 homologous domain-containing 16 (PRDM16), CCAAT/
enhancer-binding protein beta (C/EBP-beta), and bone
morphogenetic protein 7 (BMP7), to facilitate the acquisition
of the thermogenic phenotype of BAT, which is ultimately
mediated by UCP1 (6). BAT could also be activated by the
natriuretic peptides FGF-21 and BMP8b (42).
BAT AS A NOVEL MANAGEMENT
STRATEGY FOR POLYCYSTIC OVARY
SYNDROME (PCOS) THERAPY

PCOS
PCOS is a serious medical condition associated with defects in
metabolic, reproductive and psychological functions, affecting
approximately 5-20% of reproductive-age women (51, 52). It
manifests as a heterozygous entity of menstrual cycle
abnormalities, anovulation, IR, hirsutism and androgenetic
alopecia (53). Hyperinsulinemia and IR play an important role
in the pathophysiology and metabolic manifestations of PCOS
(54). Epidemiological studies have revealed that 38-88% of
women with PCOS have central adiposity, overweight or
obesity (55). PCOS women with androgen excess and IR are
prone to visceral fat hypertrophy, and early-onset impairment of
glucose tolerance is present in 30-40%, T2DM in 10%, borderline
or high lipid levels in 70% and metabolic syndrome (MS) in 50%
(56). Therefore, PCOS is closely related to metabolic disturbance
and is considered a metabolic disorder (57).
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Furthermore, PCOS is linked to impaired AT physiology and
presents a greater risk of non-alcoholic fatty liver disease
(NAFLD) (58–61). Women with PCOS are more vulnerable to
endothelial dysfunction, atherosclerosis, and cardiovascular
diseases (CVDs), with a 2.7-fold increased risk of developing
endometrial carcinoma (62). Moreover, PCOS may increase the
risk of depressive, anxiety, and sleep disorders and reduce quality
of life (QoL), particularly in patients with hirsutism, weight gain
and acne (63). PCOS patients with infertility present worse QoL
because of psychological and emotional distress (64).

General Management of PCOS
PCOS has significant clinical manifestations, including diverse
metabolic, reproductive and psychological features (65).
Recently, the new International Evidence-based Guideline for
the Assessment and Management of PCOS highlighted the
importance of lifestyle interventions, including diet, exercise
and behaviour, as the first-line management to improve the
signs and symptoms of PCOS (66, 67). Even just 5% of body
weight loss could meaningfully improve insulin sensitivity,
hyperandrogenism, menstrual irregularity, and other
reproductive and metabolic features clinically (68, 69).

In addition, the management of hyperandrogenism and/or
irregular menstrual cycles in patients with PCOS should be
recommended with combined oral contraceptives (COCPs) (54).
Metformin combined with lifestyle changes could improve weight,
hormonal and metabolic outcomes with greater benefit achieved
in patients with diabetes risk factors and impaired glucose
tolerance (70). In addition to lifestyle intervention, anti-obesity
medications may be used for obese patients with PCOS (51).
Therefore, metformin is recommended alone or in combination
for PCOS therapy, primarily for metabolic conditions. Currently,
inositol, an experimental therapy, may be considered for PCOS
(71, 72). Statins are safe and effective for treating dyslipidaemia in
patients with PCOS (73). For the treatment of PCOS women with
anovulatory infertility, aromatase inhibitors such as letrozole are
the recommended first-line therapy, with clomiphene and
metformin alone or in combination. Gonadotrophins are a
second-line therapy (53, 74, 75).

The benefit of lifestyle modification, as first-line management,
highly depends on the self-efficacy of patients, and the results
were not consistent with existing evidence (76). It must be
acknowledged that no single agent or management is effective
in treating all metabolic disorders in PCOS patients (77).
Although insulin-sensitizing agents, including metformin, have
been used for the treatment of PCOS patients with metabolic
aspects, the efficacy is limited for the reduction in weight and
cardiovascular risk (77).

BAT for PCOS Therapy
Studies have shown that BAT activity was decreased in patients
with PCOS and in a rat model of PCOS, possibly due to increased
central adiposity (78) and the main manifestations of IR and
inflammation (79). AT dysfunction promotes metabolic
disorders in the peripheral tissues of PCOS patients with larger
adipocytes, lower activity of lipoprotein lipolytic enzyme, and
impaired capacity of catecholamine-mediated lipolysis (80).
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Furthermore, decreased EE may be related to hypofunction of
BAT in female mice with PCOS (81). Therefore, the activation of
BAT is a potential therapeutic option for the treatment of PCOS
to reverse metabolic disorders (68, 82, 83).

Cold Exposure
Cold exposure of BAT can increase EE and lead to body weight
loss (84). Cold-stimulated BAT activity is common in human
adults, with a prevalence ranging from 30% to 100% depending on
cohort studies (84). BAT activity could be increased by decreasing
the ambient temperature or by planned cold exposure in human
dwellings, which may further decrease body fat (11). However, the
health benefits of cold exposure were inconsistent in patients and
animals (85, 86). A recent study showed that cold exposure to 4°C
for 20 days reversed the acyclicity of the oestrous cycle and
reduced the circulating levels of testosterone and luteinizing
hormone (LH) by activating endogenous BAT in rats with
PCOS (87). Furthermore, the expression of steroidogenic
enzymes and inflammatory factors was significantly reduced in
the ovaries of rats with PCOS. Histological analysis showed that
cold exposure significantly improved ovulation and fertility with a
reduction in cystic ovarian follicles and an increase in the corpus
luteum in rats with PCOS (87). These findings indicate that cold
exposure may be a novel strategy for the treatment of PCOS.

BAT Transplantation
BAT transplantation could normalize glucose tolerance and
reduce tissue inflammation and diabetes markers of polyuria,
polydipsia, and polyphagia, leading to euglycaemia. These effects
are insulin independent but correlate with BAT recovery in mice
(88). BAT transplantation also significantly increased the levels
of adiponectin and leptin in mice (88). BAT transplantation was
effective in improving energy metabolism and insulin sensitivity,
preventing weight gain induced by a high-fat diet (HFD), and
reversing pre-existing obesity in mice (89). BAT transplantation
significantly improved IR and liver steatosis and reduced body
weight gain with increased oxygen consumption and decreased
total body fat mass in Ob/Ob mice (90).

The recovery of BAT activity could improve PCOS, and
multiple studies have shown that BAT transplantation reversed
polycystic ovaries, improved IR and infertility in rats and mice
with PCOS (91, 92). BAT transplantation could also significantly
enhance endogenous BAT activity and increase the level of
circulating adiponectin and insulin sensitivity, thereby
eventually ameliorating hyperandrogenism, acyclicity polycystic
ovaries and infertility in rats with PCOS (92). In addition, BAT
transplantation dramatically rescued PCOS phenotypes, which is
consistent with the reported result of adiponectin protein
administration (92). A recent study demonstrated that
xenotransplantation of rat BAT could significantly recover
ovarian function and fertility in PCOS mice (91).

Activation of Endogenous BAT to Enhance
BAT Activity
BAT activation by long-term cold exposure and BAT
transplantation does not seem to apply to most patients with
PCOS clinically. Therefore, the activation of endogenous BAT
May 2022 | Volume 13 | Article 847249
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with natural compounds could be an effective novel therapeutic
approach for the treatment of patients with PCOS. It has been
reported that treatment with rutin (a flavonoid) for three weeks
could increase BAT activation and improve thermogenesis and
insulin sensitivity in rats with PCOS (93). Additionally, the
expression of ovarian steroidogenic enzymes was upregulated,
including steroid 17 alpha-hydroxylase/17,20 lyase (P450C17),
aromatase, 3b-hydroxysteroid dehydrogenase (3-HSD), 17b-
hydroxysteroid dehydrogenase (17-HSD) and steroidogenic
acute regulatory protein (STAR). Moreover, treatment with
rutin normalized acyclicity and the serum level of LH, and a
large number of mature ovulated follicles were observed with a
reduction in cyst formation in rats with PCOS (93). An
additional study showed that rutin could enhance the activity
of BAT and induce the formation of beige adipocytes, thereby
ameliorating obesity and IR in obese mice (94). Great efforts have
been made to find effective compounds that can activate BAT for
the treatment of patients with PCOS.
CONCLUSIONS

This review highlights the recent developments and progress in the
biology and pharmacological therapy of BAT for the treatment of
PCOS. We also discuss the thermogenic potential of BAT for the
prevention and treatment of obesity and metabolic diseases. It is
highly important to identify the major brown adipokines and their
roles to discover novel candidates and effective therapeutic
strategies for the treatment of PCOS. BAT has therapeutic
potential as a “metabolic panacea” for anti-glycaemic, anti-
lipidaemic and weight loss effects in the whole body.
Frontiers in Endocrinology | www.frontiersin.org 6
PCOS is a complex reproductive and metabol ic
endocrinopathy of women and the main cause of infertility
with various clinical manifestations. Lifestyle management and
pharmacological interventions are helpful, but the effectiveness is
not consistent, and they do not completely meet the needs of
patients with PCOS. Numerous studies have shown that BAT
activity is decreased in patients with PCOS, and an increase in
the mass and/or activity of BAT may be effective and could
provide a novel therapeutic approach for the treatment of PCOS,
such as cold stimulation, BAT transplantation and drug
activation. BAT may be effective in reversing metabolic
morbidities and inducing weight loss and could become a
novel promising therapy for the treatment of PCOS. However,
further extensive research is required to find the possible
molecular mechanism preclinically and to validate its
significance in women with PCOS clinically.
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