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Abstract: Integration of multi-omics data is a challenging but necessary step to advance our un- 1

derstanding of the biology underlying human health and disease processes. To date, investigations 2

seeking to integrate multi-omics (e.g., microbiome and metabolome) employ simple correlation-based 3

network analyses; however, these methods are not always well-suited for microbiome analyses 4

because they do not accommodate the excess zeros typically present in these data. In this paper, we 5

introduce a bivariate zero-inflated negative binomial (BZINB) model-based network and module anal- 6

ysis method that addresses this limitation and improves microbiome-metabolome correlation-based 7

model fitting by accommodating excess zeros. We use real and simulated data based on a multi-omics 8

study of childhood oral health (ZOE 2.0; investigating early childhood dental disease, ECC) and find 9

that the accuracy of the BZINB model-based correlation method is superior compared to Spearman’s 10

rank and Pearson correlations in terms of approximating the underlying relationships between 11

microbial taxa and metabolites. The new method, BZINB-iMMPath facilitates the construction of 12

metabolite-species and species-species correlation networks using BZINB and identifies modules of 13

(i.e., correlated) species by combining BZINB and similarity-based clustering. Perturbations in correla- 14

tion networks and modules can be efficiently tested between groups (i.e., healthy and diseased study 15

participants). Upon application of the new method in the ZOE 2.0 study microbiome-metabolome 16

data, we identify that several biologically-relevant correlations of ECC-associated microbial taxa with 17

carbohydrate metabolites differ between healthy and dental caries-affected participants. In sum, we 18

find that the BZINB model is a useful alternative to Spearman or Pearson correlations for estimating 19

the underlying correlation of zero-inflated bivariate count data and thus is suitable for integrative 20

analyses of multi-omics data such as those encountered in microbiome and metabolome studies. 21

Keywords: correlation; microbiome; metabolomics; multi-omics; zero-inflation; counts; caries; clus- 22

tering; pathways; network 23

1. Introduction 24

Microbiome data are essential for advancing our understanding of the biological basis 25

of many human diseases and are becoming increasingly available. While descriptions of 26
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taxonomic aspects of the human microbiome are valuable, functional insights are arguably 27

more informative. Accordingly, characterizations of the ways that bacteria interact with 28

the host and the environment via metabolic byproducts and other biochemicals can offer 29

important biological insights in disease pathogenesis, and offer targets for prevention and 30

treatment. However, the complexity of these interactions cannot be underestimated. For 31

example, relevant metabolites can be microbial products, whereas host- or environment- 32

derived metabolites may serve as nutrients or environmental stressors for microbial com- 33

munities. While the availability of microbiome-metabolome and health-disease associated 34

phenotype data is increasing, suitable analysis methods development has not kept pace. 35

Leveraging data on microbiome-metabolome interactions could help illuminate important 36

biological pathways at play and identify bacterial species that influence each other via inter- 37

species activities [1,2]. Importantly, these biological networks and microbial correlations 38

may be influenced by the environment and differ between states of health and disease, as 39

in the case of the oral biofilm microbiome-metabolome and dental caries [3,4]. Therefore, 40

defining and measuring networks among microbial taxa, pathways in which taxa and 41

metabolites are involved, and clusters of inter-correlated taxa are critical for understanding 42

the function of microbial communities in health and diseases. Curated pathway datasets 43

such as KEGG can provide known metabolic pathways involving metabolite networks but 44

are not context-specific. The newly available Whole Genome Sequencing shotgun (WGS) 45

DNAseq for metagenomics and RNAseq for metatranscriptomics (providing information 46

at the at the taxon or gene level), or the earlier 16S sequencing for bacterial taxonomic 47

abundance, paired with metabolome data from the same biofilm samples can provide 48

unique new opportunities for context-specific integrative microbial pathway analyses. 49

Although joint network analyses of microbiome and metabolome data are critical for 50

understanding host-microbiome interactions, the existing computational methods have not 51

been designed for the specific characteristics of microbiome data. Until recently, Pearson 52

or Spearman correlation-based pathway analyses [10] have been popular and robust for 53

gene-gene network analysis for gene expression data; however, these approaches do not 54

consider the excess zeros in microbiome data. Kendall’s Tau and Mutual Information 55

(MI) have been suggested as possible replacements of Pearson or Spearman correlations 56

for non-normal distributions, for example in single-cell RNAseq data [6–8]; however, MI 57

is sensitive to threshold grids in data with excessive zeros, whereas Kendall’s Tau loses 58

information on the continuous scale. More recently, copula-based pathway analysis [9] 59

has been developed to model interactions between genes in single-cell RNAseq data while 60

accommodating their non-normal distribution. Moreover, most existing approaches do 61

not allow for between-group pathway change tests. Therefore, it is challenging to infer, 62

for example, disease-specific microbiome-metabolome pathways and the essential hubs of 63

microbial taxa and metabolites. 64

We propose a de novo pathway analysis that is independent of prior pathway knowl- 65

edge and learns from the observed microbiome and metabolome data generated from 66

matched samples (or at least from the same body sites or subjects, as long as a biological 67

interaction hypothesis is valid). Our proposed method, BZINB-based integration of micro- 68

biome and metabolome for pathway analysis (BZINB-iMMPath), uses the newly developed 69

bivariate zero inflated negative binomial (BZINB) model to directly model the joint distri- 70

bution of a pair of count vectors, where one vector represents microbial species and the 71

other vector represents metabolites, to estimate model-based correlations. The advantage 72

of our method, which uses BZINB, is that we can rigorously handle the excess zeros in the 73

distribution of microbiome counts [14]. Similar to single cell RNAseq data, microbiome 74

data typically exhibit large numbers of zeros for several possible reasons, including the 75

fact that some species may not be present in some samples, or structural zeros (e.g., due to 76

technical artifacts, frequently referred to as "dropout events") represented by excess zeros 77

in sequencing count data. Specifically, two advantages of using BZINB include the realistic 78

assumptions of dropouts [15] in the zero inflated negative binomial (ZINB) distribution that 79

allow the flexible modeling of both biological zeros (in the negative binomial component) 80
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and structural zeros (in logistic regression) to improve model fitting, and the feasibility of 81

estimating correlations in the bivariate negative binomial (BNB) component conditional on 82

the zero inflation component to reflect the underlying correlations. 83

We additionally propose, as another component of BZINB-iMMPath, the use of BZINB 84

correlation measurements to represent the similarities [16] between species in species-wise 85

clustering analysis to identify species modules (i.e., clusters) wherein species are highly 86

correlated. Because the BZINB model accounts for zero inflation in a pair of species, 87

or in individual species when investigating microbiome-metabolome correlations, most 88

species and metabolites can be retained in the analysis rather than excluded because of 89

zero-inflation, a feature that may be of biological importance. 90

To compare the accuracy of BZINB-based correlation with other popular correlation 91

measures, we simulated pairs of correlated microbiome species and metabolite count vec- 92

tors using the bivariate lognormal distribution and the BZINB distribution. We carried 93

out simulations and applications using matched microbiome-metabolome data from a 94

community-based study of childhood oral health/disease (ZOE 2.0 study, investigating 95

early childhood caries or ECC) that sampled 3-5-year-old children’s supragingival den- 96

tal biofilm. We also evaluated the accuracy of module identification using BZINB as a 97

measure of similarity for cut-based clustering by crafting co-varying clusters of count 98

vectors to represent species in semi-parametric simulations. We show that, in real data 99

applications, the new method can identify the crafted clusters with high accuracy. More- 100

over, the integrated pathway analysis identified biologically significant and disease-specific 101

microbial-metabolite pathways and meaningful inter-species interactions. 102

2. Materials and Methods 103

2.1. Description of BZINB Model 104

2.1.1. ZINB model 105

Similar to single-cell data analysis, the probability of dropout per species per sample 106

can be modeled using logistic regression in a framework of a zero-inflated model. The 107

ZINB model has been previously proposed for the analysis of single-cell RNAseq data 108

as a superior and more flexible model fitting compared to Poisson-based methods [13] 109

for individual gene analyses in scRNAseq data, by allowing for both excess zeros and 110

overdispersion. 111

2.1.2. BNB model 112

Cho et al. 2021 began by introducing a bivariate negative binomial (BNB) model based 113

on the Poisson-Gamma mixture model. First, let Rj ∼ Gamma
(
αj, β

)
for j = 0, 1, 2. Consider 114

a pair of random variables (X1, X2), where X1 and X2 are each Poisson-distributed with 115

means of R0 + R1 and δ(R0 + R2), respectively, where δ ∈ R+. These two mean variables 116

are related through a common Gamma-distributed component, R0. Therefore, marginally, 117

X1 and X2 each follow the negative binomial distribution such that Xi ∼ NB
(

α0 + αi, 1
βi+1

)
118

for i = 1, 2, where β1 = β, β2 = δβ. Thus, mean(Xi) =
α0+αi

βi
, var(Xi) =

(α0+αi)(βi+1)
β2

i
, and 119

ρBNB = Cor(X1, X2) = α0√
(α0+α1)(α0+α2)

√
β1β2

(β1+1)(β2+1) . We henceforth denote (X1, X2) ∼ 120

BNB(α0, α1, α2, β1, β2). Therefore, the parameters in ρBNB are estimated by fitting all the 121

data to the BNB model. 122

2.1.3. BZINB model 123

For correlation between a pair of genes in scRNaseq data, a bivariate zero-inflated 124

(BZINB) model was proposed by Cho et al. 2021 that has the ZINB marginals, more param- 125

eters to flexibly accommodate the complexity of the single cell biology, and the estimated 126

correlation conditional on the non-dropout events. With similar assumptions of dropouts 127

observed as excess zeros and the overdispersion problem accentuated in microbiome data, 128

here we extend the BZINB framework for microbial data modeling to compute a unique 129
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correlation measured between species or between species and metabolites. This new unique 130

correlation analysis approach (i.e., BZINB-iMMPath) is model-based and uses the param- 131

eters estimated for the BNB component that is conditional on the probability of being 132

non-dropouts in the BZINB model, defined as described below. 133

A pair of Bivariate Zero-Inflated Negative Binomial (BZINB) variables (Y1, Y2) ∼ 134

BZINB(α0, α1, α2, β1, β2, π1, π2, π3, π4) follows a zero-inflated extension of the Bivariate 135

Negative Binomial (BNB) distribution, where π1, π2, π3 and π4 respectively represent the 136

probabilities of observing nonzero Y1 and Y2, nonzero Y1 only, nonzero Y2 only, and zero 137

Y1 and Y2. Therefore, there is an underlying BNB component of the BZINB model, which 138

is partially unobserved. Marginally, Yj ∼ ZINB
(

α0 + αj, 1
β j+1 , π4−j + π4

)
for j = 1, 2. In 139

other words, without zeros, Yj follows NB
(

α0 + αj, 1
β j+1

)
, and each element of Yj is zero 140

with probability π4−j + π4. Based on our understanding of excess zeros in the microbiome, 141

the BNB components —which can include zeros from the negative binomial distribution— 142

in the BZINB model reflect the underlying correlation between species after accounting 143

for the dropouts (whether structural or technical) in BZINB. It follows that we use the 144

same formula as ρBNB as in the model-based correlation. Therefore, we have ρBZINB = 145

Cor(Y1, Y2) = α0√
(α0+α1)(α0+α2)

√
β1β2

(β1+1)(β2+1) where all the parameters here are from the 146

BNB component and are estimated by fitting all the data to the BZINB model. Although 147

seemingly with the same format, the difference between our defined ρBNB and ρBZINB is 148

whether we assume the presence of zero inflation in the data. Whether all of the data are 149

used or not makes the two correlations different–this is due to the different assumptions in 150

the models (BNB and BZINB) and the different meanings of (α0, ..., β2) parameters between 151

the two models. 152

There are variations of correlation in BZINB, such as the full-model BZINB correlation. 153

That, besides the BNB component, also includes the zero component in the correlation. 154

Simulation results (not shown) suggest this full BZINB model-based correlation introduces 155

noise in the estimation and decreases the estimation accuracy of the underlying correlations. 156

2.2. Existing correlation calculation methods for network/pathway analysis 157

In correlation-based analysis such as network estimation for multi-omics count data, 158

Pearson’s correlations are often used with the assumption of linearity. Previously, weighted 159

correlation network analysis (WGCNA) has been used [10] to identify co-expressed clusters 160

(modules) of highly correlated genes or other features. However, both microbiome and 161

metabolome data contain excessive zeros, and therefore, there may be excessive ties in 162

the data. In this case, Spearman’s rank correlation, even with less stringent assumptions 163

compared to Pearson’s correlation, may still not be an appropriate measure. 164

In this study, we compare ρBZINB used in BZINB-iMMPath to not only ρBNB but 165

also Spearman and Pearson correlation in terms of networks and module identification. 166

The formula for Spearman correlation between vectors X1 = (X1,1, X1,2, . . . , X1,n) and 167

X2 = (X2,1, X2,2, . . . , X2,n) is ρSpearman = 1 − 6 ∑ d2
i

n(n2−1) , where di = rank(X1i)− rank(X2,i). In 168

the case of ties, the average of the ranks is used. The formula for Pearson correlation is 169

ρPearson =
∑(X1,i−X1)(X2,i−X2)√
∑(X1,i−X1)

2
(X2,i−X2)

2 . 170

2.3. Description of microbiome and metabolome data from the ZOE2.0 study 171

The ZOE2.0 study includes 6,404 3-5-year-old children enrolled in public preschools 172

in North Carolina, United States, who underwent clinical dental examinations and biospec- 173

imen collection [23]. Of those, a subset of 300 participants’ supragingival biofilm sam- 174

ples were analyzed and made available for multi-omics (including metagenomics, meta- 175

transcriptomics, and metabolomics) analyses. Accordingly, 300 children have metage- 176

nomics data (WGS DNAseq, called DNA in this paper), 297 have metatranscriptomics 177

(RNASeq) data, and 289 have metabolite data. Microbiome data have been made avail- 178
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able via https://www.ncbi.nlm.nih.gov/bioproject/671299 and metabolome data via 179

https://www.ebi.ac.uk/metabolights/MTBLS2215. As in a previous investigation (cite 180

33423574), ten participants with greater than 30% missing metabolite data and one ineligible 181

participant were excluded. Among those 289 with metabolite data, 109 met the clinical 182

criteria for ECC (i.e., cases) and 180 did not (i.e., non-cases). (cite: 30838597 and 30838598). 183

To allow for comparisons of goodness-of-fit and variations in data sparsity (i.e., per- 184

centage of zeros) we used microbiome data generated by two different popular procedures 185

for mapping and preprocessing metagenomics. Primarily, microbiome DNA data were 186

classified into species-level profiles using a pipeline based on Kraken2 [17] and Bracken 2.5 187

[18] referred to as Kracken2/Bracken in this paper. The pipeline was built using a custom 188

database including human, fungal, bacterial, and the expanded Human Oral Microbiome 189

Database (eHOMD) [19] for microbial reference genomes. There were 417 microbial species 190

identified as "core species" after excluding rare and low-prevalence taxa that were kept in 191

the analysis [5]. In a secondary procedure, the same DNA sequence reads were processed 192

using MetaPhlAn2.2 through the HUMAnN 2.0 pipeline [11,12] with the default micro- 193

bial reference genome in HUMAnN 2.0. Viruses, biosatellites, and unidentified species 194

were filtered out, resulting in 205 species-level taxa remaining available for analysis. The 195

advantage of Kraken2/Bracken for our application is due to the fact that it allowed the 196

use of a custom and contemporary oral microbiome reference database and thus mapped 197

oral/dental species more accurately than HUMAnN 2.0. On the other hand, HUMAnN 198

2.0 allowed not only the identification of species, but also the generation of gene-family 199

and pathway-level data that can be of interest and value in some applications. The real 200

data application of BZINB-iMMPath was done only using Kraken2/Bracken species-level 201

data. Of note, all presented results rely on Kraken2/Bracken data unless HUMAnN 2.0 is 202

explicitly mentioned, such as in goodness-of-fit and percentage of zeros comparisons that 203

are presented in the Appendix. 204

The focus of the work reported in this paper is metagenomics data at the species 205

level, but our new method can be applied to metatranscriptomics (i.e., RNAseq), as well as 206

other levels of data, including gene-family or genes, because all data types are similarly 207

characterized by excess zeros and overdispersion [20]. 208

To obtain metabolomics data, samples were processed using Metabolon’s Ultra Per- 209

formance Liquid Chromatography-tandem Mass Spectrometry pipeline [21,22]. A total of 210

503 named metabolites were identified through peak identification, QC, and correction 211

for day-dependent technical variations [23]. Procedures and descriptions of the obtained 212

metabolite data have been previously reported in detail (cite 33423574 and maybe even 213

34760716). 214

2.4. Simulation study 215

2.4.1. lognormal based simulation 216

We simulated vectors representing pairs of metabolites and species, with theoretical 217

correlations of 0.05, 0.1, 0.3, and 0.5, represent weak to strong correlations, based on the 218

empirical distribution of correlations between the observed counts of pairs of species and 219

metabolites (Figure 1). Each vector consisted of 300 elements drawn from a lognormal 220

distribution, representing natural log-transformed counts. For simplicity, the marginal 221

variance of the log-counts in each vector was set to 1, which was well in the range of the 222

sample variances of the metabolite- and species-wise log-counts in ZOE2.0. 223

Assuming that most missing values in metabolite data are due to low concentration, 224

the counts in each metabolite vector were ranked and assigned a probability based on 225

their rank. These probabilities spanned an interval of 0.3, centered at the pre-determined 226

proportion missing. Let ranki represent the rank of the ith element in the metabolite 227

vector, and let pzero be the proportion of zeros in the vector. Then, the ith element of the 228

vector is set to zero with a probability of pi = (0.5 − (ranki)/300) ∗ 0.3 + pzero. Under the 229

assumption that zeros in microbiome species are typically structural zeros, the elements in 230
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each vector representing a species were randomly chosen to be set to zero after the counts 231

were simulated. 232

Figure 4 and Figure A3, illustrate the of number of zero counts against the mean of 233

nonzero counts of each metabolite and species. These data revealed a decreasing trend in 234

mean counts as the number of zeros increases and informed the selection of simulation 235

parameters. Therefore, vector pairs representing metabolites and species were simulated 236

under the scenarios outlined the first four rows in Table 1. 237

In addition, the four correlation types were compared in simulated vector pairs that 238

represent the relationships between two microbial species. These vectors were simulated 239

based on the scenarios in the last three rows in Table 2. Zero counts were assigned randomly. 240

Figure 1. Empirical Spearman and Pearson correlations between pairs of (Kraken2/Bracken) species
(417); and between pairs of (Kraken2/Bracken) species (417) and metabolites (503); in ZOE 2.0
(n=289). Correlations among complete data exclude subjects with one or more zeros in the pair, and
correlations among data with zeros include all subjects.

Table 1. Marginal log-scale means (before introducing zeros) and number of zeros for simulation
of bivariate lognormal vectors with excess zeros that represent metabolite-species pairs (where X1

represents a metabolite, X2 represents a species) and species-species pairs. Levels of zero inflation
include balanced (similar number of zeros in each vector) with either low or high zero inflation, and
unbalanced (one vector has substantially more zeros than the other).

Relationship Zero Inflation Number of zeros Means

Metabolite-Species

a Balanced, low 30, 60 14, 11
b Balanced, high 150, 200 12, 9
c Nzero,X1 < Nzero,X2 30, 200 14, 9
d Nzero,X1 > Nzero,X2 150, 60 12, 11

Species-Species
a Balanced, low 60, 60 11, 11
b Balanced, high 200, 200 9, 9
c Nzero,X1 < Nzero,X2 60, 200 11, 9
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Table 2. Zero inflation parameters and resulting expected zeros for simulation of bivariate zero-
inflated negative binomial vectors to represent pairs of metabolites and species (where X1 represents
a metabolite, X2 represents a species) and pairs of species. Similar to the scenarios outlined in Table 1,
there are balanced and unbalanced levels of zero inflation. The other BZINB model parameters are
outlined in Supplementary Tables 1 and 2.

Zero Inflation Expected zeros π1 π2 π3 π4

a Balanced, low 30, 60 0.75 0.15 0.05 0.05
b Balanced, high 210, 240 0.1 0.2 0.1 0.6
c Nzero,X1 < Nzero,X2 60, 225 0.2 0.6 0.05 0.15
d Nzero,X1 > Nzero,X2 225, 60 0.2 0.05 0.6 0.15

2.4.2. BZINB based simulation 241

To represent typical pairs as in the real data with various amounts of pairwise and non- 242

pairwise zeros, vector pairs, we carried out a simulation using several combinations of pa- 243

rameters, as summarized in Table A1. For computational efficiency, these vector pairs repre- 244

sent rescaled pairs of count vectors obtained from the real data
(

Xi/
sd(Xi)

30 , i = 1, 2
)

, not al- 245

tering the correlations. We considered underlying correlations of ρBNB = 0.05, 0.1, 0.30, and 0.5246

by using different combinations of shape and scale parameters in the BZINB distribution 247

(Table A1). For each combination of shape and scale parameters (and accordingly, level 248

of correlation of the nonzero counts), we conducted simulations using four combinations 249

of zero inflation parameters (π1, π2, π3, π4), representing balanced low, unbalanced, and 250

balanced high zero inflations (Table 2). 251

We also simulated vector pairs under the BZINB distribution to represent typical 252

pairs of microbial species. These vectors had the same zero inflation parameters as the 253

microbiome-metabolome simulated vector pairs (Table 2), but different means and slightly 254

different correlations. The corresponding shape and scale parameters are presented in 255

Table A2. 256

2.5. Spectral clustering for module identification 257

2.5.1. Approach for BZINB application in spectral clustering 258

Spectral clustering is a flexible method for partitioning networks using the eigenvectors 259

of nodes’ similarity matrices [16], and has been used in many applications, including 260

bioinformatics. Although similarity is typically quantified through the Gaussian kernel, 261

other measures such as cosine similarity [24] have been used to better represent certain data 262

types. In correlation networks, the positive correlation between a pair of nodes (or, in our 263

data, species or metabolites) is scale-invariant and is often used as a measure of similarity 264

when the co-varying dynamics of the nodes is of interest. Therefore, one can reasonably use 265

the estimated correlations in constructing affinity matrices in applications such as spectral 266

clustering to discover novel pathways that differ between study groups or potentially 267

associated with health or disease states. In this paper, we compare the Spearman, BNB, and 268

BZINB correlations in spectral clustering for microbiome count data. 269

For vectors xi and xj, the affinity aij is a measure of similarity such that aij is bounded 270

by 0 and 1, aij is closer to 1 as xi and xj are more similar, and ai j = 0 when i = j. To obtain 271

each affinity matrix from a correlation matrix, we set the diagonal entries to zero. Since 272

the BZINB model-based correlation can only be positive, we force any negative values 273

obtained from Spearman correlations to be zero. This allows us to only predict clusters with 274

and based on positive inter-dependencies. Next, we cluster the nodes using SpectraLib_A 275

[25]. While the affinity matrices are all symmetric, this method can account for directed 276

networks, for example, to incorporate known interactions between species or metabolites, 277

by using asymmetric affinity matrices. 278
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2.5.2. Evaluation of cut-based spectral clustering using crafted semi-parametric simulation 279

We simulated correlated clusters to compare the accuracy of the three types of affinity 280

matrices as follows. We permuted the first 400 species in the caries-free (i.e., healthy-group) 281

ZOE 2.0 participants and split them into 10 clusters of 40 species each. For each cluster k, 282

we generated a random vector Rk ∼ Pois(17, 968) (since 17,968 was the mean count of the 283

400 species). For the nonzero counts of each species j in cluster k, we computed a weighted 284

sum, Zj = 0.9 ∗ Yj + 0.1 ∗ Rk, of each original species’ counts
(
Yj
)

and the random vector, 285

to introduce additional correlation within each cluster. We then estimated the Spearman, 286

BNB, and BZINB correlations between all 400 species to construct three types of affinity 287

matrices. Then, we clustered the species, for each affinity matrix, using SpectraLib_A with 288

10 clusters. In cases where biological knowledge exists regarding the direction of effects in 289

relationships between different ’omics layers, the affinity matrix can be altered to reflect it. 290

To evaluate the accuracy of each correlation type in spectral clustering, we contrasted 291

predicted and assigned clusters to optimize the prediction accuracy as follows: 292

1. If the most common predicted cluster for an assigned cluster is the same as the most 293

common assigned cluster for that predicted cluster, those clusters are matched. 294

2. Then, the overall proportion of accurate predicted cluster assignments is calculated 295

for each possible combination of the remaining clusters. 296

3. The remaining clusters are matched with the combination that maximizes the propor- 297

tion of accurate predicted cluster assignments. 298

2.6. Network visualization 299

To create visual representations of networks, we represented each metabolite and each 300

species as a node, and each correlation as an edge. For easier interpretation of the network 301

diagrams, we included only a subset of metabolites and species. Heimisdottir et al. 2021 302

identified 16 metabolites and Cho et al. 2022 identified 15 species in ZOE 2.0 that were 303

significantly associated with the childhood dental disease outcome of interest (i.e., ECC). 304

In this work, we are focus on the patterns of co-occurrence between these species and 305

metabolites, and examine whether these patterns differ between health and disease states. 306

In network visualizations, we include only the strongest correlations, which are of interest. 307

We visually assessed histograms of all correlations for each correlation type and disease 308

group to determine optimal correlation cutoff points. We applied Cytoscape’s Organic 309

layout and removed node overlaps. To accomplish this, we first obtained the BZINB- 310

based and Spearman correlations between each pair of 16 metabolites and 15 species of 311

interest, as well as between each pair of the 15 species in from ZOE2.0, in each of the 312

two heath/disease (non-ECC/ECC) participant groups. Next, we sought to determine 313

optimal cutoff correlation values to prevent the network visualization from being too large, 314

even for 16 metabolites and 15 species. Therefore, we created network visualizations only 315

for the most correlated species and the most correlated species-metabolites for the ECC 316

and the non-ECC groups. To maintain comparability of the network diagrams, we used 317

the same percentage of strongest correlations for each. After comparing several cut-off 318

values, we determined that using the top 30% of metabolite-species correlations resulted in 319

approximately 100 edges when the two disease groups were plotted on the same diagram, 320

so that the edges and nodes were mostly visible while the network was large enough to 321

illustrate high-degree nodes. 322

Network visualizations were generated with Cytoscape 3.9.1 [28]. Metabolite su- 323

perpathways were highlighted by node color, and edge stroke color was used to denote 324

health/disease (non-ECC/ECC) when correlations from both participant groups were 325

plotted together. 326

3. Results 327

3.1. The BZINB model is a good fit for the ZOE2.0 microbiome and metabolome data 328

First, we sought to identify suitable distributions to model the paired metabolome and 329

species-level microbiome count data. We assumed that proper normalization in microbiome 330
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and metabolome data have been carried out. Zeros present in the original counts will remain 331

as zeros after normalization (RPK, RPKM or CPM). 332

Specifically, we evaluated model fits of three distributions with multiple randomly 333

selected pairs of species and metabolites from ZOE2.0. Count data naturally correspond to 334

a Poisson distribution, while the negative binomial distribution is an extension of Poisson 335

that allows for overdispersion. Non-zero data can be transformed to lognormal to improve 336

fit, particularly due to the long right-tailed distribution. It is important to consider that 337

many species and metabolites exhibit large proportions of zeros. Therefore, candidate 338

distributions included (1) zero-inflated Poisson, (2) zero-inflated negative binomial, and 339

(3) zero-inflated lognormal. For each vector, model parameters were estimated using the 340

nonzero counts from the real data. Numbers of zeros were simulated following a binomial 341

distribution with probability p equal to the proportion of zeros in the real-data vector, and 342

the remaining counts were simulated based on the estimated model parameters. 343

The simulated vectors from the zero-inflated Poisson distribution did not capture the 344

overdispersion in most of the real-data vectors (Figure A1). The zero-inflated negative 345

binomial distribution was found to adequately capture the data distribution of metabolite 346

and microbiome (Figure 2). Because the negative binomial distribution takes on discrete 347

values, we did not evaluate goodness-of-fit using the Kolmogorov-Smirnov test in this case. 348

Further, using the Kolmogorov-Smirnov test, we assessed the goodness-of-fit of the 349

lognormal distribution to metabolite and species data in ZOE2.0 (Figure 3). Because the 350

Kolmogorov-Smirnov test is only applicable to continuous distributions, only the nonzero 351

counts were included. 11.5% of metabolites had p-values less than 0.05, suggesting that 352

the zero-inflated lognormal distribution was a good fit for most metabolite data. On the 353

other hand, the zero-inflated lognormal distribution was not a good fit for over 20% of 354

the Kraken2/Bracken species while it was a good fit for almost all HUMAnN 2.0-derived 355

species in ZOE2.0 (Figure A2). Also, based on a visual comparison of Kraken2/Bracken 356

real data and simulated zero-inflated lognormal count vectors (Figure 2), the zero-inflated 357

lognormal distribution appeared to represent species data well. 358
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Comparison of Simulated and Real Metabolite and Species Counts

(a)

(b)

Figure 2. Evaluation of Goodness of Fit for the ZINB/NB and log-normal models by comparing the
histogram of frequency between the simulated data and real data processed in Kraken2/Bracken. The
2nd and 4th columns are the real data with one species per figure. The 1st and 3 columns are the ZINB
simulated data using the parameters estimated from the corresponding species. 1st and 2nd columns
illustrate metabolites and 3rd and 4th columns present microbial species. a denotes ZINB/NB-based
simulation and b denotes log-normal based simulation. (a) For two randomly selected metabolites
and two randomly selected species (Kraken2/Bracken), comparison of simulated counts drawn from
ZINB distribution (with parameters obtained from models fitted on the real data) and the real data. If
the real data have less than 50 out of 289 zeros, the simulated counts are drawn from the negative
binomial distribution with no zero inflation. Red vertical lines represent model-based means for
each metabolite and species. (b) For two randomly selected metabolites and two randomly selected
species (Kraken2/Bracken), comparison of simulated counts drawn from (ZI-)lognormal distribution
(with parameters obtained from models fitted on the real data) and the real data. If the real data have
no zeros, the simulated counts are drawn from the lognormal distribution with no zero inflation. Red
vertical lines represent the log-scale means of the counts for each metabolite and species.

Figure 3. P-values obtained from lognormal (parameters from models fitted on nonzero counts for
each metabolite and species) Kolmogorov-Smirnov test for ZOE 2.0 metabolites and Kraken2/Bracken
microbiome species.
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Figure 4. Number of zeros plotted against mean log nonzero count for each metabolite, and number
of zeros plotted against mean log nonzero count for each Kraken2/Bracken species.

3.2. Estimation accuracy of underlying correlation in simulated correlated pairs of count data 359

vectors 360

We evaluate the estimation accuracy of underlying correlations across our measures 361

of correlation for each simulated pair of vectors. The four methods are (1) correlation based 362

on the BZINB model (fitted with at most 1,000 E-M iterations); (2) correlation based on the 363

BNB model (fitted with at most 1,000 E-M iterations); and (3) Pearson and (4) Spearman 364

correlation on the vectors after elements were set to zero. For each of these simulations, the 365

mean and median correlation approximations were based on 1,000 replicates. 366

In nearly all cases, BZINB and BNB-based correlations were closer to the true and 367

theoretical correlation compared to the Spearman correlation (Figure 5 and Figure 6). As 368

the number of zeros in either vector increased, the Spearman and model-based correlations 369

tended to be lower than the true value. Similarly, as the theoretical correlation increased, the 370

Spearman and model-based correlations also tended to be lower than the true value. These 371

patterns were more noticeable with the Spearman correlation compared to the model-based 372

correlations. BZINB-based correlations were more accurate than Spearman and BNB-based 373

correlations in cases of high simulated underlying correlation or with more zeros, more 374

noticeably when the simulated correlation was approximately 0.3 or higher. 375

Figure 5. Mean approximated correlation for simulation of lognormal vectors representing pairs of
metabolites and species corresponding to the (a) balanced, low, (b) balanced, high, (c) unbalanced,
case 1, (d) unbalanced, case 2 expected numbers of zeros (parameters in Table 1; mean approximated
correlation for simulation of lognormal vectors representing pairs of species corresponding to the (e)
balanced, low, (f) balanced, high, (g) unbalanced expected numbers of zeros (parameters in Table 2).
Each figure compares Spearman, Pearson, BNB-based, and BZINB-based correlations for five values
of underlying correlation from the distributions where the simulated vectors are drawn from.
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Figure 6. Mean approximated correlation for simulation of BZINB vectors representing pairs of
metabolites and species corresponding to the (a) balanced, low, (b) balanced, high, (c) unbalanced,
case 1, (d) unbalanced, case 2 expected numbers of zeros (parameters in Table 3 and Table A1);
mean approximated correlation for simulation of BZINB vectors representing pairs of species corre-
sponding to the (e) balanced, low, (f) balanced, high, (g) unbalanced, case 1, (h) unbalanced, case 2
expected numbers of zeros (parameters in Table 3 and Table A2). Each figure compares Spearman,
Pearson, BNB-based, and BZINB-based correlations for five values of underlying correlation from the
distributions where the simulated vectors are drawn from.

Table 3. lognormal simulations (metabolome-microbiome)

Theoretical Spearman Pearson BNB BZINB

1a

0.5

0.273 (0.056) 0.374 (0.115) 0.383 (0.047) 0.524 (0.058)
1b -0.011 (0.06) 0.075 (0.122) 0.112 (0.054) 0.153 (0.21)
1c 0.058 (0.058) 0.213 (0.118) 0.188 (0.049) 0.339 (0.18)
1d -0.064 (0.06) 0.131 (0.123) 0.181 (0.07) 0.435 (0.205)

2a

0.3

0.181 (0.058) 0.223 (0.096) 0.241 (0.058) 0.313 (0.08)
2b -0.007 (0.058) 0.046 (0.099) 0.081 (0.048) 0.064 (0.127)
2c 0.038 (0.06) 0.13 (0.101) 0.124 (0.06) 0.146 (0.144)
2d -0.043 (0.062) 0.08 (0.093) 0.106 (0.064) 0.215 (0.171)

3a

0.1

0.071 (0.058) 0.076 (0.071) 0.08 (0.061) 0.077 (0.068)
3b -0.002 (0.058) 0.019 (0.071) 0.053 (0.041) 0.019 (0.05)
3c 0.015 (0.059) 0.042 (0.071) 0.052 (0.053) 0.027 (0.053)
3d -0.019 (0.059) 0.029 (0.07) 0.049 (0.046) 0.045 (0.07)

4a

0.05

0.039 (0.059) 0.042 (0.065) 0.05 (0.052) 0.042 (0.048)
4b 0 (0.058) 0.007 (0.063) 0.045 (0.036) 0.014 (0.042)
4c 0.009 (0.056) 0.023 (0.061) 0.036 (0.042) 0.016 (0.034)
4d -0.01 (0.059) 0.012 (0.065) 0.04 (0.042) 0.025 (0.045)

Table 4. lognormal simulations (within microbiome)

Theoretical Spearman Pearson BNB BZINB

1a
0.5

0.25 (0.058) 0.367 (0.11) 0.351 (0.047) 0.52 (0.065)
1b 0.011 (0.061) 0.121 (0.13) 0.102 (0.046) 0.228 (0.242)
1c 0.052 (0.06) 0.203 (0.123) 0.173 (0.051) 0.356 (0.191)

2a
0.3

0.167 (0.06) 0.223 (0.102) 0.226 (0.056) 0.319 (0.083)
2b 0.01 (0.057) 0.077 (0.107) 0.073 (0.041) 0.089 (0.151)
2c 0.032 (0.059) 0.124 (0.099) 0.114 (0.054) 0.156 (0.154)

3a
0.1

0.064 (0.059) 0.075 (0.072) 0.082 (0.061) 0.078 (0.073)
3b 0.006 (0.06) 0.027 (0.077) 0.048 (0.037) 0.022 (0.055)
3c 0.014 (0.057) 0.042 (0.073) 0.055 (0.046) 0.028 (0.055)

4a
0.05

0.034 (0.059) 0.04 (0.064) 0.052 (0.051) 0.041 (0.05)
4b 0.002 (0.061) 0.013 (0.063) 0.043 (0.035) 0.014 (0.041)
4c 0.006 (0.059) 0.022 (0.067) 0.039 (0.04) 0.016 (0.034)
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Table 5. BZINB-based simulations (metabolome-microbiome)

Theoretical Spearman Pearson BNB BZINB

1a

0.4978

0.329 (0.056) 0.416 (0.113) 0.409 (0.047) 0.48 (0.07)
1b 0.177 (0.069) 0.192 (0.146) 0.184 (0.067) 0.274 (0.224)
1c 0.064 (0.063) 0.18 (0.128) 0.135 (0.056) 0.321 (0.2)
1d 0.09 (0.058) 0.185 (0.118) 0.162 (0.056) 0.318 (0.203)

2a

0.300

0.228 (0.061) 0.257 (0.083) 0.279 (0.055) 0.275 (0.074)
2b 0.195 (0.065) 0.156 (0.103) 0.166 (0.056) 0.132 (0.164)
2c 0.016 (0.057) 0.086 (0.082) 0.071 (0.047) 0.118 (0.151)
2d 0.026 (0.058) 0.09 (0.085) 0.086 (0.053) 0.131 (0.164)

3a

0.100

0.135 (0.059) 0.114 (0.067) 0.202 (0.068) 0.094 (0.061)
3b 0.209 (0.063) 0.129 (0.076) 0.151 (0.047) 0.046 (0.082)
3c 0.005 (0.057) 0.026 (0.066) 0.053 (0.04) 0.019 (0.046)
3d 0.008 (0.058) 0.028 (0.065) 0.066 (0.047) 0.021 (0.052)

4a

0.050

0.11 (0.06) 0.065 (0.065) 0.125 (0.067) 0.054 (0.047)
4b 0.205 (0.064) 0.105 (0.076) 0.122 (0.049) 0.032 (0.062)
4c 0.002 (0.057) 0.013 (0.063) 0.039 (0.034) 0.013 (0.027)
4d 0.001 (0.058) 0.014 (0.063) 0.04 (0.036) 0.015 (0.038)

Table 6. BZINB-based simulations (within microbiome)

Theoretical Spearman Pearson BNB BZINB

1a

0.486

0.334 (0.057) 0.412 (0.094) 0.407 (0.044) 0.461 (0.061)
1b 0.2 (0.066) 0.198 (0.13) 0.187 (0.059) 0.27 (0.22)
1c 0.046 (0.058) 0.17 (0.108) 0.131 (0.047) 0.287 (0.191)
1d 0.051 (0.06) 0.163 (0.105) 0.131 (0.047) 0.332 (0.194)

2a

0.306

0.239 (0.058) 0.264 (0.081) 0.303 (0.05) 0.282 (0.071)
2b 0.207 (0.061) 0.161 (0.093) 0.167 (0.051) 0.123 (0.157)
2c 0.017 (0.059) 0.088 (0.083) 0.079 (0.047) 0.109 (0.139)
2d 0.019 (0.061) 0.09 (0.082) 0.089 (0.047) 0.126 (0.151)

3a

0.100

0.132 (0.059) 0.104 (0.069) 0.156 (0.061) 0.088 (0.058)
3b 0.204 (0.064) 0.113 (0.077) 0.132 (0.05) 0.045 (0.081)
3c 0.006 (0.058) 0.03 (0.068) 0.045 (0.038) 0.025 (0.056)
3d 0.005 (0.058) 0.028 (0.069) 0.044 (0.039) 0.026 (0.058)

4a

0.049

0.109 (0.06) 0.066 (0.066) 0.135 (0.066) 0.055 (0.047)
4b 0.208 (0.062) 0.107 (0.07) 0.12 (0.046) 0.03 (0.058)
4c 0.004 (0.056) 0.014 (0.06) 0.043 (0.034) 0.011 (0.017)
4d 0.005 (0.056) 0.014 (0.06) 0.04 (0.035) 0.012 (0.022)

3.3. Accuracy evaluation of identified species modules using semi-parametric simulation 376

We sought to evaluate the accuracy of species modules identification using BZINB- 377

based correlations compared to other correlations for spectral clustering. The ground truth 378

was simulated using semi-parametric simulations as described in the Methods section. In 379

the crafted semi-parametric simulated dataset representing counts for species belonging to 380

10 clusters (Figure 7a-b), we constructed affinity (distance) matrices using correlations from 381

three methods (BZINB, BNB and Spearman correlations) in spectral clustering of species. 382

To evaluate which method produces the most accurate and robust predicted 10 clusters, 383

when different distance matrices were used, we compared (1) proportions of correctly 384

predicted clusters, (2) the Adjusted Rand Index (ARI), and (3) the distance between the 385

correlation matrices of the count matrices before and after adding cluster signals. For all 386

resulting predicted clusters, there were instances when two or more separately assigned 387

clusters were predicted to be essentially the same cluster (Figure 7c-e). This is likely due to 388

the underlying similarities between species of different clusters in the original count data. 389

Firs, while several approaches exist to quantify clustering accuracy, we considered the 390

proportions of species in each assigned cluster that were predicted to be in the same cluster. 391
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We found that in the data with simulated clusters (simulated as in Methods Section 2.4.2), 392

using the BZINB-based correlation resulted in the highest overall proportion of accurate 393

cluster assignments, while the BNB-based correlation resulted in the lowest accuracy 394

(Figure 7g). Clusters that were generated using BZINB correlations had up to 85% accuracy, 395

and most had at least 65% accuracy. On the other hand, most of the Spearman correlation- 396

based clusters had between 55% to 75% accuracy. There was a moderate percentage (40-55%) 397

of inaccurately predicted BNB correlation-based clusters. 398

Second, we evaluated the accuracy of the predicted clusters for each correlation type 399

using the ARI. Higher ARI indicates higher consistency between the observed and the 400

simulated cluster membership. In concordance with the proportion of accurate cluster 401

assignments, the affinity matrix based on the BZINB-based correlation resulted in an ARI 402

of 0.43, which was the highest among the three. The ARI for the BNB-based and Spearman 403

correlations were 0.38 and 0.34 respectively. Therefore, BZINB model-based clustering 404

provides the best clustering results. 405

Third, we compared the three methods according to the distance between correlation 406

matrices. The distance between two correlation matrices (where BZINB correlations were 407

calculated for each pair of species) with partitions representing clusters is one way to 408

compare networks of microbial species or other multi-omics between two health/disease 409

groups. Further, distances between correlation matrices of two health/disease states 410

within each species-cluster allows the determination of clusters that are differentially 411

inter-correlated between these conditions. 412

Different types of correlation measurements vary in terms of power for detecting 413

between-network differences. Therefore, to compare the correlation types in quantifying the 414

difference between a network with clusters of highly correlated species and a network with 415

clusters of weakly correlated species, we computed distances between the two networks 416

for nested sets of clusters. The first set was the cluster with the greatest distance, and we 417

proceeded by sequentially adding clusters in order of decreasing distances. We used the 418

Frobenius norm of the absolute difference between the correlation (sub-)matrices as the 419

distance measure because it accounts for all matrix entries and is easily understood as 420

an extension of the Euclidean distance between vectors. This was done using the BNB- 421

based, BZINB-based, and Spearman correlation matrices and their corresponding cluster 422

predictions. Distances between two correlation networks were consistently maximized 423

using BZINB correlations, while they were the lowest using Spearman correlations for all 424

but one of the cluster sets (Figure 7f). 425
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Figure 7. (a) Heatmap of BZINB-based correlation between Kraken2/Bracken counts of 400
of the species in ZOE2.0 in a random order; (b) Heatmap of BZINB-based correlation of the
Kraken2/Bracken count data (in the same order as in (a)) after introducing simulated clusters;
(c-e) Each column of cells represents a true cluster based on the simulation (b), and the colors repre-
sent the predicted clustering using affinity matrix made from (c) BNB, (d) BZINB, and (e) Spearman
correlations; (f) Distance (Frobenius norm) between the correlation matrices of nested predicted
clusters between data with (as in Figure 7b) and without (as in Figure 7a) increased correlations that
represented the clusters: the first set (number of clusters = 1) is the predicted cluster with the greatest
distance between correlation matrices. For each increase in the number of clusters, we included an
additional cluster in the order of decreasing distances. This was done using the BNB-based, BZINB-
based, and Spearman correlation matrices and their corresponding cluster predictions; (g)Violin plot
of cluster-wise percent accuracy for each of the 10 clusters, comparing BNB, BZINB, and Spearman
correlation-based affinity matrices.

3.4. Application in in the ZOE2.0 study 426

3.4.1. Interactions among commensal species and among ECC-associated species 427

The most abundant species in a microbial community are of natural interest when 428

examining microbial community dynamics in dysbiotic conditions such as those leading 429

to the development of dental caries development. They represent a group of commensal 430

species that may be perturbed in the presence of dental disease. Between the top 10 most 431

abundant species in ZOE2.0, there are stronger correlations in the context of disease (ECC 432

group) compared to the caries-free (non-ECC) group (Figure 8). The Spearman, BNB, 433

and BZINB-based correlations between the 10 most abundant species are very similar 434

because these species have no missing counts. In contrast, when one or more species have 435

higher proportions of zeros, there may be a larger difference between the BNB and BZINB 436

correlations. This is in accordance with simulation results, where all the correlation types 437

were similar under few zeros in both vectors, while the different correlation types were less 438

similar when there were excess zeros in one or more of the vectors 439
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Figure 8. Heatmaps of BZINB-based and Spearman correlations between the top 10 species with
the highest overall abundance for each health/dental disease group (non-ECC versus ECC) in the
ZOE2.0 Kraken2/Bracken data.

We also examined interactions between metabolites and species that have been pre- 440

viously shown to be strongly associated with the presence of ECC. Therefore, next, we 441

focused on the set of 15 metabolites and 16 species that have been previously identified to 442

be associated with ECC in differential abundance analyses [5,27]. To understand these ECC- 443

associated interaction networks/pathways, we compared correlations of between-species 444

networks and species-metabolite networks as follows. First, we compared BZINB-based 445

(Figure 10) and Spearman-based correlation between-species networks (Figure 11). We 446

found that Veillonella atypica is highly correlated with several ECC-associated Prevotella 447

species among children affected with ECC using both of these correlations (Figure 10 and 448

Figure 11).On the other hand, many of these Prevotella species tend to be strongly correlated 449

with Leptotrichia, Lachnospiraceae, and Lachnoanaerobaculum species in children unaffacted by 450

ECC. This points to two possible co-abundance patterns: one where Prevotella, Leptotrichia, 451

Lachnospiraceae, and Lachnoanaerobaculum taxa may coexist in biofilms without disease, and 452

another pattern of mutual benefit among V. atypica and Prevotella species when disease is 453

present. In this case, the co-abundance pattern between these two species can be explained 454

by their beneficial interrelation in metabolic activities: carbohydrates and sugar alcohols 455

from the diet are subjected to glycolysis, which creates anaerobic conditions by consuming 456

oxygen, and produces pyruvate that can be converted into lactate by Prevotella species. 457

On the other hand, Veillonella atypica is an anaerobic bacteria that uses lactate as their sole 458

carbon source, converting into weaker acids, such as acetate and propionate [32]. Between 459

the 15 species of interest, the BZINB correlation network included only one strong corre- 460

lation involving Streptococcus mutans and Veillonella atypica in healthy subjects, whereas 461

the Spearman correlation network did not include Streptococcus mutans at all. Streptococcus 462

and Veillonella species are very common in the supragingival oral biofilm, and Mashima 463

et al. 2015 showed a Streptococcus-Veillonella link in early dental plaque formation–in fact, 464

Streptococcus mutans is well-known as a major lactic acid producer from the fermentation of 465

dietary carbohydrates, which benefits Veillonella species since it utilize lactate produced 466

by Streptococcus mutans and converts it into weaker acids, such as acetate and propionate 467

contributing to acid neutralization. Therefore, the identified strong correlation between 468

the two species is reasonable. However, when acid production occurs at a greater rate 469

and frequency than that of acid neutralization, dental caries will develop. So, in subjects 470
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with caries, Veillonella atypica was more abundant compared to those without caries (Fig- 471

ure 9). Therefore, the Streptococcus mutans-Veillonella atypica dynamic may be somewhat 472

overpowered by Streptococcus mutans once ECC develops. 473

Figure 9. Scatterplot illustrating the comparison of relationships between S. mutans and V. atypica
abundances between health (non-ECC) and disease (ECC) groups.

Figure 10. BZINB correlations between species. The strongest 30% of correlations are included in the
diagrams, and the color of the lines represent whether the correlation was strong in one or both of the
health/disease groups.
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Figure 11. Spearman correlations between species. The strongest 30% of correlations are included in
the diagrams, and the color of the lines represent whether the correlation was strong in one or both of
the health/disease groups.

Additionally, we compared BZINB-based (Figure 12) and Spearman correlations- 474

based species-metabolite networks (Figure 13). In the oral biofilm, when diet-associated 475

carbohydrates are present, carbohydrate-degrading species tend to increase in abundance 476

and the local environment pH may decrease [29]. To observe the differences in species that 477

are highly correlated with carbohydrates of interest in healthy subjects and subjects with 478

ECC, we focused on interpretation of four carbohydrates that were previously shown to 479

be significantly and positive associated with ECC in Heimisdottir et al. 2021. We used the 480

BZINB-based correlations because some of the species had excessive zeros. For each of 481

the five carbohydrates, we compared the strongest 5% of metabolite-species correlations 482

between health/disease groups. In caries-affected participants, the amount of three of the 483

carbohydrates (fucose, sedoheptulose-7-phosphate, and N-acetylneuraminate) is strongly 484

correlated with many Prevotella species. According to Takahashi et al. 2005, Prevotella 485

neutralizes pH but may also favor the presence of other pathogenic species. In healthy 486

subjects, we found the carbohydrates to be correlated with Streptococcus, Fusobacterium, and 487

Selenomonas species, many of which have been described as carbohydrate-degrading or 488

pH-neutralizing in the oral biofilm [30,31], or are a core part of the normal flora. In the 489

BZINB network, 3-(4-hydroxyphenyl)lactate (HPLA) had many strong correlations with 490

various species in participants with ECC but much less among unaffected ones. HPLA 491

is a metabolite in the tyrosine metabolism pathway that functions similarly to lactate, 492

which has been previously shown to be an important metabolic regulator in multiple 493

pathways (including glucose metabolism) in various parts of the human body [34,35]. The 494

differing strengths of correlations in the two health/disease groups could indicate that 495

HPLA is metabolized differently by ECC-associated species in the context of a dental caries- 496

promoting environment, and may be a candidate for further investigation in its role in ECC 497

development. Furthermore, HPLA is strongly associated with many Streptococcus species 498

in healthy subjects and with many Prevotella species among those with ECC, similarly to 499

what was found for ECC-associated carbohydrates. 500
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Figure 12. BZINB network between species and metabolites including a node degree table. The
strongest 30% of correlations are presented in the diagrams and line colors represent whether the
correlation was strong in one or both of the health/disease groups.

Figure 13. Spearman network between species and metabolites, presenting positive correlations only
and including a node degree table. The strongest 30% of positive correlations are presented in the
diagrams, and line colors represent whether the absolute correlation was strong in one or both of the
health/disease groups.

Overall, Spearman and Pearson correlations are not suitable for data with excess zeros 501

because Spearman is influenced by ties and Pearson requires a linear association. The 502

negative binomial distribution accounts for the presence of zeros, which makes the BNB 503

distribution a better choice for modeling the relationship between a typical pair of species 504

or metabolites. When there are excess zeros in either or both species or metabolites in a pair, 505

the BZINB model can account for the zero-inflation while approximating the correlation of 506

the nonzero components. 507

3.5. Species modules identified using BZINB-based correlation and spectral clustering 508

We applied cut-based spectral clustering to the ZOE 2.0 data separately for each 509

health/disease group. We compared results between BZINB-based and Spearman correla- 510

tions when constructing the affinity matrix. To determine the optimal number of clusters, 511
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we plotted the eigenvalues of the graph Laplacian for each affinity matrix (Appendix Fig- 512

ure 5). According to the eigengap method [26], the optimal number of clusters was 2 513

for each affinity matrix; for more interpretable results, we set the number of clusters to 514

be 6 in each case. To visualize the results of cut-based clustering, we created heatmaps 515

of standardized counts for all species, where the species are grouped and annotated by 516

predicted cluster and the study participants are annotated according to health/disease 517

and batch group. There were visible within-cluster similarities and differences between 518

the clusters for count patterns (Figure 14). Many species that were predicted to be in the 519

second and fifth (shown in blue and orange, respectively, in the top bars of Figure 14) in 520

the healthy group had been classified in third cluster (shown in green) in the disease group. 521

In other words, some species that were more similar to the first and fifth clusters in the 522

healthy group were instead more similar to the third cluster in subjects with ECC. The 523

different co-varying patterns in these species that may be a reflection of differences in the 524

microbial community structure and function in ECC. 525

Figure 14. Heatmap of species abundance illustrating species module identification results (species are
columns, modules are presented with different colors) using BZINB-based species spectral clustering.
Each column represents a single species. Columns are ordered by the clusters predicted from the
affinity matrix based on the BZINB correlations between species in the healthy (non-ECC) group.
The columns are annotated to show and compare the estimated clusters within health (non-ECC)
and disease (ECC) groups. Each row represents a participant, and the rows are ordered based on
hierarchical clustering. Rows (n=289) are annotated to denote health/disease and batch groups.
Standardized counts were used.

4. Discussion 526

In this paper, we introduce a new method BZINB-iMMPath entailing a bivariate 527

zero-inflated negative binomial (BZINB) model-based correlation for network analysis 528

of pairs of vectors of omics count data and module identification. The model makes 529

reasonable assumptions regarding dropouts and excess zeros as structural zeros in the 530

observed microbiome data compared to other types of zeros. Therefore, the microbial 531

correlation distribution is assumed to be that of the latent bivariate negative binomial 532

model. Our approach improves the estimation of correlations compared to the traditional 533

Pearson correlation and the more robust Spearman’s rank correlation coefficients. In 534

contrast to Pearson and Spearman correlations, the BZINB model accommodates zeros 535

in a flexible manner (in either or both vectors of each pair) and estimates the correlation 536

under the bivariate negative binomial model. For each pair of omics features, the BZINB 537

model is fitted and a model-based correlation is computed from the estimated parameters. 538

Using the model, we can calculate the correlations between pairs of omics features in the 539

same layer (i.e., between pairs of microbial species) or between two different layers (i.e., 540
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between pairs of metabolites and species). These correlations may then be used in other 541

applications such as networks’ visual representations and identification of clusters of omics 542

features. Accordingly, we applied the new method to microbial species and metabolite 543

data obtained in an oral microbiome study of early childhood dental disease. Using visual 544

comparisons and goodness-of-fit tests, we determined that the negative binomial and 545

lognormal distributions were appropriate for modeling most metabolites and species. In 546

addition to accounting for zero inflation, marginally, the negative binomial distribution is a 547

natural choice to model count data. Therefore, our model-based correlation approach has 548

several advantages over conventional measures of correlation when applied to bivariate 549

count data with excess zeros. In addition, correlations estimated from BZINB can be 550

used as the affinity matrix in the cut-based spectral clustering method for species module 551

identification in zero-inflated microbiome data. Modules can be compared between groups 552

of interest (e.g., health versus disease) and help identify species that demonstrate important 553

between-group pattern differences. 554

To evaluate the performance of BZINB-iMMPath, we used real data-inspired simula- 555

tions to estimate the accuracy of underlying correlations in microbiome data; real data-based 556

semi-parametric simulations to access the accuracy of module identification; and finally, 557

we applied it in a sizeable oral microbiome study to identify ECC-associated microbial 558

networks and modules. Specifically, we simulated pairs of count vectors representing 559

typical metabolite and microbial species vectors from ZOE 2.0 to compare the accuracy 560

of Spearman, BNB, and BZINB model-based correlations. We fitted the BZINB model to 561

each metabolite-species and species-species pair to construct visualizations of ECC disease 562

group-specific filtered networks and build affinity matrices for cut-based spectral clustering. 563

Using the simulated vector pairs, the BZINB model-based correlation was on average closer 564

to the underlying correlation when there were more zeros in one or both vectors compared 565

to the Spearman correlation coefficient. Notably, the average BZINB-based correlation was 566

higher than the other correlation types when the underlying correlation was high (>0.3) and 567

when there was zero inflation in at least one of the vectors. Therefore, we recommend using 568

the BZINB-based correlation for the identification of strongly correlated pairs when zero 569

inflation is present. The application in ZOE 2.0 not only highlighted previously known net- 570

works involving carbohydrate metabolites but also revealed novel regulation relationships 571

between species and metabolites, and ECC-associated species modules. 572

The most noticeable limitation of the new approach is that the BZINB model allows for 573

only positive model-based correlations. Ideally, the off-diagonal entries in the covariance 574

matrix in BZINB should allow both positive and negative values. However, in most omics 575

contexts, positively correlated features are arguably of most of interest. For example, in 576

gene expression data, the vast majority of genes do have positive or near-zero correlation 577

[36,37]. Positive correlations among bacterial species are also more common compared to 578

negative correlations (Figure 1). Of course, there are cases where negative correlations are 579

of interest, for example in the context of species competition, other correlation measures 580

could be used. However, incorporating negative correlations can introduce another layer 581

of complexity to network analysis applications for multi-omics and cluster identification. 582

For example, negative correlations may be considered with different importance compared 583

to positive correlations. Further, negative correlations within one layer of omics (such as 584

microbiome), which could represent competition, may be more of interest compared to 585

negative correlations between layers (e.g., microbiome and metabolome), which could be 586

more complex in terms of direction of influence. This leaves room for future methods de- 587

velopment, for example, wherein other bivariate (or multivariate) models can be evaluated 588

in terms of goodness-of-fit for certain types of omics data that could accommodate negative 589

correlations. Meanwhile, identifying positive correlations between bacteria and metabolites 590

is a logical priority, because of biological interest regarding 1) which bacteria generate or 591

up-regulate which metabolites, and 2) which biochemicals are associated with bacterial 592

abundance (e.g., possibly growth). Meanwhile, negative correlation (like inhibition or 593
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competition) is harder to interpret as detailed above, and in our BZINB model, positive 594

correlations are presented as such and negative correlations are estimated as near-zero. 595

In our application to the ZOE 2.0 study microbiome data, we determined that (1) there 596

were relatively fewer zero counts when taxa were identified through the ora health-specific 597

Kraken2/Bracken pipeline, compared to the data from the still widely used HUMAnN 2.0 598

pipeline; (2) zero inflation does not appear to be a significant issue for many of the named 599

metabolites; and (3) in the absence of excess zeros, other measures of correlation appear 600

to be just as adequate as the BZINB-based correlation. Because HUMAnN 2.0 generated 601

data are very sparse, our method is even more powerful in those data, as well as similarly 602

sparse gene-level metagenomics or metatranscriptomics data. 603

In sum, in this paper we demonstrate that the new method based on the BZINB 604

model is a useful alternative to Spearman or Pearson correlation in estimating underlying 605

correlations for bivariate count data that are zero-inflated in one or both dimensions. 606

Because the model accommodates both technical and true zeros, it is suitable for multi- 607

omics data types including microbiome and metabolome. To identify differences between 608

health/disease groups, we prioritized and illustrated the strongest correlations within each 609

group, allowing the visualization of important dynamic relationships and their between- 610

group comparison. Finally, these correlations can also be used in identifying modules, 611

i.e., clusters of correlated metabolites and microbial species, which could be of biological 612

interest both in terms of disease pathogenesis and intervention targeting. 613
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Appendix A 642

Table A1. Shape and scale parameters used to obtain various values of correlation for BZINB
simulation for vectors pairs that represent pairs of metabolites and species

α0 α1 α2 β1 β2 ρBZINB

1 0.2 0.1 0.3 20 40 0.498
2 0.3 0.5 0.8 12 21 0.300
3 0.15 1.1 1.5 20 30 0.100
4 0.05 0.85 1 30 50 0.050

Table A2. Shape and scale parameters used to obtain various values of correlation for BZINB
simulation for vectors pairs that represent pairs of species

α0 α1 α2 β1 β2 ρBZINB

1 0.3 0.3 0.3 30 40 0.486
2 0.35 0.7 0.8 20 30 0.306
3 0.1 0.75 1 30 30 0.100
4 0.05 0.9 1 50 50 0.049

Figure A1. Comparison of simulated counts drawn from (ZI-)Poisson distribution (with parameters
from model fitted on the real data) and real data of 4 randomly selected metabolites and species. Red
vertical lines represent the model-based means for each metabolite and species.
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Figure A2. P-values obtained from lognormal (parameters from models fitted on nonzero counts for
each metabolite and species) Kolmogorov-Smirnov test for ZOE 2.0 metabolites and HUMAnN 2.0
microbiome species.

Figure A3. Species-wise (HUMAnN 2.0) numbers of zeros plotted against mean log nonzero counts.
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Figure A4. Comparison of BNB and BZINB correlations between all pairs of microbial species in
ZOE2.0 with respect to the total number of zeros in each pair.

Figure A5. Eigenvalues of the Laplacian graph based on each affinity matrix for health and dis-
ease (ECC) groups in ZOE 2.0 Kraken2/Bracken microbiome data, which is used to determine an
appropriate number of clusters.

Figure A6: Heatmap of species abundance illustrating species modules identified by
spectral clustering (shown as the two top bars). Columns represent individual species
and are ordered by the clusters predicted from the affinity matrix based on the BZINB
correlations between species in the diseased (ECC) group. Columns are annotated to show
and compare the predicted clusters between health (no ECC) and disease (ECC) groups.
Each row represents a participant (n=289). The rows are ordered based on hierarchical
clustering and are annotated to illustrate health and disease groups and the sequencing
batch. Standardized counts were used.
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Figure A7. Spearman microbiome-metabolome correlation network including a node degree table.
The strongest 30% absolute correlations are illustrated. Line colors represent correlations’ strength in
health, disease (ECC), or both.
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