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As part of an individualized intervention to improve the physical, emotional, and

social functioning of patients with chronic respiratory diseases in general and

chronic obstructive pulmonary disease in particular, awareness of the presence and

consequences of changes in body composition increased enormously during the last

decades, and nutritional intervention is considered as an essential component in the

comprehensive approach of these patients. This review describes the prevalence and

the clinical impact of body composition changes and also provides an update of

current intervention strategies. It is argued that body composition, preferentially a

three-component evaluation of fat, lean, and bonemass, must become part of a thorough

assessment of every patient, admitted for pulmonary rehabilitation.
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INTRODUCTION

In the first authoritative statement on pulmonary rehabilitation in 1974, this intervention was
introduced as an art ofmedical practice wherein an individually tailored, multidisciplinary program
is formulated which, through adequate diagnosis, therapy, emotional support, and education,
stabilized or reversed both the physio and psychopathology of pulmonary diseases and attempted
to return the patient to the highest possible capacity allowed by his pulmonary handicap and
overall life situation (1). In the absence of relevant reversibility of the underlying respiratory
pathology in patients suffering from chronic respiratory diseases, skepticism grew toward the
rationale and outcomes of pulmonary rehabilitation in these patients; exercise tolerance was
considered to be limited by the lung impairment, and exercise conditioning did not improve
lung function (2). Furthermore, it was doubted that patients with chronic respiratory impairment
could exercise to a sufficient intensity to exceed a critical training threshold to improve muscle
function. Different landmark studies demonstrated that rigorous exercise training in these patients
resulted in substantial improvements in exercise tolerance and physiological training effects (3, 4).
These studies contributed to a shift to the role of skeletal muscles even in patients with chronic
respiratory conditions.

Although all definitions of pulmonary rehabilitation are targeted to patients with chronic
respiratory conditions, at present, patients with chronic obstructive pulmonary disease (COPD)
form the most important target population of these programs. Back in 2001, COPD was defined as
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a disease state characterized by airflow limitation that is
not fully reversible (5). At present, driven by systematic
diagnostic work-up as part of pulmonary rehabilitation
programs, COPD is now recognized as a complex condition
with many different components and mechanisms contributing
to its pathophysiology and clinical burden, and the role
of comorbidities on the burden and mortality is now well
recognized (6).

In the latest American Thoracic Society/European Respiratory
Society statement, body composition abnormalities and
interventions are considered a key component of a patient-
tailored comprehensive approach of patients with chronic
respiratory impairment to contribute to an improvement in the
physical condition, in particular (7). A survey on organizational
aspects of pulmonary rehabilitation programs in Europe
and North America demonstrated that nutritional support,
supervised by a dietician, was part of the rehabilitation program
in 76.1 and 93.6% of the programs (8).

This review describes the prevalence and the assessment
and clinical and functional impact of body weight and body
composition changes in COPDpatients, in particular. Nutritional
support strategies and the outcomes of nutraceuticals as an
ergogenic aid in these patients are reviewed.

ASSESSMENT OF BODY COMPOSITION

Unintended weight loss is broadly accepted as an indicator of
an inevitable and fatal progression in different disease processes,
including COPD. As a rule of thumb, involuntary weight loss
>5% during the last 6 months is considered clinically significant.
Abnormalities in weight are traditionally classified on the basis
of the body mass index (BMI, body weight in kilograms divided
by height in meters squared) as underweight (<21 kg/m2),
normal weight (21–25 kg/m2), overweight (> 25–30 kg/m2) and
obese (>30 kg/m2). Recent large population studies revealed
that the age-standardized rate of death from any cause is lowest
among participants with a BMI of 22.5–24.9 kg/m2 and of
20–25 kg/m2 in analyses restricted to never-smokers (9, 10).
The hazard ratio per 5 kg/m2 units higher BMI decreases at
older age (11). For most diseases, including chronic respiratory
conditions, a J-shaped association of overall mortality is reported
with BMI, with the lowest risk occurring in the range 21–25
kg/m2: BMI associated with lowest mortality risk is higher in
older individuals than in younger individuals (12). In patients
with moderate to severe airflow limitation, a BMI < 25 kg/m2

is consistently associated with increased mortality risk relative to
overweight and obese patients (13–15). A dose-response meta-
analysis involving 30,182 patients with COPD confirmed that
overweight is associated with a lower risk of all-cause mortality
whereas underweight is associated with higher risk (16). After
the publication of the so-called bodyweight, airflow obstruction,
dyspnea, and exercise capacity (BODE) index, the impact of
multidimensional assessment has been widely accepted (17).

Weight changes and BMI classification do not take into
account body compositional shifts, including fat and fat-free

mass. In clinical practice, there is no standard method for the
assessment of body composition. Many reports are based on a
two-compartment model distinguishing between fat (FM) and
fat-free mass (FFM). FFM is further divided into an intracellular
compartment, reflecting muscle mass and other metabolizing
tissues, and an extracellular compartment. FFM is commonly
used as an indirect measure of muscle mass. Different descriptors
of low muscle mass are used interchangeably in the literature.
Bio-electrical impedance analysis is widely used as a valid and
reproducible method to assess FM and FFM, particularly in
patients with COPD (18). In normal to underweight patients with
COPD, the 10th percentile of age- and sex-adjusted FFM index
(FFMI: FFM/height2) is defined as abnormally low. In Caucasian
patients, this corresponds to an FFMI of 17 kg/m2 for men and
<15 kg/m2 for women as clinically useful proxies (19). These
cut-offs are probably too low to detect an abnormally low FFMI
in overweight and obese populations. Indeed, low FFMI could
not be identified when these proxies are applied (20). New BMI-
specific reference values are derived in particular for overweight
and obese populations (21).

Particularly in patients with COPD admitted for pulmonary
rehabilitation, the prevalence of nutritional depletion is very high
(45%) and loss of FFM could be masked by a normal BMI (22).
In a large out-patient population of patients with COPD, the
prevalence of low FFMI was present in 27% of the population;
low FFMI was masked by a normal BMI of 15% (23). Most
data are reported from cross-sectional studies. In the evaluation
of COPD Longitudinally to Identify Predictive Surrogate End
(ECLIPSE) study, comparing patients with COPD with smoking
and non-smoking controls, low muscle mass was present in 20%
of patients with COPD and 9 and 4% of the smoking and non-
smoking control subjects, respectively. Interestingly, changes in
body composition over the 3-year follow-up period were small
and comparable among the three groups (24).

A more precise analysis of body composition can be
performed by describing a three-compartment model consisting
of the tissue compartments fat mass, lean mass (LM), and bone
mineral content (BMC). FFM is composed of BMC and LM. Dual
X-ray absorptiometry (DXA) is a validated tool to investigate
body composition phenotypes as it precisely analyses the amount
of BMC and soft tissue (FM and LM) of the whole body and in
specific anatomical regions (25, 26). Particularly, LM measured
at the limbs is a marker of skeletal muscle mass and therefore
important in the assessment of muscle depletion (27). Sarcopenia
is defined as low skeletal muscle mass based on the assessment
of the lean appendicular mass (28–31). Appendicular skeletal
muscle mass, assessed by DXA, seems a better indicator for
muscle and functional dysfunction than overall FFM (32).

Reference values of body composition by DXA in adults aged
18–81 years are recently reported (33). A recent systematic review
and meta-analysis reported the prevalence of sarcopenia, based
on low muscle mass and decreased muscle function in 21.6%
of patients with COPD, ranging from 8% in population-based
to 21% in clinic-based studies and 63% in patients with COPD
residing in nursing homes (34).
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Clinical and Functional Impact of Body

Weight and Body Composition in COPD
Reduction in symptoms, improvement in exercise performance,
and also in health status can be defined as outcomes for
COPD management in general and pulmonary rehabilitation
in particular. A thorough understanding of the impact of
body weight and body composition on these traits can guide
interventions to improve functional and health status in
these patients.

Exploring the association of functional measures and BMI
as a measure of body composition is limited because BMI does
not distinguish between FFM and FM. Reported data on the
relation between exercise performance and BMI are therefore
difficult to interpret. In the 1980s, positive associations were
reported between nutritional status, measured by body weight
and expressed as a percentage of ideal weight, and maximal
exercise performance (35, 36). Others could not find differences
in field exercise tests, such as the 6-min walking test between
underweight and normal weight patients with COPD (35, 37),
whereas other studies reported significant positive associations
between these field exercise tests and body weight (38). However,
those associations became significantly better between fat-free
mass and walking distance (38). Later on, these data were
confirmed in clinically stable COPD out-patients (39).

A detailed study of exercise tolerance in undernourished
patients with COPD, based on the percentage ideal body
weight, is reported by Palange et al. in 1995 (40). They found
that undernourished patients with COPD showed a greater
reduction in maximal workload and peak O2 uptake with an
earlier onset of metabolic acidosis. In addition, indices reflecting
the O2 cost of ventilation were higher in undernourished
patients with COPD. Nutritional status correlated with the
exercise-tolerance onset of metabolic acidosis and with the
dead space/tidal volume ratio. The authors concluded that
undernutrition affects muscle aerobic capacity and exercise
tolerance, and was associated with high wasted ventilation
and oxygen cost of ventilation (40). Later on, in weight-stable
patients with COPD admitted for pulmonary rehabilitation,
Franssen et al. reported that FFM explained 38% of the variation
in VO2 max and 56% in combination with age and DLco.
FFM, age, FEV1, and DLco all individually contributed to
achievable maximal load (41).

Loss of muscle mass will influence the strength of the
skeletal muscles, reduction in muscle bulk results in a
decrease in muscle force output, whereas the mechanical
effectiveness of the residual myofibrillar material remains
unaffected. Intriguingly, in undernourished patients with the
gastro-intestinal disease, Lopes and colleagues reported already
in 1982 an increased muscle fatiguability and slowing of the
relaxation of the adductor pollicis muscle, possibly related to
a decrease in local energy stores of the limb muscles (42).
Others reported a reduced strength of the sternomastoid muscle
and an increase in oxygen consumption of the ventilatory
muscles in underweight patients with COPD (37, 43). Muscle
function corrected for total FFM was well-preserved in patients
with COPD and did not differ from controls, fitting with
preserved contractility (44).

Considering the impact of ventilatory pump dysfunction on
the experience of dyspnea in patients with COPD, respiratory
muscle strength was considered as an important measure and
outcome. Respiratory muscle strength was found to correlate
significantly with body weight and FFM (38, 45). Others focused
attention on the impact of skeletal muscle weakness on exercise
limitation in patients with COPD (46, 47). Franssen et al.
extended these reduced skeletal muscle functions to the upper
limbs, and they showed that quadriceps muscle strength was
more impaired in FFM-depleted patients with COPD, with the
preservation of biceps strength. Furthermore, they demonstrated
that loss of muscle endurance was restricted to the lower
limbs independent of FFM, where muscle endurance reflects the
capacity of the muscle to sustain mechanical output (48).

In a large cohort of stable patients with COPD, the impact
of FFM on upper arm extremity performance was supported by
demonstrating a significant relationship between FFM and hand-
grip strength (23). Others confirmed that body composition
assessment gave valuable information about hand grip and
respiratory muscle functioning (49). A new method to approach
body composition is to use measures of muscle and fat
structures captured as part of body imaging as surrogates of
body composition (50). It was demonstrated that hand-grip
strength correlated significantly with the pectoralis muscle area
and with subcutaneous adipose tissue, but not with body mass
index (51). Intriguingly, the same study demonstrated that
hand-grip strength was associated with exacerbation risk (51).
Assessment of muscle weakness can guide prognosis in these
patients as different studies reported an association between
muscle endurance and strength and mortality risk (52, 53).

Despite the fact that health status has been used extensively
in descriptive and therapeutic evaluation studies in patients with
COPD in general, and as an outcome of pulmonary rehabilitation
in particular, the factors determining the score of health status
are studied and understood poorly. Already 20 years ago, cross-
sectional reports focused their attention on the impact of low
muscle mass on symptoms, activity, and impact as domains of
health status (54, 55). Others focused on the relationship between
health status and muscle strength and endurance in patients
with COPD (56). Montes de Oca et al. reported in 2006 that
impaired health status is related to peripheral muscle changes,
characterized by less type 1 fiber proportion (57). Intriguingly
are the data reported by Huber et al. demonstrating the non-
linear relationship between BMI and health status in patients
with COPD. They reported more impaired health status in
the overweight and obese Global strategy for the Diagnosis,
Management, and Prevention of Chronic Obstructive Pulmonary
Disease (GOLD) one to three patients, whereas obese GOLD four
patients with COPD reported a better health status than their
normal-weight peers.

Body composition assessment may also be a predictor of the
type of respiratory impairment as well as of the multimorbidity
pattern in patients with COPD. Substantial differences in body
composition between emphysematous and non-emphysematous
COPD patients were already reported in 1999 (58). Recent
findings based on the ECLIPSE data set confirmed that patients
with more emphysema undergo excessive loss of pulmonary
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as well as extra-pulmonary tissue, and even the multiorgan
loss of tissue COPD phenotype was suggested to identify
these subgroups of patients with COPD (59). By clustering
the multimorbid involvement in patients with COPD, a so-
called cachectic cluster could be identified, based on a higher
prevalence of underweight, low muscle mass, osteoporosis, and
renal impairment (60). Others reported that this cluster seems
specific for a COPD population, compared with an age-matched
control group (61).

Body composition also predicts prognosis and mortality in
COPD patients. Indeed, survival studies in selected groups of
patients with COPD have shown higher mortality in underweight
and normal weight patients with COPD (13, 15, 62). A large-scale
prospective community-based cohort study in Japanese men
confirmed that lower BMI and greater weight loss are associated
with a greater risk of mortality (63). A dose-response meta-
analysis of BMI and mortality in COPD patients indicated that
overweight is associated with a lower risk of all-cause mortality,
whereas underweight is associated with a higher risk of all-cause
mortality (16). Particularly, fat-free mass is an independent risk
factor of mortality in these patients (64). In this context, data
on the relationship between mid-thigh cross-sectional area and
increased mortality remain intriguing (65).

Considering that the goal of pulmonary rehabilitation is
to offer an individualized intervention based on a thorough
assessment, the reported data illustrate the importance of a two-
compartment body composition assessment to understand the
clinical burden experienced by the patient and to adequately plan
intervention strategies. A three-compartment body composition
assessment would be advisable to evaluate appendicular muscle
mass as well as bone mass in these patients. Finally, simple
muscle function testing, such as hand-grip strength, will be
a good surrogate marker for muscle bulk and could guide
interventions to improve or maintain functional status in these
patients. Combined assessment of muscle mass and function will
contribute to the early detection of sarcopenia in these patients.

NUTRITIONAL SUPPORT

Although the importance of nutrition in health and disease
is intuitively acknowledged, the role of nutrition in the
management of chronic respiratory conditions in general, and
COPD in particular, has only gained interest during the last
decades. Traditionally, weight loss was considered to be an
inevitable and irreversible terminal event related to the severity
of the disease process, and weight loss was even considered as an
adaptive mechanism to decrease oxygen consumption.

Weight loss occurs when energy balance is negative and
occurs when energy expenditure exceeds dietary intake. Total
daily energy expenditure (TDE) is usually divided into three
components: (1) resting energy expenditure (REE); comprising
sleeping metabolic rate and the energy cost of arousal; (2)
diet-induced thermogenesis; and (3) physical activity-induced
thermogenesis. REE is found to be elevated in 25% of patients
with COPD. Drug therapy, especially the use of beta-2-agonists,
increased work of breathing, and also the presence of systemic

inflammation have been related to this increase in REE (66–
69). Diet-induced thermogenesis represents metabolic oxygen
cost for the processing of ingested nutrients. This thermic effect
of dietary intake remains unclear (70, 71). Studies demonstrate
that patients with COPD have a significantly higher TDE
than normal, particularly related to the higher activity-related
component (72). Indeed, no differences in TDE are reported
between hypermetabolic and normal metabolic patients (73).
Mechanical inefficiency of leg exercise, increased ventilatory
demand related to the work of breathing, or inefficient muscle
metabolism can contribute to this increased TDE (72, 74, 75).
Indirect evidence for altered energy expenditure in patients
with COPD is a rise in plasma ammonia even during low-
intensity walking, an indicator of muscle ATP depletion and
metabolic stress (76).

The first clinical trials investigating the efficacy of short-term
(2–3 weeks) nutritional intervention consisted of nutritional
supplementation by means of oral liquid supplements or enteral
nutrition. These short-term studies showed that nutritional
supplementation leads to a significant increase in body
weight and respiratory muscle function (77, 78). Significant
improvements in respiratory and peripheral skeletal muscle
function, exercise capacity, and health status were also observed
in one in-patient and one out-patient study following a 3-months
oral supplementation of about 1,000 kcal daily (37, 79). The
problem of most clinical trials of nutrition supplementation is
that the sample size is rather small, characterization of patients
is limited, and shifts in energy intake between supplements
and regular dietary intake are poorly documented. Ferreira
et al., therefore, conducted a Cochrane review of 17 trials
of >2 weeks of nutritional support. The authors conclude
that nutritional supplementation promotes weight gain among
patients with COPD. In addition, significant improvements
are reported in anthropometric measures, 6-min walking
distance, respiratory muscle function, and overall health status
in undernourished patients with COPD (80). Recent meta-
analyses broadly confirmed these findings; positive results are
also reported for total energy intake, handgrip, and quadriceps
strength (81, 82).

In case of non-response, biological characteristics underlying
the disease process of COPD must be considered. Aging, relative
anorexia, and an elevated systemic inflammatory response have
been identified as determining factors (83).

Energy- and protein-enriched diets are now generally
recommended; protein should provide 20% of the total energy
intake (84). Suitable energy- and protein-enriched diet can be
achieved by several small portions spread throughout the day;
a dietician can tailor the diet taking into account eating habits,
lifestyle, symptoms, likes and dislikes of the subject (85).

To create an anabolic stimulus to increase protein mass,
the combination of nutritional intervention with even a
comprehensive rehabilitation program was advocated (86).
Indeed, most studies with FFM as the outcome, have combined
nutritional supplementation with exercise (80). Previous studies
combining pulmonary rehabilitation with a hormonal anabolic
intervention have demonstrated a higher increase in FFM
and intracellular mass (87). In normal-weight patients with
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COPD, a small increase in FFM (1 kg FFM difference) is also
reported after pulmonary rehabilitation (41). Therefore, it can
be questioned whether exercise can induce the reported effects
on FFM, independent of nutritional intervention. Considering
the multimodality of cachexia in COPD patients, targeted-
medical nutrition (TMN) studies are conducted. A randomized
controlled study compared TMN containing high-dose omega
3-fatty acids, vitamin D, and high-quality protein with an
isocaloric comparator in patients with COPD with involuntary
weight loss or low BMI. TMN was well tolerated with a good
safety profile and positive effects on blood pressure and blood
lipids and exercise-induced fatigue and dyspnea (88). Another
study reported that oral supplementation enriched with leucine,
vitamin D, and omega-3 fatty acids has positive effects on
nutritional status, inspiratory muscle strength, and physical
activity compared with placebo (89).

The clinical relevance of positive treatment response is
supported by a post-hoc survival analysis demonstrating that a
weight gain > 2 kg in depleted and non-depleted FFM patients
and an increase in respiratory muscle strength were associated
with significantly increased survival rates.

The cost-effectiveness of nutritional supplementation is
poorly studied in patients with COPD although numerous
studies reported that being undernourished is associated with
longer in-patient hospital stays, a higher probability of being
readmitted, and an increase in healthcare utilisation (90–93).
Two studies could not demonstrate differences in health care
utilization (94, 95). The 24-month interdisciplinary community-
based COPD management program trial comparing nutritional
rehabilitation with usual care in patients with COPD with low
muscle mass reported a significant reduction in hospital costs
for the intervention group (96). Therefore, it can be concluded
that the negative effect of low body weight can be reversed by
appropriate nutritional intervention in patients with COPD (13).

Nutraceuticals as an Ergogenic Aid
In analogy with the role of nutrition in the fields of sports
and medicine, the scope of nutritional intervention moved to
enhance physical performance in patients with COPD. A lot of
small-scale, single-center intervention studies are published in
the literature. Dairy proteins, and in particular casein, resulted
in protein anabolism during and following exercise in patients
with COPD (97). A pilot study found that pressurized whey in
combination with exercise training may potentiate the effects
of exercise training alone on exercise tolerance and quality of
life (98). In cancer patients and patients with cystic fibrosis,
dietary free essential amino acids seem very efficient in inducing
anabolism independent of the presence of muscle or recent
weight loss (99, 100). In patients with COPD, a free essential
amino acid mixture with a high proportion (40%) of leucine
stimulates whole-body protein metabolismmore than free amino
acid supplements with the composition of complete proteins;
effects did not differ between patients with COPD and healthy
older subjects (101).

Independent of the degree of FFM depletion, intrinsic
abnormalities in peripheral skeletal muscle morphology and
metabolism are described pointing toward a decreased oxidative

capacity. A well-established qualitative alteration is the loss of
oxidative phenotype characterized by a muscle fiber type I to
type II shift and a loss of oxidative capacity (102). Besides these
fiber type shifts, decreased levels of muscle oxidative metabolic
markers and nutrient sensing regulators of cellular energy state
are reported (103). Interventions with poly-unsaturated fatty
acids (PUFA) can upregulate fat oxidative gene expression by
the activation of peroxisome proliferators activated receptors
(PPARs) (104). PPARs promote the uptake of circulating fatty
acids by cells through upregulation of the lipoprotein lipase
gene (105). In addition, PPARs control the mitochondrial
fatty acid import and beta-oxidation (106). Broekhuizen et al.
reported an increased peak load in the incremental exercise
test as well as an increased duration of the constant work rate
test after PUFA intervention (107). Others reported that oral
nutritional supplementation, enriched with leucine and PUFA,
has additional effects on nutritional status, inspiratory muscle
function, and physical activity (89). However, a recent systematic
review concluded that there is still insufficient evidence to
confirm a relationship between long-chain PUFA intake and the
prevalence, severity, or outcomes in COPD (108). Moreover, a
recent Chinese study reports that the concentrations of n-3 and
n-6 polyunsaturated fatty acids increase over time along with the
progression of COPD (109).

Creatine is a widely available nutritional supplement. When
phosphorylated, creatine forms a substrate for the generation
of adenosine triphosphate, the basic unit for energy generation.
Oral supplements with creatine have been used to enhance
gains in muscle function and mass. Small randomized controlled
trials have been performed in patients with COPD receiving
pulmonary rehabilitation; results are conflicting (110–112). A
systematic review and meta-analysis of reported data show that
creatine supplementation during pulmonary rehabilitation in
patients with COPD does not improve exercise capacity, health
status, or muscle strength. Based on these findings, creatine
supplementation cannot be recommended as an adjunct for
pulmonary rehabilitation (113).

Dietary nitrate has been shown to be a nutraceutical that can
improve exercise capacity in young healthy individuals (114).
Oxygen cost of breathing has been shown to decrease after
dietary nitrate intake, without affecting resting metabolic rate
(115). Dietary nitrate is reduced in the body to nitrite, which
subsequently is converted to nitric oxide (NO) (116). Beetroot
juice contains high quantities of nitrate (117). NO availability
may modulate blood pressure as well as muscle-related processes
including muscle contractility, glucose homeostasis, blood flow,
mitochondrial respiration, and biogenesis (118). NO improves
the mitochondrial efficiency of energy production per unit of
O2 by limiting proton leakage in the respiratory chain (119).
The nitrate–NO pathway forms also a backup system for
NO production, particularly during hypoxic conditions (116).
Given that patients with COPD experience greater degrees
of tissue hypoxia and have a decreased exercise capacity,
it was hypothesized that dietary nitrate supplementation
would improve mechanical efficiency and exercise performance.
Outcomes of different small-scale studies are conflicting; some
studies report an increase in median exercise time during
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constant submaximal exercise testing while others could not
confirm an enhanced endurance exercise performance, despite
a reduced oxygen consumption at isotime (120, 121). Others
reported an increase in the incremental shuttle walk distance
after high nitrate intake, (122) whereas in other studies any
difference in exercise endurance, functional walking capacity,
O2 consumption during submaximal cycling, or physical activity
level in patients with COPD could be demonstrated (123, 124).
Beijers et al. confirmed that acute and a 7-day sodium nitrate
supplementation does not modulate mechanical efficiency in
COPD patients (125).

In conclusion, despite the appealing biochemical and
biological action of these nutraceuticals to improve exercise
performance and functional status, published small-scale studies
offer no evidence to introduce these interventions in clinical
practice for patients with chronic respiratory conditions.

Pathobiology of Anabolic and Catabolic

Pathways in COPD
A variety of triggers can induce loss of muscle mass: hypoxemia,
oxidative stress, inflammation, impaired growth signaling, oral
glucocorticoids, disuse, and malnutrition as well as smoking
(126, 127). The interplay of these triggers during disease journeys
in general and COPD, in particular, is poorly documented
as most information is derived from cross-sectional muscle
biopsies, most frequently from the quadriceps muscle. Numerous
studies reported new insights in the molecular regulation of
anabolic and catabolic pathways in the skeletal muscle (128).
Studies demonstrate an increased catabolic signaling by NF-κB
and fork-head box O transcription factor (FOXO) in COPD
in general and even increased in cachectic COPD patients
(129–131). This increased catabolic signaling through FOXO
and NF-κB can induce gene expression of key factors in both
the ubiquitin-proteasome system (UPS) and the autophagy-
lysosome pathway (127, 132). The ubiquitin 26S-proteasome
pathway consists of coordinated actions of the ubiquitin-
conjugating and ligating enzymes that link ubiquitin chains
onto proteins to mark them for degradation by the proteasome
(133). Different studies report an increase in UPS activity in
limb muscles. This UPS activity seems enhanced in cachectic
COPD patients (128, 134–136). Autophagy is another highly
conserved degradation process in which portions of cytosol and
organelles are sequestered into a double-membrane vesicle, an

autophagosome, and delivered into a degradative organelle, the
vacuole/lysosome, for breakdown and recycling of the resulting
macromolecules (137). Its involvement in COPD and loss of
muscle mass in particular needs further investigation (128).
Considering the muscular protein synthesis signaling, the overall
findings are an increase in protein synthesis signaling in limb
muscles and even more in respiratory muscles in patients with
COPD and even more in the cachectic patients (128, 131, 134,
135, 138). Besides the turnover of proteins, the turnover of
myonuclei appears essential for muscle regeneration (139). The
role of apoptosis in skeletal muscles of COPD patients remains
inconclusive; increased apoptosis in the limb and diaphragm of
cachectic COPD patients is reported (136, 140) whereas others
could not find differences in the case of maintained muscle
mass (141). No differences are yet reported in the number
of satellite cells (142). No differences in myostatin, a negative
regulator of myogenesis, are reported in cachectic patients with
COPD (129, 131, 143).

In conclusion, although very challenging to combat muscle
wasting by targeting key pathways as precision medicine
intervention, current therapeutic perspectives are largely unclear.

SUMMARY AND A GENERAL

CONCLUSION

Body composition has to become an essential component of
a thorough assessment of patients admitted for pulmonary
rehabilitation. A three-compartment body composition
assessment not only allows to measure fat and fat-free mass
but also to compartmentalize into subcutaneous and visceral
fat, to identify appendicular loss of skeletal muscle mass and
even changes in bone mass. Body composition measurement
can be supported by simple muscle function tests as a handgrip
and/or quadriceps strength. At present, nutritional intervention
combined with exercise training must be offered to patients with
low body weight and involuntary weight loss. Future intervention
studies must apply a clear taxonomy of body composition
changes and must standardize functional outcome measures.
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