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Abstract
We applied nonparametric quantitative trait linkage analysis to two rheumatoid arthritis
quantitative phenotypes, IgM rheumatoid factor (RF) and anti-cyclic citrullinated peptide
autoantibody titer measurements, using 5700 genome-wide Illumina single-nucleotide
polymorphism genotypes on 658 Caucasian North American Rheumatoid Arthritis Consortium
families. Peak LOD scores for both quantitative traits were located in the human leukocyte antigen
region 6p21 (15.8 and 13.8 for RF and anti-cyclic citrullinated peptide, respectively) followed by
11p12 (3.2 and 3.6). In addition, there were LOD scores of 3.2 on 2q32 for RF and 3.6 on 4q24 for
anti-cyclic citrullinated peptide. The resulting linkage signals for both phenotypes are very similar
to previous results for rheumatoid arthritis as a qualitative variable, with rheumatoid factor
measurements being most closely aligned. Interestingly, anti-cyclic citrullinated peptide exhibits a
stronger linkage peak on 2p14 than rheumatoid factor and rheumatoid arthritis, and stronger
linkage on 4q24. Finally, we used ordered subset analyses to determine if sub-ranges of these two
traits increased rheumatoid arthritis linkage signals; however, our analyses did not reveal significant
effects of the quantitative traits on rheumatoid arthritis linkage signals in this population.
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Background
Rheumatoid arthritis (RA) is a chronic autoimmune dis-
ease with heterogeneous phenotypes exhibited among
affected individuals. While it is known to have a strong
genetic component, studies attempting to identify chro-
mosomal regions influencing RA have had mixed results,
except for the human leukocyte antigen (HLA) region of
chromosome 6 [1]. It is thought that the difficulty in iden-
tifying RA linkage regions may be due in part to its pheno-
typic heterogeneity, i.e., subtypes of this disease may have
different genetic etiologies.

Recently, a genome-wide single-nucleotide polymor-
phism (SNP) analysis of North American Rheumatoid
Arthritis Consortium (NARAC) families [2] implicated
regions 2q33 and 11p12 in addition to the HLA region.
Here we apply quantitative trait analysis to this same set
of SNPs (provided as the Genetic Analysis Worskhop 15
(GAW15) Problem 2 data set), in order to explore genetic
differences related to these phenotypes, and to take
advantage of the potential increase in power of quantita-
tive versus categorical analyses. In particular, we consider
IgM rheumatoid factor (RF) and anti-cyclic citrullinated
peptide (anti-CCP) autoantibody titer measurements,
both of which are associated with RA but with incomplete
and different specificities for the disease.

Methods
Families were selected for analysis that had at least two
affected members with Illumina SNP genotyping and
anti-CCP and/or RF titers. We also analyzed the Caucasian
subgroup of families to limit genetic heterogeneity. PED-
STATS [3] was used to check for Mendelian inheritance
errors, tabulate family structure, and evaluate Hardy-
Weinberg equilibrium of the SNPs. MERLIN [4] was used
for all linkage analyses (MINX, Merlin in X, for X chromo-
some analyses). Chromosomal positions were converted
to centimorgans using the approximation of 1 Mb = 1 cM,
which has been demonstrated to not significantly affect
linkage signals [5]. Prior to analyses, unlikely genotypes
were filtered by MERLIN, as described in online MERLIN
documentation [4,6].

Because linkage disequilibrium (LD) of tightly linked loci
can lead to artificial inflation of linkage scores in the pres-
ence of some missing parental genotypes [7], regions of
interest were analyzed using the MERLIN LD modelling
feature. An R2 value of 0.1 was used to define high-LD
clusters.

Both quantitative traits were truncated – RF values below
11 (16%) were set to 11, and anti-CCP values above 210
(8%) were set to 210 – because measurement of data in
these ranges is not reliable (GAW15 Problem 2 notes). QT
linkage analyses were performed using the MERLIN "--

deviates" option because both traits are not normally dis-
tributed and the NARAC sample is selected (in particular
to contain multi-case RA families). This option necessi-
tates specification of a population mean; in the absence of
population data, we chose 11 as the mean for RF and 4.6
as the mean for anti-CCP, as done previously [8].

In order to directly compare the linkage results for RF and
anti-CCP in regions of interest, we repeated the LD-mod-
elled analyses using the subset of affected subjects having
measurements for both quantitative traits.

Finally, anti-CCP and RF titers were evaluated for their
influence on RA linkage on chromosomes 1 to 22 using
the FLOSS (flexible ordered subset analysis) implementa-
tion [9] of ordered subset analysis [10]. The mean trait
value of the family and the maximum difference among
affected family members were both considered as order-
ing parameters to determine an optimal range of families
for RA linkage evidence. FLOSS uses a Monte Carlo per-
mutation test to compare the maximum ordered subset
linkage score for this optimal set with the maximum
obtained for random orderings of the families [9].

Results
A total of 1419 affected individuals from 658 families met
our selection criteria, with 1415 having RF titers and 1341
having anti-CCP titers. Most families (n = 580) had a sin-
gle sib pair meeting this criterion. In addition, there were
60 families with 3 affected members, 12 families with 4, 5
families with 5, and 1 family with 6 affected members.
PEDSTATS reported a total of 814 sib pairs, 34 half-sib
pairs, 11 cousins, 8 parent-child pairs, and 27 avuncular
pairs. Of the affected individuals, 40% had one parent
genotyped, and 10% had both parents genotyped.

PEDSTATS did not encounter any Mendelian errors in the
available genotypes of these families. There were no HWE
p-values below 0.0001, which we had chosen as the cut-
off at which to remove SNPs; there was only one SNP (on
chromosome 3) with p < 0.001. Filtering of unlikely gen-
otypes by MERLIN eliminated 5254 person-markers,
0.05% of the available genotypes.

With the resulting pedigrees, MERLIN (--deviates) was
first run for all of chromosomes 1 through 22. MINX was
used to analyze the X chromosomes. Then all chromo-
somes having peak LOD score > 3 were rerun with MER-
LIN's LD cluster modeling (R2 value = 0.1). The results of
these peak locations with and without LD modeling are
shown in Table 1. As in Amos et al. [2], the most substan-
tial decrease when modeling LD was on chromosome 21.
LOD scores over 3 with LD cluster modelling are in bold.
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In order to graphically compare the linkage curves of RF
and anti-CCP titers on chromosomes 2, 4, 6, and 11, we
repeated these analyses using only the affected subjects
having both measurements. This kept the same families
for anti-CCP, but reduced RF from 658 to 609 families
(see footnoted items in Table 1). Figures 1, 2, 3, 4 show
the resulting linkage curves.

Finally, we explored whether there were RF or anti-CCP
trait-ordered subsets [10] that produced better evidence
for RA linkage using FLOSS [9]. We used two per-family
trait measures, the mean trait value and the maximum
trait difference. Using this data set, we did not observe sig-
nificant effects of the quantitative trait subsets on RA link-

age signals. The most significant result (p = 0.04) was for
the effect of RF maximum difference on linkage to chro-
mosome 17, but with consideration for multiple testing
(two traits for 22 chromosomes) this result does not pro-
vide convincing evidence for a non-random association
with RA linkage.

Discussion
Our quantitative trait linkage results are similar to the RA
linkage results using the same SNP set [2], with RF being
most closely aligned to RA and anti-CCP exhibiting some
interesting differences. For all three traits, the well estab-
lished linkage peak in the HLA region on 6p21 extends far
in the centromeric direction, extending into 6q and sug-
gesting a possible secondary peak on 6q. A similar shape
of lesser magnitude is exhibited by all three traits on chro-
mosome 11p12. Linkage peak locations are also aligned
on 4q24, but with the anti-CCP association being stronger
(3.6 versus 2.3 using the same sample). On chromosome
2, RA and RF have the peak LOD score on 2q32–33, while
the peak for anti-CCP is on 2p14. This difference in peaks
is most pronounced in RA as described in Amos et al. [2].
Therefore, chromosome 2 may be interesting to explore
further to understand the differences between RF and anti-
CCP and their relationships to RA etiologies.

Differences in linkage evidence compared with an earlier
microsatellite quantitative trait locus (QTL) analysis of a
subset of these families [8] – in particular on regions
2p14, 2q32, 4q24, and 11p12 – are very similar to differ-
ences in these two scans seen in RA linkage [2]. For RA,
differences were attributed to the SNP scan having 44%
higher information content, a larger set of families, and
the possible heterogeneity of non-Caucasians included in

RF and anti-CCP linkage on chromosome 2 for affected sub-jects having measurements for both traitsFigure 1
RF and anti-CCP linkage on chromosome 2 for affected sub-
jects having measurements for both traits.

Table 1: Peak LOD scores and locations with/without LD clusters.

Without LD clusters With LD clusters

Trait Chromosome Peak LOD Locations (kb) Peak LOD Locations (kb)

Anti-CCP 2 3.1 70859 2.8 66769, 67023
4 4.4 104210 3.6 104353
6 14.9 28965 13.8 32992
11 4.4 39183, 39201 3.6 40486
21 8.3 37442, 37455 2.4 40861

RF 2 3.2 194143 3.1 (2.3a) 194143
5 3.6 13709, 13735 2.6 13722
6 18.4 28965 15.8 (14.4a) 32992
10 3.4 60473, 60475 2.6 75017
11 4 39201 3.2 (4.2a) 41024
12 3.7 131968, 132017 1.6 22217
19 4.5 63636, 63638 0.2 61193, 61823
21 11.8 37433–37442 1.5 40861

23-X 3.2 56386–56493 0.83 10450

aUsing same set of subjects as anti-CCP analyses
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the microsatellite analyses [2]. Similarities between the
RA and quantitative trait results are partially expected due
to their correlation in the population, but are also
addressed below.

The MERLIN deviates method was chosen for this analysis
due to the non-normal trait distributions and because the
trait sample was selected to only include RA subjects. We
did not pursue variance-components [11] methods,
including the Tobit VC method for censored data [12],
because they assume normally distributed traits. How-
ever, when using the MERLIN deviates method, we have
observed that single-point linkage scores for single sib
pair families (88% of our selection) depend only on the
direction of the quantitative trait from the mean. Because

our selected RA sample is strictly above the RF population
mean, and most are also above the CCP population mean,
this reduces to RA linkage for a large portion of this data
set. We believe that this partially explains the similarity in
results between the RA and QTL linkage results for both
our SNP analysis and the microsatellite analysis of [8]. We
continue to investigate QTL methods that are appropriate
for this selected non-normal data but can distinguish
effects of the quantitative traits from RA.

Using ordered subset analyses, we did not identify any
subset of families, based on quantitative trait ranges,
which significantly increased the RA linkage signal. How-
ever, it is possible that this could be more successfully
applied in a less selected population.
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RF and anti-CCP linkage on chromosome 11 for affected subjects having measurements for both traitsFigure 4
RF and anti-CCP linkage on chromosome 11 for affected 
subjects having measurements for both traits.

RF and anti-CCP linkage on chromosome 4 for affected sub-jects having measurements for both traitsFigure 2
RF and anti-CCP linkage on chromosome 4 for affected sub-
jects having measurements for both traits.

RF and anti-CCP linkage on chromosome 6 for affected sub-jects having measurements for both traitsFigure 3
RF and anti-CCP linkage on chromosome 6 for affected sub-
jects having measurements for both traits.
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