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Abstract
Objectives This study aimed to develop machine learning models for risk prediction of continuous renal replacement therapy 
(CRRT) following coronary artery bypass grafting (CABG) surgery in intensive care unit (ICU) patients.
Methods We extracted CABG patients from the electronic medical record system of the hospital. The endpoint of this study 
was the requirement for CRRT after CABG surgery. The Boruta method was used for feature selection. Seven machine 
learning algorithms were developed to train models and validated using 10 fold cross-validation (CV). Model discrimination 
and calibration were estimated using the area under the receiver operating characteristic curve (AUC) and calibration plot, 
respectively. We used the SHapley Additive exPlanations (SHAP) method to illustrate the effects of the features attributed 
to the model and analyze the effects of individual features on the output of the mode.
Results In this study, 72 (37.89%) patients underwent CRRT, with a higher mortality compared to those patients without 
CRRT. The Gaussian Naïve Bayes (GNB) model with the highest AUC were considered as the final predictive model and 
performed best in predicting postoperative CRRT. The analysis of importance revealed that cardiac troponin T, creatine 
kinase isoenzyme, albumin, low-density lipoprotein cholesterol, NYHA, serum creatinine, and age were the top seven features 
of the GNB model. The SHAP force analysis illustrated how created model visualized individualized prediction of CRRT.
Conclusions Machine learning models were developed to predict CRRT. This contributes to the identification of risk variables 
for CRRT following CABG surgery in ICU patients and enables the optimization of perioperative managements for patients.

Keywords Machine learning · Risk factors · Continuous renal replacement therapy · Coronary artery bypass grafting · 
Prediction
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ICU  Intensive care unit
KNN  K-nearest neighbors
LDL-C  Low-density lipoprotein cholesterol
LOS  Length of hospital stay
LVEF  Left ventricular ejection fraction
LVFS  Left ventricular fraction shortening
MLP  Multi-layer perceptron neural network
SVM  Support vector machine
sCr  Serum creatinine
SHAP  SHapley Additive exPlanations
TG  Triglyceride
TC  Total cholesterol

Introduction

Coronary artery bypass grafting (CABG) as an effective way 
of myocardial revascularization is a remarkably successful 
operation and is commonly employed for patients with 
high-grade or complex coronary artery stenosis. However, 
the high incidence of postoperative complications may 
significantly impact both the overall quality of surgical 
healthcare and patient’s prognosis, as well as mortality 
[1]. The reported incidence of acute kidney injury (AKI) 
after CABG surgery ranges from approximate 30–50% [2, 
3], while mild to moderate AKI frequently occurs. 2–4% 
of serious AKI patients are required for continuous renal 
replacement therapy (CRRT) after CABG surgery in 
intensive care unit (ICU) [4, 5]. Despite the advancements 
in intensive care quality and renal replacement therapy 
technique, short-term mortality of patients receiving CRRT 
remains high level, ranging from 40% to over 70% [6–8]. 
Therefore, identifying risk factors of postoperative CRRT in 
CABG patients is critical for reducing death risk.

The application of machine learning model based on 
artificial intelligence (AI) algorithms has gradually gained 
momentum in clinical practices owing to its demonstrated 
superior predictive performance compared to traditional 
analytical models [9]. This study was conducted to develop 
machine learning models for predicting risk factors of 
CRRT after CABG surgery in ICU patients, with an aim 
to safeguarding postoperative renal function and improving 
clinical outcomes.

Methods

Data source and patient population

A retrospective review was conducted on 190 adult patients 
with coronary heart disease who underwent isolated CABG 
surgery under the support of cardiopulmonary bypass at 
department of cardiovascular surgery of The First Affiliated 

Hospital of Nanjing Medical University from January 2013 
to June 2020. The exclusion criteria were as follows: (1) 
patients age < 18 years; (2) patients who received CRRT 
prior to CABG surgery in the ICU; and (3) patients with 
missing information exceeding 30%. The endpoint of this 
study was the requirement for CRRT after CABG surgery. 
Patients’ data were partitioned randomly into a training 
set (90%) for model development and a validation set 
(10%) for model validation. This study complies with the 
Declaration of Helsinki (revised in 2013) and was approved 
and supervised by the Ethics Review Committee of The First 
Affiliated Hospital of Nanjing Medical University (2019-SR-
313.A1). The informed consent of patients was waived by 
the Ethics Review Committee of the hospital.

Criteria of CRRT 

The criteria for initiation of CRRT were as follows: (1) 
more than 6  h of continuous anuria; (2) urine volume 
less than 200  mL for over 10  h; (3) serum potassium 
concentration > 6.5  mmol/L (hyperkalemia); (4) severe 
metabolic acidosis (pH < 7.20 despite normal or low 
partial pressure of carbon dioxide in arterial blood); (5) 
serum creatinine (sCr) ≥ 300 µmol/L; (6) volume overload 
(especially pulmonary edema unresponsive to diuretics); 
(7) clinical complications of uremia (e.g., encephalopathy, 
pericarditis, and neuropathy).

Study variables and data collection

Baseline characteristics and co-morbidities of patients, 
such as age, gender, body mass index (BMI), smoking 
history, drinking history, acute myocardial infarction 
(AMI) history, hypertension, diabetes, chronic renal 
disease, atrioventricular block, atrial fibrillation (AF), and 
New York Heart Association (NYHA) classification, were 
documented. The electrocardiogram and echocardiogram 
records were gathered. Laboratory examinations, such as 
serum lipids, blood urea nitrogen (BUN), serum creatinine 
(sCr), myocardial injury biomarkers, albumin (ALB), and 
blood glucose levels, were tested upon admission. The 
timing of intra-aortic balloon pump (IABP) implantation, 
surgical duration, cardiopulmonary bypass time, length 
of hospital stay (LOS), length of ICU stay, statins use, 
and in-hospital mortality were recorded. We applied one 
standard transformation to collected variables: handling 
missing values by method of filling.

Statistical analysis and development of machine 
learning models

Statistical analyses were conducted using SPSS software 
(version 23.0). Continuous variables are presented as 
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mean ± standard deviation or as median (interquartile 
spacing), while categorical variables are presented 
as number (proportions). Then, Student’s t-test or the 
Mann–Whitney test was employed to compare the 
difference in continuous variables between two groups, 
and the Chi-square test was used to compare the difference 
in categorical variables between two groups. All p values 
were two-sided, with less than 0.05 indicating statistical 
significance.

The Boruta method was used to select critical features, 
and machine learning algorithms were then employed to 
construct training models using 10 fold cross-validation 
(CV), which effectively avoided overfitting and facilitated 
determination of optimal hyperparameters. This study 
included seven machine learning models: AdaBoost, 
LightGBM, Gaussian Naïve Bayes (GNB), Complement 
Naïve Bayes (CNB), multi-layer perceptron neural 
network (MLP), k-nearest neighbors (KNN), and support 
vector machine (SVM). Performance of the models was 
evaluated based on relevant indicators, including the area 
under the receiver operating characteristic curve (AUC), 
accuracy (ACC), sensitivity, and specificity. In general, the 
model with the highest AUC exhibited the best predictive 
capacity and was selected as the final prediction model. A 

calibration plot was generated to evaluate the correlation 
between predicted and actual clinical outcomes.

Furthermore, the SHapley Additive exPlanations (SHAP) 
method was applied to enhance the interpretability of the 
final model. The SHAP summary plot was used to illustrate 
the influence of model features. Then, the SHAP depend-
ence plot was used to analyze the importance of individual 
features affecting model output. The SHAP force plot was 
utilized to visually represent the impact of key features on 
the final model in individual patients. Figure 1 illustrates the 
flowchart for the study.

Results

Baseline characteristics of patients

The baseline characteristics of the patients are shown in 
Table 1. This study population had 153 (80.526%) males, 
with their median age of 66.0 (60.0, 72.0) years old. A 
total of 72 patients were included in the CRRT group for 
this study, with a higher median age (69.0 vs 64.0 years 
old, p = 0.002), a higher mortality (37.500% vs 7.627%, 
p < 0.001), and a longer length of ICU (14.0 vs 11.0 d, 

Fig. 1  Flowchart of this study. AUC, area under the receiver operating characteristic curve; SHAP, SHapley Additive exPlanations
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Table 1  Baseline characteristics of patients in the CRRT group and the non-CRRT group

Total (N = 190) Non-CRRT group 
(N = 118)

CRRT group (N = 72) Statistical P-value

Age (year) 66.0 (60.0, 72.0) 64.0 (57.0, 70.0) 69.0 (64.0, 74.0) -3.027 0.002
Gender (%) Male 153 (80.526) 89 (75.424) 64 (88.889) 5.17 0.023

Female 37 (19.474) 29 (24.576) 8 (11.111)
Smoking history (%) No 103 (54.211) 64 (54.237) 39 (54.167) 0 0.992

Yes 87 (45.789) 54 (45.763) 33 (45.833)
Drinking history (%) No 133 (70.000) 88 (74.576) 45 (62.500) 3.105 0.078

Yes 57 (30.000) 30 (25.424) 27 (37.500)
BMI (kg/m2) 23.87 (22.03, 26.01) 24.22 (23.24, 25.95) 22.49 (21.84, 26.06) 2.714 0.007
Number of lesions (%) 1 6 (3.158) 2 (1.695) 4 (5.556) 6.963 0.073

2 9 (4.737) 7 (5.932) 2 (2.778)
3 170 (89.474) 108 (91.525) 62 (86.111)
4 5 (2.632) 1 (0.847) 4 (5.556)

AMI history (%) No 70 (36.842) 47 (39.831) 23 (31.944) 1.195 0.274
Yes 120 (63.158) 71 (60.169) 49 (68.056)

NYHA classification (%) I 19 (10.000) 17 (14.407) 2 (2.778) 17.542  < 0.001
II 74 (38.947) 54 (45.763) 20 (27.778)
III 90 (47.368) 44 (37.288) 46 (63.889)
VI 7 (3.684) 3 (2.542) 4 (5.556)

Hypertension (%) No 65 (34.211) 47 (39.831) 18 (25.000) 4.37 0.037
Yes 125 (65.789) 71 (60.169) 54 (75.000)

Diabetes (%) No 110 (57.895) 68 (57.627) 42 (58.333) 0.009 0.924
Yes 80 (42.105) 50 (42.373) 30 (41.667)

Chronic renal disease (%) No 182 (95.789) 117 (99.153) 65 (90.278) 8.732 0.003
Yes 8 (4.211) 1 (0.847) 7 (9.722)

AF (%) No 156 (82.105) 108 (91.525) 48 (66.667) 18.807  < 0.001
Yes 34 (17.895) 10 (8.475) 24 (33.333)

Atrioventricular block (%) No 174 (91.579) 108 (91.525) 66 (91.667) 0.001 0.973
Yes 16 (8.421) 10 (8.475) 6 (8.333)

Abnormal Q wave (%) No 143 (75.263) 80 (67.797) 63 (87.500) 9.324 0.002
Yes 47 (24.737) 38 (32.203) 9 (12.500)

Abnormal ST-T segment 
(%)

No 28 (14.737) 20 (16.949) 8 (11.111) 1.213 0.271
Yes 162 (85.263) 98 (83.051) 64 (88.889)

Premature contraction (%) No 150 (78.947) 94 (79.661) 56 (77.778) 0.095 0.757
Yes 40 (21.053) 24 (20.339) 16 (22.222)

Operative branch block 
(%)

No 170 (89.474) 106 (89.831) 64 (88.889) 0.042 0.837
Yes 20 (10.526) 12 (10.169) 8 (11.111)

Prolonged QT interval (%) No 175 (92.105) 110 (93.220) 65 (90.278) 0.532 0.466
Yes 15 (7.895) 8 (6.780) 7 (9.722)

RV5 + SV1 (mv) 2.11 (1.75, 2.75) 2.07 (1.75, 2.65) 2.19 (1.95, 2.97) -1.984 0.047
QRS interval (ms) 97.0 (92.0, 106.1) 97.0 (94.0, 107.0) 97.8 (92.0, 104.0) 1.345 0.179
HR (bmp) 74.0 (63.0, 85.0) 73.0 (64.0, 81.0) 76.0 (62.0, 90.0) -1.206 0.228
LVDd  (mm3) 52.0 (47.0, 56.0) 53.0 (48.0, 56.0) 50.0 (47.0, 55.0) 1.175 0.240
LVDs  (mm3) 37.0 (32.0, 43.0) 38.5 (32.0, 43.0) 35.0 (31.0, 47.0) 0.737 0.461
LVFS (%) 29.3 (22.6, 33.3) 28.0 (22.6, 34.0) 30.4 (22.6, 33.3) 0.226 0.822
LVEF (%) 55.4 (44.6, 62.4) 53.6 (45.2, 62.4) 57.9 (44.6, 62.4) 0.174 0.863
cTnT (ng/mL) 93.8 (27.8, 369.3) 172.2 (45.1, 927.9) 49.8 (22.2, 158.1) 3.875  < 0.001
CK-MB (ng/mL) 11.0 (3.0, 16.0) 14.0 (8.0, 19.1) 4.6 (1.9, 11.1) 5.886  < 0.001
BNP (pg/mL) 1431.0 (728.9, 4067.2) 1501.5 (612.8, 3035.2) 1380.0 (892.3, 7319.0) -1.033 0.302
BUN (mmol/L) 6.75 (5.40, 8.96) 6.02 (5.04, 7.82) 7.71 (6.44, 9.50) -4.462  < 0.001
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p < 0.001) compared to the non-CRRT group. The compari-
son of gender, BMI, hypertension, chronic renal disease, 
AF, NYHA classification, ALB, blood glucose, cardiac 
troponin T (cTnT), sCr, BUN, creatine kinase isoenzyme 
(CK-MB), and hospital costs detected statistical differences 
between the two groups (p ≤ 0.05). Furthermore, there were 
no differences between the two groups regarding surgical 
duration (238 in non-CRRT group vs. 230 min in CRRT 
group, p = 0.737) and cardiopulmonary bypass time (89 in 
non-CRRT group vs. 94 min in CRRT group, p = 0.881). The 
detail content is shown in Table 1.

Developed machine learning models and their 
prediction performance

The Boruta method was employed to identify the key vari-
ables associated with CRRT in CABG patients. Ultimately, 
17 out of 39 clinical parameters remained significantly asso-
ciated with CRRT, and these results are presented in Fig. 2. 

When assessing machine learning models for predicting 
CRRT, the GNB model showed the highest AUC values in 
both the training set (0.856, 95% CI: 0.805–0.954, Fig. 3a) 
and validation set (0.817, 95% CI: 0.630–0.958, Fig. 3b). 
Furthermore, the GNB model exhibited the highest ACC 
and specificity in the two data sets (Fig. 4a, b). The calibra-
tion plot was generated to evaluate the difference between 
predicted outcomes and actual clinical outcomes. When 
predicting CRRT risk, the GNB model displayed excellent 
calibration performance (Fig. 5). Therefore, the GNB model 
was recognized as the final predictive model.

Model explanation and application

We next calculated the feature importance using the SHAP 
value for the GNB model, which had the greatest discrimi-
natory capacity in the validation cohort. Figure 6a exhibits 
17 clinical features according to the average absolute SHAP 
value. Figure 6b provides an overview of the impact (the 

Table 1  (continued)

Total (N = 190) Non-CRRT group 
(N = 118)

CRRT group (N = 72) Statistical P-value

sCr (μmol/L) 77.8 (65.5, 105.4) 71.4 (62.9, 89.2) 105.7 (76.8, 134.8) -6.116  < 0.001
Blood glucose (mmol/L) 5.90 (4.95, 9.46) 5.80(5.08, 7.46) 8.64(4.81, 10.73) -2.370 0.018
ALB (g/L) 35.78 ± 3.83 36.30 ± 4.03 34.93 ± 3.33 2.415 0.017
LDL-C (mmol/L) 2.33 (1.79, 3.01) 2.38 (1.94, 3.01) 2.11 (1.50, 2.99) 2.543 0.011
HDL-C (mmol/L) 0.92 (0.81, 1.04) 0.91 (0.81, 1.04) 0.95 (0.81, 1.07) -0.858 0.391
TG (mmol/L) 1.28 (0.94, 1.71) 1.30 (0.97, 1.91) 1.23 (0.94, 1.42) 2.003 0.045
TC (mmol/L) 3.77 (3.03, 4.66) 3.85 (3.16, 4.56) 3.51 (2.82, 4.94) 1.672 0.095
Statins (%) No 48 (25.263) 26 (22.034) 22 (30.556) 1.72 0.190

Yes 142 (74.737) 92 (77.966) 50 (69.444)
Surgical duration (min) 235 (198, 282) 238 (198, 280) 230 (203, 283) -0.337 0.737
Cardiopulmonary bypass 

time (min)
91 (73, 113) 89 (73, 113) 94 (72, 111) 0.151 0.881

Preoperative IABP (%) No 112 (58.947) 70 (59.322) 42 (58.333) 0.018 0.893
Yes 78 (41.053) 48 (40.678) 30 (41.667)

LOS (d) 25.0 (18.0, 39.0) 26.0 (18.0, 32.0) 22.0 (18.0, 46.0) -0.325 0.746
Length of ICU stay (d) 12.0 (8.0, 20.0) 11.0 (7.0, 19.0) 14.0 (8.0, 29.0) -2.385 0.017
Hospital costs (RMB) 331,380 (238,438, 

423,720)
278,449 (217,998, 

381,234)
422,823 (336,081, 

479,819)
-6.94  < 0.001

Death (%) No 154 (81.053) 109 (92.373) 45 (62.500) 25.984  < 0.001
Yes 36 (18.947) 9 (7.627) 27 (37.500)

 Bold values indicate p-values are statistically different
Continuous variables are presented as mean ± standard deviation or as median (interquartile spacing), while categorical variables are presented 
as number (proportions). Student’s t-test or the Mann–Whitney test was employed to compare the difference in continuous variables between two 
groups, and the Chi-square test was used to compare the difference in categorical variables between the two groups
AMI, acute myocardial infarction; NYHA, New York Heart Association; AF, atrial fibrillation; HR, heart rate; LVDs, left ventricular end-
systolic dimension; LVDd, left ventricular end-diastolic dimension; LVEF, left ventricular ejection fraction; LVFS, left ventricular fraction 
shortening; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride; TC, total cholesterol; 
cTnT, cardiac troponin T; CK-MB, creatine kinase isoenzyme; BNP, B-type natriuretic peptide; BUN, blood urea nitrogen; Scr, serum 
creatinine; ALB, albumin; ICU, intensive care unit; IABP, intra-aortic balloon pump; LOS, length of hospital stay; Non-CRRT, patients without 
continuous renal replacement therapy; CRRT group, patients with continuous renal replacement therapy
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positive or negative aspects) of factors on the GNB model. 
To further explore the contribution of the features on a cer-
tain individual patient and clinical application for the GNB 
model, we randomly selected one patient from the valida-
tion cohort to exhibit a visual interpretation (Fig. 7). The 
developed model predicted the probability of CRRT in this 
patient to be 86.2%. The result shows that fast blood glucose 
of 20.76 mmol/L, sCr of 125.6 μmol/L, atrial fibrillation, age 
of 79 years old, and NYHA of III classification were the top 
five contributors to this prediction.

Discussion

Critically ill patients undergoing cardiac surgery frequently 
present with a complex clinical scenario, posing challenges 
for clinicians in predicting outcomes. Machine learning 
algorithms have proven to be valuable tools in overcoming 
this difficulty and are often employed to develop models for 

clinical studies [10]. Machine learning has emerged as a 
powerful tool for distinguishing and predicting prognoses in 
patients undergoing CABG surgery. However, these studies 
primarily focused on identifying risk factors associated 
with postoperative complications, mortality, and prolonged 
LOS [11–13]. Given significant impact of postoperative 
CRRT on hospital mortality, it was imperative to develop 
machine learning-based risk prediction model specifically 
for CRRT after cardiac surgery. Consequently, conducting 
an effective predictive model using preoperative clinical data 
is important for clinicians to provide valuable guidelines 
regarding appropriate interventions and rational allocation 
of medical resources.

This study involved the development and validation 
of seven machine learning models based on 17 clinical 
variables collected in the first 24 h of hospital admission. 
Among these models, the GNB model demonstrated superior 
predictive ability for CRRT, primarily due to its highest 
AUC and better calibration in this study. To achieve the 

Fig. 2  Feature selection based on the Boruta algorithm. The horizon-
tal axis is the name of variable, and the vertical axis is the Z-value of 
each variable. The box plot exhibits the Z-value of each variable dur-

ing model calculation. The green boxes represent the first 15 impor-
tant variables, the yellow represents tentative attributes, and the red 
represents unimportant variables
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best predictive performance and interpretability, the SHAP 
was employed in the GNB model. Feature importance 
analysis revealed that cTnT, CK-MB, ALB, low-density 
lipoprotein cholesterol (LDL-C), NYHA, sCr, and age 
were the top 7 features of the GNB model, with significant 

impact on predicting postoperative CRRT. In addition, 
the SHAP force analysis enables clinicians to comprehend 
why specific recommendations are made by the model for 
high-risk decisions. Collectively, these findings enhance 
our understanding of decision-making process underlying 
predictive models for users.

In this study, we have identified crucial features of 
postoperative CRRT. The biomarkers cTnT and CK-MB, 
indicating myocardial injury, could to a certain extent 
reflect cardiac deterioration. Preoperative elevations in 
cardiac biomarkers may increase the risk of postoperative 
complications, such as AKI [14, 15]. This could be attributed 
to the close relationship between cardiac and renal function, 
referred to as cardio-renal syndrome [15]. In our study, 
cTnT and CK-MB accounted for the highest weight in the 
GNB predictive model, which suggested that they were the 
most critical predictors for postoperative CRRT following 
CABG surgery. NYHA classification is another heart-related 
indicator for assessing impaired cardiac function. Several 
studies have explored the role of NYHA classification in 
predicting postoperative AKI or need for renal replacement 
therapy, with NYHA III/VI being an independent risk 
factor [16–18]. Consistently, our study showed that patients 
requiring CRRT had a significantly higher proportion of 
NYHA III/VI compared to those without CRRT (69.445% 
vs. 39.830%). NYHA was identified as an important risk 
factor of CRRT.

The crucial role of serum ALB in maintaining 
intravascular volume, partially by facilitating vascular 
integrity [19], is widely acknowledged. Consequently, 
reduced levels of serum ALB may result in tissue edema and 
decrease the circulating volume by extravasation. Previous 
study has demonstrated an association between preoperative 
low ALB and short-term or long-term prognosis in patients 
with cardiac surgery [20]. This suggests that reduced 
ALB levels can serve as prognostic indicators following 
cardiac surgery. In our study, we observed significantly 
lower ALB levels in the CRRT group compared to the non-
CRRT group, albeit with a slight difference. It is worth 
considering that even a mild reduction in ALB levels may 
affect postoperative CRRT at below-normal levels. The 
studies have explored the relationship between preoperative 
renal function and postoperative CRRT, with increased sCr 
levels identified as the risk factor for CRRT [21–23]. Our 
study corroborates this finding, suggesting that patients 
with impaired renal function have worse tolerant ability 
to surgery, which increases their need for CRRT. Age is 
a force majeure risk factor, with older patients being less 
tolerant to trauma, stress, and cardiac surgery. Some clinical 
studies have demonstrated age as CRRT-associated risk 

Fig. 3  Comparison of receiver operator characteristic curves (ROCs) 
for the machine learning models. a The ROCs of training models. b 
The ROCs of validation models. AUC, area under the ROC; GNB, 
Gaussian Naïve Bayes; CNB, Complement Naïve Bayes; MLP, multi-
layer perceptron neural network; SVM, support vector machine; 
KNN, k-nearest neighbors
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Fig. 4  Comparisons of 
parameters assessing machine 
learning-based model perfor-
mance. a Parameters of training 
models. b Parameters of valida-
tion models. ACC, accuracy; 
AUC, area under the receiver 
operating characteristic curve 
(ROC); CNB, Complement 
Naïve Bayes; GNB, Gaussian 
Naïve Bayes; MLP, multi-layer 
perceptron neural network; 
SVM, support vector machine; 
KNN, k-nearest neighbors
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factor after surgery in patients [21, 22]. Consistent with 
these findings, our study confirmed age as a predictor for 
postoperative CRRT after CABG surgery. Furthermore, our 
study also found a strong association between LDL-C and 
postoperative CRRT, although there was little difference in 

LDL-C levels between two group patients. Given that all 
patients had coronary artery disease, part of them may have 
been treated with lipid-lowering medications, such as statins. 
Indeed, our results showed that the rate of statin use among 
the two groups had no difference (69.444% vs. 77.966%). 
Accordingly, we hypothesis that serum LDL-C levels may 
be affected by different doses of statins and individual 
responsiveness. Despite no great difference in LDL-C levels, 
this indicator ought to be highly noticed in CABG patients.

Some previous researches have incorporated preop-
erative, intraoperative, and postoperative indicators of 
patients undergoing CABG to develop predictive mod-
els for clinical outcomes. It is important to acknowledge 
that including all variables in the model can enhance risk 
identification. However, it should be clarified that mod-
eling using patients’ preoperative parameters (within 24 h 
after admission) offers a priori advantages in early risk 
variable identification and clinical guidance. Although 
the machine learning models demonstrated favorable 
predictive performance in this study, it was important to 
acknowledge limitations of this study. First, the retrospec-
tive nature of the study could have introduced some bias 
into the results. Second, external data were not used for 
model validation, potentially impacting the generalizabil-
ity of the models. Additionally, the usage of angiotensin 
receptor blockers (ARBs) is reported as an important risk 
factor for the development of AKI. However, the data on 
ARBs were lacking in our study, which may affect the 
development of models and risk identification to some 

Fig. 5  The calibration plots in the models. GNB, Gaussian Naïve 
Bayes; CNB, Complement Naïve Bayes; MLP, multi-layer percep-
tron neural network; SVM, support vector machine; KNN, k-nearest 
neighbors

Fig. 6  The SHAP summary plot for the clinical features contributing 
to the GNB model. a SHAP feature importance measured as the mean 
absolute Shapley values. This matrix plot depicts the importance of 
each covariate in development of the final predictive model.  b  The 

attributes of the features in the model. The position on the y-axis is 
determined by the feature and on the  x-axis by the Shapley value. 
SHAP, SHapley Additive explanation; GNB, Gaussian Naïve Bayes
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extent. We aim to address and improve these issues in 
future studies.

Conclusion

Machine learning algorithm was utilized to develop a 
predictive model for CRRT after CABG surgery in the 
ICU patients, and the GNB model exhibited an excellent 
predictive performance and identified risk variables 
associated with CRRT. This study provides theoretical 
guidance for surgical physicians and enables the 
optimization of perioperative managements for patients.
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