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Phycobilisome is the major light-harvesting complex in cyanobacteria and red alga. It consists of phycobiliproteins and their
associated linker peptides which play key role in absorption and unidirectional transfer of light energy and the stability of the
whole complex system, respectively. Former researches on the evolution among PBPs and linker peptides had mainly focused on
the phylogenetic analysis and selective evolution. Coevolution is the change that the conformation of one residue is interrupted
by mutation and a compensatory change selected for in its interacting partner. Here, coevolutionary analysis of allophycocyanin,
phycocyanin, and phycoerythrin and covariation analysis of linker peptides were performed. Coevolution analyses reveal that
these sites are significantly correlated, showing strong evidence of the functional and structural importance of interactions among
these residues. According to interprotein coevolution analysis, less interaction was found between PBPs and linker peptides. Our
results also revealed the correlations between the coevolution and adaptive selection in PBS were not directly related, but probably
demonstrated by the sites coupled under physical-chemical interactions.

1. Introduction

The process of photosynthesis is initiated by the absorption
of light. In cyanobacteria and red algae, the main accessory
light-harvesting complexes are comprised of the phycobili-
somes (PBSs), which are attached to the cytoplasmic surface
of the thylakoid membrane except Gloeobacter violaceus
PCC7421 having no thylakoid membrane [1–6]. PBSs are
composed of rods and a core and biochemically consist of
phycobiliproteins (PBPs) and linker polypeptides, which are
particularly superior subjects for the detailed analysis of
structure and function due to their various components af-
fected by growth conditions [2]. In view of the spectral
properties as well as pigment compositions, allophycocyanin
(APC), phycocyanin (PC), and phycoerythrin (PE) are the
principal classes of PBPs in cyanobacteria. They consist of
two different subunits, α and β, which exhibit high affinity
for one another and associate into (α/β)-monomers to be
organized as (α/β)3-trimers and (α/β)6-hexamers [7]. Differ-
ent PBPs contain different kinds and different numbers of

chromophores, covalently attached to the apoprotein by
thioether bonds to cysteine residues. PC has three phyco-
cyanobilin chromophores attached to the monomer through
thioester linkages at the α84, β84, and β155 positions [8, 9].
In addition, unlike PBPs, most of the linker polypeptides do
not bear chromophores [10]. Previous studies have provided
a system of abbreviations to characterize linker peptides in
PBSs: rod linker (LR), rod-core linker (LRC), core linker (LC),
and core-membrane linker (LCM) [11, 12]. They can induce
the aggregation of the PBP trimers (LR) and also connect
the rods to the core (LRC), and the core to the thylakoid
membrane (LCM). The light energy absorbed by PE is
transferred to PC, and then to APC, finally to the chlorophyll
a in a quite efficient way [2, 4]. PBPs are important for
absorbing light energy, while the linker polypeptides are
important for stability and assembly of the complex.

Previous researches are mainly focused on PBPs. Electron
microscopic and crystallographic studies have revealed that
the tertiary fold and the general architecture of macromolec-
ular assemblages are remarkably conserved and provided
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a wealth of information on structure and function relation-
ship of PBPs [13–18]. Amino acid sequence alignments and
phylogenetic analyses have been used to go through the
parse for the evolution of PBPs [7]. Also, the divergence and
evolution of linker family have been investigated [19].

Light quality and quantity are key factors affecting the
composition of PBSs. Two different forms of PE gene, found
in two ecotypes of Prochlorococcus, are specifically adapted
to either high-light (HL) or low light (LL) conditions which
are under different selective pressure [19–21]. The structure
and function of linker peptides in PBSs have shown a great
diversity based on the light condition [1, 22]. The method
to respond to high-light stress in marine cyanobacteria is
decreasing the content of PBSs per cell [23].

As we know, coevolution is prevalent at species as well
as molecular levels. In the molecular level, coevolution be-
tween amino acid sites can be the result of their structural,
functional, physical interaction, phylogenetic convergence,
and their stochastic covariation [24]. Coevolving sites are a
powerful indicator of the structures, interactions, and func-
tions between residues [25–27]. The strength and pattern of
coevolution vary depending on their environment. Since the
nature and strength of residue interactions vary according
to the involved residues and their local and global environ-
ments, coevolution exhibits a complex dependence [28].

The availability of protein sequences and their previous
information allow us to perform a systematic screening on
PBS protein families. Here we extended an exhaustive coevo-
lution analysis of PBP genes and the linker polypeptide
genes from the well-annotated and even unfinished cyano-
bacterium and red alga genomes. Intramolecular and inter-
protein coevolution of PBPs and covariation analysis of link-
er peptides in the varieties of PBSs were analyzed, and specific
comparison to positive selection was also performed for bet-
ter understanding the evolution of PBSs.

2. Materials and Methods

2.1. Sequence Collection, Alignment. For the large amounts of
data, sequences with PBPs and linker peptides in 21 cyano-
bacteria and 5 red algae were obtained from GenBank with
the accession numbers which could be found in the accesso-
ry files. The 21 cyanobacteria and 5 red alga are Synechocystis
sp. PCC 6803, Nostoc sp. PCC 7120, Microcystis aeruginosa
NIES-843, Cyanothece sp. ATCC 51142, Gloeobacter viola-
ceus PCC 7421, Synechococcus sp. JA-2-3B′a(2–13), Nostoc
punctiforme PCC 73102, Synechococcus sp. JA-3-3Ab, Syne-
chococcus elongatus PCC 6301, Synechococcus sp. PCC 7002,
Synechococcus sp. WH 8102, Thermosynechococcus elonga-
tus BP-1, Arthrospira platensis str. Paraca, Synechococcus
sp. CC9902, Synechococcus sp. CC9605, Synechococcus sp.
CC9311, Cyanothece sp. PCC 7424, Cyanothece sp. PCC 7425,
Cyanothece sp. PCC 8801, Lyngbya sp. PCC 8106, Arthrospi-
ra platensis, Porphyra yezoensis, Cyanidium caldarium, Por-
phyra purpurea, Cyanidioschyzon merolae strain 10D, and
Gracilaria tenuistipitata var. liui. Amino acid alignments
were carried out using CLUSTAL X [29, 30] and MUSCLE
[31] software and then manually adjusted using BioEdit
(http://www.mbio.ncsu.edu/BioEdit/bioedit.html). Further

analyses were all performed on this set of aligned amino acid
sequences.

2.2. Coevolution Analysis. Many methods, parametric or
nonparametric, suffer from inaccuracies from their inability
to erase the background noise [24, 25]. Coevolution analysis
using protein sequences (CAPS) compares the correlated
variance of the evolutionary rates corrected by the time based
on the divergence of the protein sequences [25]. It uses the
blocks substitution matrix (BLOSUM) method between two
sequences at these particular sites [32]. This application is
based on CAPS Version 1.0 [33]. This method has proved
to be successful in disentangling real coevolutionary signal
from the background noise and minimizing false positive
rate with high sensitivity [25]. CAPS can produce the
files containing information of coevolutionary networks
and compensatory mutations. CAPS program is available
at http://bioinf.gen.tcd.ie/caps/. Also, we run the InterMap
3D 1.3 server (http://www.cbs.dtu.dk/services/InterMap3D/)
[34, 35] to measure the atomic distance as a complementary
explanation for the evidence of coevolution.

2.3. Covariation Analysis. Detecting structural interactions
and statistical covariance among separate amino acid sites
is significant for understanding protein covariation and evo-
lution [27, 36]. Such analyses are based on the assumption
that functionally significant coordinated residues in proteins
originated by physicochemical properties (e.g., volume,
charge, polarity, and hydrophobicity) of the residues [37].
Here, we use the software CRASP (Correlation analysis of
the amino acid substitutions in protein sequences) to run
the coevolved analysis. The CRASP program is available at
http://wwwmgs.bionet.nsc.ru/mgs/programs/crasp/.

3. Results

3.1. Intramolecule Coevolution Analysis. Figure 1 shows ami-
no acid sequences alignment of PC α subunits. In addition,
numbers of highly conserved amino acids of the PBPs were
identified from the sequence alignments (see detailed infor-
mation in the supplementary materials available online at
doi: 10.1155/2011/230236). Figure 2 provides clear coevo-
lution relevance with α and β subunits in PE, PC, and
APC, respectively. In addition to the implementation of the
method previously published [25], CAPS also performs a
preliminary analysis of compensatory mutations by testing
the correlation in the hydrophobicity and the molecular
weight variations between coevolving amino acids [33].
Some of the coevolving groups detected are significantly cor-
related either in hydrophobicity or molecular weight or both
(details are shown in Table 1).

PC and APC are common in cyanobacteria and red
alga, while PE just exists in less species. In PE α subunit,
few physicochemical properties among coevolved amino acid
residues with no groups in hydrophobicities were detected.
Just one coevolved pair (V8 and V9) were detected correla-
tion in molecular weight with ρ = 0.9159 and P = 0.0036
showed high robustness.

http://www.mbio.ncsu.edu/BioEdit/bioedit.html
http://bioinf.gen.tcd.ie/caps/
http://www.cbs.dtu.dk/services/InterMap3D/
http://wwwmgs.bionet.nsc.ru/mgs/programs/crasp/
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Figure 1: Multiple sequence alignments of PC α subunits in cyanobacteria and red algae. PC-α (species name, accession number): S1:
Synechocystis sp. PCC 6803, NP 440551.1; S2: N. sp. PCC 7120, NP 484573.1; S3: M. aeruginosa NIES-843, YP 001657460.1; S4: C. sp.
ATCC 51142, YP 001804066.1; S5: G. violaceus PCC 7421, NP 924131.1; S6: Synechococcus sp. JA-2-3B′a(2–13), YP 477182.1; S7: N.
punctiforme PCC 73102, YP 001868554.1; S8: S. sp. JA-3-3Ab, YP 473707.1; S9: S. elongatus PCC 6301, YP 171205.1; S10: S. sp. PCC 7002,
YP 001735446.1; S11: S. sp. WH 8102, NP 898114.1; S12: T. elongates BP-1, NP 682748.1; S13: A. platensis str. Paraca, ZP 06380686.1; S14: S.
sp. CC9902, YP 377910.1; S15: S. sp. CC9605, YP 380751.1; S16: S. sp. CC9311, YP 729715.1; S17: C. sp. PCC 7424, YP 002375498.1; S18: C.
sp. PCC 7425, YP 002482426.1; S19: L. sp. PCC 8106, ZP 01619119.1; S20: C.sp. PCC 8801, YP 002373212.1; S21: A. platensis, ABD64608.1;
S22: P. yezoensis, YP 537059.1; S23: C. caldarium, NP 045082.1; S24: P. purpurea, NP 053988.1; S25: C. merolae strain 10D, NP 848986.1;
S26: G. tenuistipitata var. liui, YP 063694.1.
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Figure 2: Intramolecular coevolutionary networks in α and β subunits in PBPs. Group-specific coevolutionary networks for PE, PC, and
APC α and β subunits are shown. Sites under potential coevolution efforts are identified using S. sp. PCC 6803 sequences in APC and PC,
S. sp. WH8102 in PE as the references. Nodes for amino acid sites are connected through edges colored according to the characteristics of
mutation coevolutions.
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Table 1: The number of coevolving groups under different correlated types in PBPs.

Coevolution type
Number of coevolving groups

PE-α PE-β PC-α PC-β APC-α APC-β

Coevolved groups 20 26 30 40 34 18

Hydrophobicity 0 14 9 18 12 3

Molecular weight 1 18 7 20 15 3

Hydrophobicity and molecular weight 0 9 4 15 7 1

3.2. Interprotein Coevolution Analysis. Interprotein coevolu-
tion, in addition to the intramolecular analysis developed
previously, can also be operated by CAPS. Detecting corre-
lation in the molecular weights and hydrophobicities in the
groups of coevolution is not available in such condition.

We run all the possible interprotein coevolution analysis
according to the locations in PBSs, including two proteins
of PBPs or linker peptides or both. The linker peptides had
few connections to PBPs according to their coevolution re-
sults. No coevolution groups were found in the CAPS out-
put in APC-LCM, LC-LCM, PE-LR, and LRC-LC. Figure 3
shows six interprotein coevolution networks in PC-LR, PC-
LRC, PC-APC, PE-PC, APC-LC, and LR-LRC. Compared to
intramolecular coevolution, less groups were found in inter-
protein analysis. Besides, it is obvious that the relationships
among two proteins of PBPs or linker peptides were much
closer than the connections between the PBPs and linker
peptides.

3.3. Covariation Analysis. These characteristics of amino
acids reflect physical and chemical interactions between resi-
dues. It has been suggested that these linker proteins play
roles in rod-core assembly and complex stabilization [38].
There are many physical-chemical scale parameters such as
flexibility, volume, polarity, and hydrophobicity. Here, we
firstly considered such amino acids characteristics as volumes
for covariation analysis. As can be seen in Figure 4, nearly all
the lineages were highly correlated at the 99% significance
level, while some of them approaching to 99.99%. In LC, the
lengths of the sequences are very short (approximately 67
amino acids); thus the number of the coevolved sites were
the least. Other linker peptides contain numerous coevolved
residues owning to the physical-chemical interactions. Then
alignment consequences of these peptides are narrowly con-
servative. The number of amino acids, residue-residue inter-
actions, the dependence of covariations on phylogenetic
distances and interior environment would be the main
factors to account for the covariation outcomes. Then we
chose some other amino acid characteristics (polarity, hydro-
phobicity, and flexibility) to perform the covariation anal-
yses. Results from the properties are similar to the former
analysis, just changing the branch locations with the same
residues.

3.4. Atomic Distance. The analysis of the atomic distances
(AD) identified a certain percentage of coevolving residues
within each group as spatially close. Physical distance (<10 Å)

is one pattern within the residues in the coevolutionary
events [39].

In Figure 5, large amounts of spatial couplings and few
physical interactions were detected in all PBPs and linker
peptides.

Spatially proximal pairs of sites and clusters of distant
sites located in functional domains, suggest a functional de-
pendency between them [39]. Furthermore, linker family
shares the coevolution positions in which most atomic dis-
tances showed not available for their unknown protein terti-
ary structures.

4. Discussion

Intramolecular coevolution detected among PBPs reveals
the strong coevolved connections between sites. The factors
on compensatory mutations including hydrophobicities and
molecular weights are among the most important in explain-
ing amino acid contribution to protein structure with less
error [40]. Most of the coevolving residues are significantly
correlated in hydrophobicities and molecular weights except
the PE α subunit. It may be caused by the microenvironment
of PBS. The interactions of hydrophobicities are responsible
for different phenomena such as structure stabilization of
proteins [41] and folding of proteins [42]. PE is the outmost
portion of the structure of PBS, so it might possess less
physical-chemical interactions than APC and PC. Other
possible explanations include the coupling patterns which
can balance the formation of the region and the interior
environment such as water dynamics.

Apt proposed a hypothetical outline that different types
of PBPs and linker peptides originated from the same
ancestor [7]. The results of interprotein coevolution analysis
in PBPs verify the previous hypothesis, and so as linker
peptides. Apt and Zhao also supposed that the linker poly-
peptides developed from an earlier ancestor of PBPs [7, 43].
The rare relationship between PBPs and linker peptides
depending on the interprotein coevolution analysis demon-
strates less interaction in the long period of evolution. This
hypothesis would in part be overturned by this point.

Interestingly, a significant proportion of the sites detected
coevolving had been previously proposed to be under
adaptive evolution [25, 39]. Based on S. sp. PCC 6803 PC-
α protein numbering in Zhao’s research [43], these residues
are 4P, 5L, 7E, 15Q, 25Q, 66T, 88I, 107L, 118S, 119P, 134K,
and 140H (these positions are not the same with the paper
[43] for they edited the sequences) under positive selection
with posterior probability >0.95. Only two positions 107L
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Figure 3: Interprotein Coevolutionary networks in PBSs. Six interprotein coevolutionary networks PC-LR, PC-LRC, PE-PC, PC-APC, APC-
LC, and LR-LRC are shown. Nodes for amino acid sites are connected through edges colored according to the characteristics of mutation
coevolutions. The event LR-LRC with numerous coevolutionary residues is shown by this two-dimensional chart.
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Figure 4: Linker peptides LR, LRC, LC, and LCM (a–d) correlation networks of covariation analysis. The number below each node indicates
the correlation coefficient value. The vertical gray bars indicate different significance thresholds.
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and 140H are involved in the coevolutionary analysis. The
positive selective residues are usually between or adjacent
to the coevolutionary sites, such as 118S and 119P within
the coevolved residues 115I, 116D, and 120R. In PC-β sub-
unit, 30T, 57R, 61A, 103S, 127V, 129A, 130G, 133K, 139L,
167A, 168A, and 171V were under the adaptive selection.
Surprisingly, just one residue 61A was detected coevolved.
Most of the sites are also among the coevolved sites that
shows the potential connection between coevolved and selec-
tive residues. And we found that the coevolution positions
occurred through the whole molecule, while many sites with
elevated dN/dS ratios (the frequency of nonsynonymous
versus synonymous substitutions) in different PBP lineages
were located in the chromophore-binding domain and the
helical hairpin domains (X and Y) [43].

The identification of genes showing particular amino
acid residues that have undergone adaptive evolution is a key
in determining functionally or structurally important pro-
tein regions. Conserved amino acids throughout protein evo-
lution are expected to have critical effects on protein func-
tions [44, 45]. Former researches had concluded the rela-
tionship between coevolution and selective pressure with the
fixed associations [25, 43]. In this paper, we found that most
of the sites under adaptive selection were adjacent to or
among the coevolved ones. One hypothesis is that accord-
ing to the physical-chemical properties, the residues under
positive selection are one key factor to stimulate the sites
coevolved and vice versa. Coevolutionary sites may be impor-
tant in two ways. First, some sites are functionally important
because they provide the ability to respond to the dynam-
ic circumstance [46, 47]. Second, the regions may be in-
directly important because they fall in the vicinity of im-
portant amino acid sites, and therefore their variability may
dramatically affect functional sites. In the latter case, variable
amino acid sites tend to coevolve to preserve the structural

characteristics of the functional sites [26]. It is expected
that compensatory coevolution may occur either between
amino acid sites three dimensionally proximal (indicating
structural and probably functional coevolution) or alterna-
tively between sites apparently far apart from one another
but in contact with functionally important sites. Certain
variability coupled with the strong functional constraints
and the involvement in the network of interactions for coevo-
lutionary processes would both arise from the environmental
factors especially light acclimation. Hence, the complex
relations between coevolution and selective constraints are
worth pursuing at a deeper level.

The coevolutionary analysis is regarded as an important
tool to gain functional and structural relationships in a pro-
tein. The evolution of amino acid residues is hence depend-
ing on their mutation and the constraint pressure imposed by
their complex networks [48]. Amino acid interdependency
can lead to coevolution. Many evidences pointed to the
importance of coevolution in shaping the molecular function
[24, 25, 27]. Moreover, structural and functional coupling
of distant interacting residues requires coevolution among
these amino acid residues. Some possible explanations
include the coupling of binding energy via pathways in the
protein, interactions with intermediate molecules, and the
surrounding environment. Various environmental factors
especially light acclimation were the primary influences in
coevolution. And the detail evolution mechanism in PBSs
mediating by the light can be further resolved.
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