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Abnormal clot microstructure plays a pivotal role in the pathophysiology of thromboem-

bolic diseases. Assessing the viscoelastic properties of clot microstructure using novel

parameters, Time to Gel Point (TGP), Fractal Dimension (df) and clot elasticity (G'GP) could

explain the increased cardiovascular and thromboembolic events in patients with

Obstructive Sleep Apnoea Hypopnea Syndrome (OSAHS). We wanted to compare TGP, df,

and G'GP and their diurnal variation in OSAHS and symptomatic comparators. thirty six

patients attending a sleep disturbed breathing clinic with symptoms of OSAHS were

recruited. TGP, df and G'GP were measured alongside standard coagulation screening,

thrombin generation assays, and platelet aggregometry at 16:00 h and immediately after

an in-patient sleep study at 07:30 h. OSAHS group had significantly lower afternoon df than

comparators (1.70570.033 vs. 1.73170.031, po0.05). df showed diurnal variation and only in

the OSAHS group, being significantly lower in the afternoon than morning (po0.05).

Diurnal changes in df correlated with 4% DR, even after controlling for BMI (r¼0.37, p¼0.02).

The lower df in the afternoon in OSAHS suggests a partial compensatory change that may

make up for other pro-clotting abnormalities/hypertension during the night. The change to

the thrombotic tendency in the afternoon is biggest in severe OSAHS. df Shows promise as

a new microstructural indicator for abnormal haemostasis in OSAHS.
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1. Introduction

Obstructive sleep apnoea hypopnoea syndrome (OSAHS)
affects 2–4% of middle-aged adults [1–3]. It is associated with
various adverse cardiovascular outcomes [4,5] and appears an
independent factor for arterial [6] and possibly venous
thrombosis [7]. However, studies focusing on mechanisms
to explain the dysfunctional haemostasis in OSAHS are
scarce and inconsistent. Recent research highlights the role
of static fibrin (clot) microstructure in abnormal clot devel-
opment and its direct relation to the increased risk of
cardiovascular events in OSAHS [8]. The formation of an
initial fibrin network has been shown as the primary tem-
plating microstructural component of a blood clot formation
(Incipient clot formation) [9,10]. The clotting process starts
the activation of time-based coagulation pathways which
result in the development of clot microstructural fibrinopep-
tide A and B cleaved by thrombin from fibrinogen, and the
resulting fibrin monomers bind together to create oligomers
and subsequently two-stranded protofibrils [11]. Protofibrils
aggregate axially to build up a fibre that gels via lateral
aggregation [12]. This cross-linking therefore determines the
elasticity and mechanical strength of the developing fibrin
architecture. Fibres become thicker due to lateral aggregation
and branch that leads to a sample-spanning network (i.e.,
gel). Fibrin network conformation and fibrin fibre diameter
also influence fibrinolysis speed. Therefore, fibrin clots built
of thin fibres are dissolved at a slower rate than clots with the
thick fibres [13], and the resulting formation of tight, rigid and
space-filling fibrin network structures with small pores is
associated with premature coronary artery disease (CAD)
[14,15]. Furthermore, Mills et al. [16] found that healthy male
relatives of patients with premature CAD had fibrin clots
which polymerized more quickly, had thicker fibres and were
less permeable than controls matched for traditional CAD
risk factors [16]. The initial fibrin network acts as a template
for how the clot develops and determines the clot's eventual
physical properties. According to Wolberg [17], the conditions
i.e., inflammatory and physiological alterations affect how
fibrinogen is converted to fibrin determines fibre thickness,
branching and network density of the clot development and
morphology. Hence, measuring initial clot microstructure and
its dynamic development would determine a meaningful
marker of coagulation in pro-coagulable states. Incipient clot
microstructure is associated with significant changes in blood
viscoelasticity (a measure of a material’s viscous and elastic
properties). Recent studies of viscoelastic properties are
among the most sensitive measures of fibrin polymerization
and blood clot microstructure and its mechanical properties
[18,19]. Fractal analysis is an established method that allows
the testing of a viscoelastic fluid, such as blood by applying a
stress (small amplitude oscillatory shear) that varies harmo-
nically with time, and then measuring the response. This
technique generates a phase angle (δ) which is a measure of
the ratio between the material's viscous and elastic proper-
ties. An incipient clot is formed at the Gel Point (GP) [20,21]
just as the blood turns from viscoelastic liquid to a viscoe-
lastic solid. Therefore, rheological analysis explains in a
dynamic way the process of clot initiation to clot formation.
We have shown that incipient clots form in healthy whole

blood within a narrow range represented by a fractal dimen-

sion (df) value derived from the GP and δ. A higher df is

suggestive of a more pro-coagulable state. The measurement

of df in a healthy state is maintained within remarkably

narrow limits at 1.7470.07 [22]. Hypoxic events and diurnal

changes in catecholamines and blood pressure can affect the

mechanistic changes in clot structure thereby causing

increased cardiovascular events in OSAHS. In the general

population, myocardial infarction (MI) and sudden cardiac

death peak in incidence between 06:00 and 12:00 [23] but the

frequency of MI in people with OSAHS is significantly higher

than in non-OSA patients (32% vs. 7%; p¼ 0.01) between 00:00

and 06:00 [8]. The purpose of this pilot study was to infer if

TGP, df and G'GP are altered in OSAS patients compared to

symptomatic comparators. Our secondary aim was to see if

any diurnal variation existed in the standard laboratory

screening tests in the above groups.
2. Methods

The study was approved by the local Research Ethics Com-

mittee and Institutional review boards and registered Clin-

icalTrials.gov Identifier: NCT01525160.
2.1. Participants

This was a prospective and cross-sectional study consisting

of patients aged 18–80 years, attending our sleep-disordered

breathing (SDB) clinic at a UK district general hospital.

Patients were referred from primary and secondary care with

varying symptoms suggestive of OSAHS (daytime sleepiness,

snoring and/or nocturnal apnoeas). We excluded anyone with

other diseases known to affect coagulation (e.g. cancer,

hepatic and/or renal dysfunction, acute or chronic inflamma-

tory conditions), those receiving antiplatelet or anti-

coagulation treatment or with a personal or family history

of bleeding or thromboembolic disorder. Thirty six Patients

(50711 years, males (n¼31), females (n¼5) were recruited

into the study, all underwent an in-patient overnight limited

channel sleep study (Visilab, Oakwood Scientific, Oxford, UK).

All video recordings and pulse oximetery waveforms were

manually reviewed to confirm that episodes were predomi-

nantly obstructive rather than central apnoeas. According to

the National guidelines to diagnose OSAHS, patients with a

4% dip rate (DR) 410 events/h were classified as OSAHS.

Those with symptoms but a 4% DR o10 events/h were

classified as comparators. To reduce the chance of false

positives or false negatives we excluded borderline cases

either side of the cut-off of 10 DR events/h (Table 1). To look

for any biological signal we wanted to compare more extreme

cases and therefore included patients with OSA who had a 4%

DR of 410/h, and only included controls as true negatives if

they had a 4% DR o10/h. Sleep tests were continued until we

had 18 per group.
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Fig. 1 – Afternoon and morning df in OSAHS and
comparators n denotes po0.05.

Table 1 – Patient characteristics for the OSAHS and
comparator groups.

Demographics (mean7SD) Comparator n¼18 OSAHS
n¼18

Male 15 16
Age (years) 45710 55711
Neck circumference (cm) 40.872.9 44.374.7
Body mass index (kg/m2) 3277 3678
Systolic BP (mm Hg) 138726 125714
Smoking pack years 6710 19717
Exhaled carbon monoxide
(ppm)

7710 11713

Epworth sleepiness score 1276 1476
4% DR (events/h) 573 46723
% TST with SaO2 o90% 0.570.8 18.5716.1
Mean overnight SaO2 (%) 9570.9 9272

S l e e p S c i e n c e 9 ( 2 0 1 6 ) 1 4 – 1 916
2.2. Procedure

Blood sampling occurred at 16:00 h before the sleep study and

at 07:30 h the following morning. Those with OSAHS had

further blood sampling at 07:30 following their first night of

continuous positive airway pressure (CPAP) and at 07:30 after

a month of CPAP.
20 ml of venous blood was collected from a peripheral vein

(antecubital fossa) with a 21-gauge needle into a Vacutainer

system. The first 2 ml of each sample was discarded to reduce

any contamination with skin tissue and tissue factor. A 7 ml

aliquot of whole blood was then immediately transferred

(o30 s) into the double-gap concentric cylinder measuring

geometry (340 mm shearing gap) of an AR-G2 controlled-stress

rheometer (TA Instruments, Delaware, US). All measure-

ments were performed as previously described by [Evans

et al., 2008, 2010]. The following parameters were recorded:

the time taken to reach the gel point (TGP) df and G'. Sodium

citrated blood (3.2% sodium citrate Greiner bio-one; ref:

454327) was used to measure Prothrombin time (PT), Acti-

vated Partial Thromboplastin Time (APTT), and Clauss fibri-

nogen (Fib) and was measured via a Sysmex CA1500 analyser

within 2 h of collection by scattered light detection (percen-

tage test endpoint method). Thrombin generation was per-

formed using the Thrombin Generation Assay (Technoclone

Diagnostics, Vienna, Austria) as described by Ay et al. [25].

Platelet function was assessed with hirudinated whole blood

was kept at room temperature for 30 min before testing

platelet aggregation [26] using the Multiplate impedance

analyser (Dynabyte GmBH, Munich, Germany).
Table 2 – Rheological parameters for the OSAHS and
comparator groups.

Variable Sampling time Comparator OSAHS

df PM 1.73170.031 1.70570.033
TGP (s) 228.7790.8 276.17107.1
G' (TGP 2.0 Hz) 0.03670.012 0.03170.011
df AM 1.73370.03 1.73770.042
TGP (s) 193.5754.2 249.37114.1
G''(TGP 2.0 Hz) 0.03770.011 0.03770.015
2.3. Statistical analysis performed using SPSS version
20.0 software (SPSS Inc., Chicago)

All data were checked for normality using the one sample

Kolmogorov–Smirnov test. Between group differences were

assessed using chi-square, two-sample independent t-test,

Mann–Whitney U and within group differences were tested

with a repeated measures ANOVA.
3. Results

Within the OSAHS group, df was significantly lower in the
afternoon 1.70570.033 than the morning 1.73770.042 (Fig. 1)
(po0.05). The comparator group, however, showed no
changes in df between the morning and afternoon measure-
ments (Table 2).

There was a significant positive correlation between Δdf
(the difference between the mean morning and mean after-
noon df), and 4% DR and Δdf correlated positively with neck
circumference and BMI across the whole study population.
After controlling for BMI, the correlation between Δdf and 4%
DR remained significant (r¼0.37, p¼0.002).

No significant differences were found in TGP or G' between
and within the OSAHS and comparator groups. No significant
differences were seen between any of the thrombin genera-
tion assays, platelet aggregometry and standard coagulation
screening tests between the OSAHS and comparator groups
(Table 3). There were no differences between the afternoon
and morning measurements for these haemostatic variables
in OSHAS or comparators.
4. Discussion

This is the first study to investigate dynamically and quantify
the arrangement and mechanical properties of fibrin clot
microstructure in OSAHS using fractal analysis. We found
higher levels of df in the morning in the OSAHS group. In the
OSAHS group, the afternoon df values were significantly lower
when compared to their comparators. This reduction in df
within the OSAHS group is indicative of a diurnal variation



Table 3 – Coagulation screening, inflammatory markers, platelet function and thrombin generation for the comparator and
OSAHS group.

Variables Comparators OSAHS

PM AM PM AM

HB (g/l) 15.171.2 15.271.3 14.871.2 14.971.3
HCT (l/l) 0.4470.02 0.4470.03 0.4370.03 0.4470.03
Platelets (�10\widehat9/l) 278.8754.3 244.9774.4 273.0759.6 263.2754.1
PT (s) 10.370.4 10.370.4 10.370.4 10.370.4
APTT (s) 25.0872.09 25.771.7 24.471.8 24.771.7
Fibrinogen (g/l) 3.370.5 3.470.5 3.170.4 3.270.4
CRP (mg/l) 5.5876.02 5.0374.68 5.073.5 4.472.7
VCAM-1 327.6780.1 312.9762.3 349.6779.8 336.8774.5
ICAM-1 286.8765.6 279.7750.9 282.7782.7 286.5782.3
Peak thrombin (nm) 338.9797.4 355.6778.0 430.07104.3 335.2779.0
SAA (lg/ml) 10.4713.5 6.875.8 5.375.1 5.674.7
ADP (AUC) 81.6720.0 81.8724.3 72.8722.1 65.8724.3
ASPI (AUC) 92.6720.8 98.7727.2 91.1720.0 86.1 723.2
Collagen (AUC) 81.3721.8 87.8717.4 80.5722.1 71.6714.0
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that was not evident in the comparator group. To our knowl-
edge, only one study has reported fibrin clot formation in
OSAHS. McEwen et al. [27] investigated fibrin polymerisation
indirectly via turbidimetry across the sleep–wake cycle in 25
patients with severe OSAHS (AHIZ25). They reported that
compared to 06:00 and 09:00 peak values, fibrin generation
parameters were significantly lower at midnight and 03:00,
suggesting as in our study that there is a prothrombotic shift
n subjects with OSAHS [27].

Although necessary for clot microstructure, it is important to
note that fibrinogen (FIB) concentrations explain only up to 18%
of the variation in clot permeability [28]. The fibrinogen levels in
our study did not show any circadian variation nor differed
between groups. In contrast, Mehra et al. [29] found a positive
linear relationship between severity of OSAH, and fibrinogen
levels but only for mild to moderate disorders. They observed
that morning fibrinogen level increased on average by 14.4mg/dl
per 5-unit AHI increase until an AHI of 15. However, no significant
incremental changes in morning fibrinogen were observed with
increasing AHI above 15 suggesting a threshold effect [29]. Our
OSAHS group had more severe OSA, with a mean 4% DR of
46723 events/h. It could be that other factors or compensatory
mechanisms are activated above a certain DR threshold.

The generation of thrombin is another fundamental part of
the clotting cascade [30] and pivotal in the clot development in
vascular diseases. We found no significant differences in
thrombin generation between and within groups, but there
was a trend of higher thrombin generation levels noticed in the
AM measurement OSAHS indicating perhaps a sign of an
underlying effect of prothrombotic predisposition. Recurrent
upper airways obstruction is causing alternating cycles of
hypoxia/re-oxygenation with a rapid re-oxygenation of transi-
ently ischaemic tissues leads to tissue injury and release of
reactive oxygen species (ROS) [31]. Transient oxidant formation
is thought to occur during MIs and stroke and acute inflamma-
tion, but more prolonged and recurrent oxidant generation has
been proposed in chronic inflammatory conditions such as
OSAHS [32]. ROS start an inflammatory cascade via activation of
transcription factors and downstream genes such as inflam-
matory cytokines and adhesion molecules [33]. ROS that are not
destroyed can be toxic because of their propensity to react with
lipids, proteins and DNA. Some enzymatic and non-enzymatic
oxygen free radical-generating systems can catalyze the oxida-
tive modification of proteins causing gross structural change
[32]. Such modified proteins can undergo spontaneous frag-
mentation or can exhibit substantial increases in proteolytic
susceptibility [34]. Faure et al. [35] reported that OSAHS patients
have significantly fewer albumin thiol groups than healthy
controls, indicating greater protein oxidation. Moreover, the
number of albumin thiol groups was inversely correlated with
AHI and mean nocturnal SaO2 [35]. Free radicals and ROS
produced during oxidative stress also attach very easily to FIB
to decrease the rate of clot formation [36]. Oxidative modifica-
tion of purified human FIB leads to an exposure-dependent loss
of thrombin-induced clot formation. Thrombin-catalyzed fibri-
nopeptides release is normal indicating that the inhibition of
clotting activity is due to impaired fibrin monomer polymeriza-
tion rather than increased breakdown [37].

Oxidized fibrinogen also impairs the microrheological
properties of the blood, it sharply reduces erythrocyte
deformability, modifies blood viscosity and reduces the sus-
pension stability of the blood. These physical changes play a
significantant role in the development of atherosclerosis [38].
Glycated FIB leads to denser fibrin clots that are stiffer and
more resistant to fibrinolysis thus leading to an increased
thrombotic burden [39]. It is also possible that subjects with
untreated OSAHS develop other mechanisms that alter clot
microstructure independent of FIB, thrombin such as ery-
throcytosis that contributes to thrombotic events. Our study
does present certain limitations as the patients were primar-
ily from a SDB clinic rather than from the general population.
Our sample size is also relatively small and the comparators
not fully matched; finding sleepy obese people with the same
BMI and cardiovascular risk factors without OSAHS is diffi-
cult. We applied limited channel sleep studies not full
polysomnography to diagnose OSAHS, as is our current (The
UK and European) standard clinical practice. We did not
measure the effect of treatment with CPAP and its associated
benefits to infer if any diurnal variation existed in df as this
was a pilot study. We however, recommend that any future
work should consider this. We therefore present this evi-
dence as pilot work and propose that more research is
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needed to identify the pathophysiological mechanisms that
are associated with clotting abnormalities in OSAHS. We are
also mindful that the routine coagulation tests have limita-
tions in their ability to predict the relationship between
coagulation pathways and clot outcome regarding function-
ality. Therefore, we propose that the understanding of clot
microstructure offers a unique way of comprehending the
complex mechanisms associated in the development of
coagulopathy in sleep apnoea.
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