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Background: Spinal cord injury (SCI) is one of the most devastating diseases with a
high incidence rate around the world. SCI-related neuropathic pain (NeP) is a common
complication, whereas its pathomechanism is still unclear. The purpose of this study
is to identify key genes and cellular components for SCI-related NeP by an integrated
transcriptome bioinformatics analysis.

Methods: The gene expression profile of 25 peripheral blood samples from chronic
phase SCI patients (E-GEOD-69901) and 337 normal peripheral blood samples
were downloaded from ArrayExpress and Genotype-Tissue Expression Portal (GTEx),
respectively. A total of 3,368 normal peripheral blood mononuclear cells (PBMC) were
download from Sequence Read Archive (SRA713577). Non-parametric tests were used
to evaluate the association between all of differential expression genes (DEGs) and
SCI-related NeP. CellPhoneDB algorithm was performed to identify the ligand–receptor
interactions and their cellular localization among single PBMCs. Transcription factor (TF)
enrichment analysis and Gene Set Variation Analysis (GSVA) were used to identify the
potential upstream regulatory TFs and downstream signaling pathways, respectively.
Co-expression analysis among significantly enriched TFs, key cellular communication
genes and differentially expressed signaling pathways were performed to identify key
genes and cellular components for SCI-related NeP.

Results: A total of 2,314 genes were identified as DEGs between the experimental
and the control group. Five proteins (ADRB2, LGALS9, PECAM1, HAVCR2, LRP1)
were identified in the overlap of proteins in the significant ligand-receptor interactions of
PBMCs and protein-protein interaction (PPI) network based on the DEGs. Only HAVCR2
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was significantly associated with NeP (P = 0.005). Besides, the co-expression analysis
revealed that TF YY1 had significantly co-expression pattern with cellular communication
receptor HAVCR2 (R = −0.54, P < 0.001) in NK cells while HAVCR2 was also co-
expressed with mTOR signaling pathway (R = 0.57, P < 0.001). The results of RT-qPCR
and external dataset validation supported the signaling axis with the most significant
co-expression patterns.

Conclusion: In peripheral blood of chronic SCI, HAVCR2 might act as a key receptor on
the surface of NK cells and interact with ligand LGALS9 secreted by CD14+ monocytes,
inhibiting NK cells through mTOR signaling pathway and ultimately predicting the
occurrence of SCI-related NeP. This hypothetical signaling axis may provide prognostic
biomarkers and therapeutic targets for SCI-related NeP.

Keywords: spinal cord injury, neuropathic pain, peripheral blood, single-cell sequencing, cellular communication

INTRODUCTION

Spinal cord injury (SCI) refers to the damage to the spinal cord
due to trauma, disease or degeneration (Cheshire et al., 1996;
Brienza et al., 2018). According to the National Spinal Cord
Injury Statistical Center, there are about 12,000 new cases of
SCI each year in the United States (Natinal Spinal Cord Injury
Statistical Center [NSCISC], 2014). The global SCI incidence is
40 to 80 new cases per million population per year (New et al.,
2014). It not only induces locomotor deficits or even complete
paralysis physically, but also generates despairing psychological
stress (Budh and Osteraker, 2007). Therapeutically, there are
no effective treatment strategies for SCI-induced neurological
deficits, leading to a high disability rate and adding heavy burdens
to the individual family and the whole society. In order to
bring tangible benefits to patients with SCI, there is a pressing
need to explore the pathologic mechanisms which may provide
candidate targets for treatment (Azarhomayoun et al., 2018;
Musubire et al., 2019).

Generally, SCI is categorized into three phases: the acute phase
(0–15 days), the sub-acute phase (3–5 months) and the chronic
phase (6–12 months) (Pouw et al., 2011). Although the functional
status of the chronic phase may be considered clinically similar,
regardless of the level of injury, new types of pathologies at both
micro and macro level occurs involving a variety of aberrant
molecules and cellular components, especially immune cells
(Metz et al., 2000; Chen et al., 2013; Van Niekerk et al., 2016). The
most common pathological features during the chronic phase
are the formation of the glial scar resulting from persistent glial
activation and neuronal hyperactivity associated with reactive
astrocytes, microglias, and infiltrating macrophages (Takeura
et al., 2019). In addition, all of these pathological features

Abbreviations: CIBERSORT, cell type identification by estimating relative subsets
of RNA transcripts; DEG, differential expression gene; FDR, false discovery
rate; GO, gene ontology; GSVA, Gene Set Variation Analysis; GTEx, Genotype-
Tissue Expression Portal; KEGG, Kyoto Encyclopedia of Genes and Genomes;
NeP, neuropathic pain; PBMC, peripheral blood mononuclear cells; PCA,
principal component analysis; PPI, protein-protein interaction; RPKM, Reads Per
Kilobase per Million; SCI, spinal cord injury; SRA, Sequence Read Archive; TF,
transcription factor; Tim-3, T-Cell Immunoglobulin Mucin Family Member 3;
t-SNE, t-distributed Stochastic Neighbor Embedding; TSO, template switch oligo.

are related to neuropathic pain (NeP). Thus, we suppose that
identifying the mechanism of NeP and predicting its occurrence.

Neuropathic pain is reported to occur in 40–50% of SCI
patients and typically develops within the first year following
SCI as the chronic presentation (Siddall et al., 2003; Werhagen
et al., 2004). Currently, its treatment is difficult and the efficacy
of the recommended treatment options are modest (Finnerup
et al., 2015). Although the pathological mechanism of NeP is still
unclear, it may be associated with the dynamic process of nerve
regeneration and immune response (Yune et al., 2007; Lee et al.,
2008; Pinzon et al., 2008; Takeura et al., 2019). In addition, no
factor has been identified to predict the occurrence of SCI-related
NeP. With regard to human specimens, peripheral blood from
patients with SCI is the more accessible and minimally invasive
than injured spinal cord in clinical practice.

Thus, an integrated transcriptome bioinformatics analysis
based on bulk RNA sequence and single-cell RNA sequence
was performed to identify differentially expressed genes and
cellular communications, key ligand-receptor interactions and
their cellular localization in peripheral blood of patients with SCI.
In addition, potential upstream transcription factors (TFs) and
downstream signaling pathways of key cellular communication
genes were also identified to draw a signaling axis, which might
provide candidate predictors and therapeutic targets for SCI and
SCI-related NeP.

MATERIALS AND METHODS

Data Collection
This study was approved by the Ethics Committee of Tongji
Hospital affiliated to Tongji University School of Medicine.
The gene expression profile of 25 peripheral blood samples
from chronic phase SCI patients (E-GEOD-69901) (Platform:
Affy Primeview Gene Expression Array) were downloaded from
ArrayExpress1 as the experimental group. Because we wanted to
identity DEGs between peripheral blood of normal people and

1https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-69901/
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patients with SCI, but E-GEOD-69901 did not have the data of
normal people. Therefore, we did not use the control set that was
published with the E-GEOD-69901. The control group including
337 normal peripheral blood samples was downloaded from
the Genotype-Tissue Expression Portal2 (GTEx) (Consortium,
2015). A total of 3,368 normal peripheral blood mononuclear
cells (PBMC) were download from Sequence Read Archive3

(SRA713577) (Freytag et al., 2018). The single cell set was one 10X
genomics object of 3,368 cells from the same one person. In order
to ensure the repeatability of the experiment, we used the RData
file including matrixes of Reads Per Kilobase per Million mapped
reads (RPKM) and raw counts from the PanglaoDB (Franzen
et al., 2019). Besides, we have carried out an external validation.
Two Affy Primeview dataset (GSE82152 and E-MTAB-5151)
including normal peripheral blood samples were used as the
control group for differential expression analysis. We did not
use these published data in the initial study because of the
small sample size.

Differential Gene Expression Analysis
First of all, non-peripheral-blood specific expression genes (no
expression was detected in both control group and experimental
group) were filtered. The limma package was used to find
differential expression genes (DEGs) after normalization between
two batches of data (Ritchie et al., 2015). Limma algorithm was
originally developed for the analysis of microarray data, and its
protocol for RNA-seq analysis also normalized the data using
voom algorithm to process it into data similar to microarray
for analysis (Ritchie et al., 2015). Thus, we used the GTEx
dataset as the control group for a larger sample size. And the
data of GTEx were normalized by voom algorithm and the
batch effect of data were eliminated by the function named
normalizeBetweenArrays. The standard of DEGs was an absolute
log2 fold change greater than 2 and false discovery rate (FDR)
P-value < 0.05.

Functional Enrichment Analysis and
Construction of Protein-Protein
Interaction Network
To further explore the function of the DEGs above, the functional
enrichment analysis was performed using the clusterProfiler
including gene ontology (GO) term and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway (Yu et al., 2012). String
database was used to construct a protein-protein interaction
(PPI) network based on the DEGs and the names of all
the interacting proteins and the protein-coding genes were
extracted from the network (Szklarczyk et al., 2019). Besides,
non-parametric tests were used to assess the association between
all DEGs and NeP.

Processing of Single-Cell RNA-Seq Data
Raw reads in the sra file were first separated into pair-ended reads
fastq files, which were trimmed to remove polyA tail sequence

2https://commonfund.nih.gov/GTEx/
3https://www.ncbi.nlm.nih.gov/sra/SRX4149408[accn]

and the template switch oligo (TSO) sequence. Then, the clean
reads were aligned to the hg38 human transcriptome (UCSC) and
quantified by the Cell Ranger Single Cell Software Suite 3.3.14.

For all 3,368 normal sequenced single PBMCs, cells with
either fewer than 100,000 transcripts or fewer than 1,500 genes
were filtered out. Besides, only the genes expressed in at least
three single cells and their expression levels greater than 1 were
considered for downstream analysis. Additionally, the Seurat
method was applied to downstream analysis (Butler et al., 2018).

First, “vst” selection method was used to find variable genes,
which were the input features for initial principal component
analysis (PCA) (Butler et al., 2018). Then, the jackstraw analysis
was performed to select the principal components (PCs) with
P-values < 0.05 (Chung and Storey, 2015). Significant PCs
were incorporated into further t-distributed Stochastic Neighbor
Embedding (t-SNE) to identify different cell clusters with DEGs
(resolution = 0.50). The standard of DEGs was an absolute log2
fold change greater than 0.50 and FDR value <0.05. Only the
genes with an absolute log fold change greater than 0.5 and FDR
P-value < 0.05 were selected as DEGs. The distribution and
expression of top 10 DEGs were displayed by feature plots and
heat maps, respectively. Additionally, scMatch (Hou et al., 2019),
singleR (Aran et al., 2019), and CellMarker (Zhang et al., 2019)
database were used as references for defining each cluster.

Identification of the Significant Cellular
Communication Among PBMCs
CellPhoneDB (Vento-Tormo et al., 2018; Efremova et al., 2019),
a repository of ligand-receptor complexes and a statistical tool
to predict the cell-type specificity of cell-cell communication
via these molecular interactions, was performed to identify the
ligand-receptor interactions and their cell localization among
single PBMCs. The names of all the interacting proteins and the
protein-coding genes were extracted from the network. Then, the
Venn plot was used to illustrate the intersection of CellPhoneDB
results and the PPI network.

Validation by CIBESORT Algorithm
Cell type identification by estimating relative subsets of RNA
transcripts (CIBERSORT) algorithm was used to characterize the
cell composition from the complex tissues according to their
gene expression profiles (Newman et al., 2015). Then the fraction
of 22 types of immune cell was estimated in peripheral blood
based on the normalized gene expression profiles. Samples with a
CIBERSORT output of P < 0.05 were considered to be eligible for
further analysis. Then, the Wilcoxon rank-sum test was applied to
identify the immune cells with the fractions between peripheral
blood samples from SCI patients and normal control samples.
It should be pointed out that the CIBERSORT algorithm could
correct for differences between different platforms and batches of
data in the initial version (Newman et al., 2015). Additionally,
the next generation CIBERSORT algorithm (CIBERSORTx)
(Newman et al., 2019), including enable batch correction
and disable quantile normalization algorithm, were applied to
confirm the reliability of the results.

4http://10xgenomics.com/
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Identification of the Potential Upstream
Transcription Factors of Key Cellular
Communication Genes
The DAVID database UCSC TFBS function module was used
for TF enrichment analysis to identify target TFs among the
DEGs. Differentially expressed TFs with enrichment analysis
FDR < 0.05 were defined as significantly enriched TFs.

GSVA and Co-expression Analysis
Gene Set Variation Analysis (GSVA) pathway analysis was
performed to evaluate the expression levels of 185 KEGG
pathways. The limma method was also used to find differentially
expressed pathways between peripheral blood samples from SCI
patients and normal control samples (Ritchie et al., 2015). The
FDR P-value < 0.05, the log (fold-change) >0.5 or <−0.5 was
defined a downregulated or upregulated pathway, respectively.

Eventually, a co-expression Pearson correlation analysis
among significantly enriched TFs, key cellular communication
genes and differentially expressed KEGG pathways.

Reverse Transcription Quantitative
Real-Time PCR (RT-qPCR) Assays and
External Dataset Validation
Total RNA was isolated from was extracted from human whole
blood of 16 patients with fractures complicated with SCI, 16
patients with fractures but no SCI and 8 normal adults, using
QIAamp RNA Blood Mini Kits (Qiagen, catalog number 52304)
according to the modified protocol of manufacturers. All cDNA
generated from reverse transcription [PrimeScript RT Reagent
Kit (Perfect Real Time) (Takara Bio)] was used for quantitative
PCR analysis by ABI PRISM 7900 Sequence Detection System
(Applied Biosystems, Foster City, CA, United States) and
SYBR Premix Ex Taq (Tli RNaseH Plus) PCR Kit (Takara
Bio). The relative expression levels of eight key genes (YY1,
CEBPB, HAVCR2, LGALS9, MTOR, RPS6, RPS6KB1, RPS6KB2)
and reference gene were determined by the 2−11Ct method.
Kruskal–Wallis test was used to identity the statistical difference
of gene expression among groups.

Additionally, since the platform effect and batch effect could
inevitably affect the results of the differential genes, two Affy
Primeview dataset (GSE82152 and E-MTAB-5151) including
normal peripheral blood samples were used as the control
group for differential expression analysis. The limma package
was also used to find differential expression genes (DEGs) after
normalization between two batches of data (Ritchie et al., 2015).
The standard of DEGs was an absolute log fold change greater
than 1 and FDR P-value < 0.05.

Statistics Analysis
Two-sided P-value < 0.05 was thought to be statistical
significance. All statistical analysis was conducted with R version
3.6.1 software (Institute for Statistics and Mathematics, Vienna,
Austria)5 (Package: limma, Seurat, ggplot2, SingleR, reticulate,
clusterProfiler, GSEABase, GSVA).

5www.r-project.org

RESULTS

Differential Gene Expression Analysis
The analysis process of this study was presented in Figure 1. For
identifying the significantly DEGs, we set the log (fold-change)
>2.0 or <−2.0 and FDR < 0.05 as the cutoff and a total of 2,314
genes were identified as DEGs, including 1,152 upregulated ones
and 1,162 downregulated ones (Figure 2A).

Functional Enrichment Analysis and
Construction of Protein-Protein
Interaction Network
The functional enrichment analysis for these DEGs in GO
terms and KEGG pathways were shown in Figures 2B,C,
respectively. The biological process of GO terms analysis
revealed the enrichment of some remarkable immune cell related
terms. Additionally, “secretory granule lumen” “ubiquitin-like
protein transferase activity” and “cadherin binding” were also
significantly enriched as cellular component or molecular
function, which might mean the active aberrant cellular
communication in the peripheral blood of SCI patients
(Figure 2B). The KEGG enrichment analysis also suggested
some critical pathways were significantly associated with cellular
communication, such as “Endocytosis,” “Protein processing in
endoplasmic reticulum,” “RNA transport,” and “NF-κB signaling
pathway” (Figure 2C).

String database was used to construct a PPI network based on
the whole 2,314 DEGs, which included 4,807 PPI relationships
related to 799 proteins (Supplementary Figure S1).

The Gene Expression Landscapes of
3,368 PBMCs
A t-SNE analysis was performed and clearly identified 13 clusters
and 8 cell types (CD4 + T cells, CD14 + Monocytes, Natural
killer (NK) cells, B cells, CD8 + T cells, Megakaryocytes,
FCGR3A + Monocytes, Dendritic cells) (Figures 3A,C). The
expression levels of the top 10 DEGs in each cluster and cell type
were displayed in Figures 3B,D, respectively. The feature plots of
each cell type markers reported in the CellMarker database were
presented in Figures 3E–M.

Identification of Significant Cellular
Communication Among PBMCs
The CellPhoneDB analysis was performed to identify the ligand-
receptor interactions and their cell localization among single
PBMCs. A total of 87 significant ligand-receptor interactions
(related to 108 proteins) and their cell localization were identified.
Furthermore, 5 proteins (ADRB2, LGALS9, PECAM1, HAVCR2,
LRP1) were identified in the overlap of proteins in the significant
ligand-receptor interactions of PBMCs and PPI network based on
the DEGs. Only HAVCR2 (Hepatitis A Virus Cellular Receptor 2)
was significantly associated with NeP (P = 0.005) (Figures 4A,B).
Besides, a total of 87 ligand-receptor interaction relationships and
a new PPI network illustrating the interaction among the five
proteins were shown in Figures 4C,D, respectively. Additionally,
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FIGURE 1 | The flow chart of the analysis process. GTEx, Genotype-Tissue Expression; PBMC, peripheral blood mononuclear cell; SRA, Sequence Read Archive;
CIBERSORT, Cell type identification by estimating relative subsets of RNA transcripts; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSVA, Gene Set
Variation Analysis.

the results of CellPhoneDB analysis including ADRB2, LGALS9,
PECAM1, HAVCR2, and LRP1 were presented in Table 1.

Validation by CIBESORT Algorithm
The fraction of immune cells in each sample estimated by
CIBERSORT algorithm were displayed in Figures 5A,B. The
results of the Wilcoxon rank-sum test suggested that the fractions
of B cells naive (P < 0.001), plasma cells (P < 0.001), T
cells CD4 memory resting (P < 0.001), T cells CD4 memory
activated (P < 0.001), T cells follicular helper (P = 0.021), T cells
regulatory (Tregs) (P < 0.001), T cells gamma delta (P < 0.001),

NK cells resting (P < 0.001), macrophages M1 (P < 0.001),
macrophages M2 (P = 0.042), dendritic cells activated (P = 0.001),
mast cells resting (P = 0.001) and eosinophils (P < 0.001)
had significantly different cellular fractions between peripheral
blood samples from SCI patients and normal control samples
(Figure 5C). These differential immune cells covered all the
cell localizations of ADRB2, LGALS9, PECAM1, HAVCR2, and
LRP1. In Addition, the PCA results of all samples suggested
the significant differences between the control group and
experimental group (Figure 5D). Besides, enable batch correction
and disable quantile normalization algorithm of CIBERSORTx
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FIGURE 2 | The differentially expressed genes (DEGs) between peripheral blood samples from spinal cord injury (SCI) patients and normal control samples (A) and
the functional enrichment analysis for these DEGs in gene ontology (GO) terms (B) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (C). (A) The
heatmap of DEGs between peripheral blood samples from SCI patients and normal control samples. (B) The bubble plot of top 10 significant GO terms in biological
process (BP), cellular component (CC) and molecular function (MF). (C) The bubble plot of top 20 significant KEGG pathways. DEG, differentially expressed gene;
SCI, spinal cord injury; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; CC, cellular component; MF, molecular
function.
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FIGURE 3 | The Gene Expression Landscapes of 3,368 peripheral blood mononuclear cells (PBMCs). A t-distributed stochastic neighbor embedding (t-SNE)
analysis was performed, which clearly identified 13 clusters (A) and 8 cell types (CD4+ T cells, CD14+ Monocytes, NK cells, B cells, CD8+ T cells, Megakaryocytes,
FCGR3A + Monocytes, Dendritic cells) (C). The expression levels the top 10 differentially expressed genes (DEGs) of each cluster (B) and cell type (D) are displayed
in the heatmaps. (E–M) illustrate the feature plots of each cell type markers reported in the CellMarker database. PBMC, peripheral blood mononuclear cell; t-SNE,
t-distributed stochastic neighbor embedding; DEG, differentially expressed gene.
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FIGURE 4 | The results of the CellPhoneDB analysis and the Venn plot illustrating five proteins (ADRB2, LGALS9, PECAM1, HAVCR2, LRP1) that not only
participated in significant ligand–receptor interactions in peripheral blood mononuclear cells (PBMCs) but Protein-Protein Interaction (PPI) network based on the
differentially expressed genes (DEGs). (A) The Venn plot illustrating five proteins (ADRB2, LGALS9, PECAM1, HAVCR2, LRP1) that not only participated in significant
ligand–receptor interactions in PBMCs but PPI network based on the DEGs, and only HAVCR2 was significantly associated with neuropathic pain (P = 0.005) (B).
(C) The network of 87 significant ligand–receptor interactions (related to 108 proteins); (D) PPI network illustrating the interactions among the ADRB2, LGALS9,
PECAM1, HAVCR2, LRP1. PBMC, peripheral blood mononuclear cell; DEG, differentially expressed gene; PPI, Protein-Protein Interaction.
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TABLE 1 | The results of CellPhoneDB analysis involved ADRB2, LGALS9, PECAM1, HAVCR2, and LRP1.

ID Interacting A Interacting B Secreted Rank Cell localization

CPI-SS098425155 ADRB2 VEGFB TRUE 0.016 NK cells| Dendritic cells

CPI-SS0C6448B94 IL1B ADRB2 TRUE 0.031 CD14+ Monocytes| NK cells, Dendritic cells| NK cells,
CD14 + Monocytes| NK cells, Dendritic cells| NK cells

CPI-SS0E23CEB91 LGALS9 HAVCR2 TRUE 0.062 B cells| NK cells, CD14+ Monocytes| NK cells, Dendritic cells| NK cells,
FCGR3A+ Monocytes| NK cells

CPI-SS0E0DEA7D5 PECAM1 CD38 FALSE 0.062 CD14 + Monocytes| NK cells, Dendritic cells| NK cells,
FCGR3A + Monocytes| NK cells, Megakaryocytes| NK cells

CPI-SS0419B80C4 LGALS9 LRP1 TRUE 0.062 B cells| CD14+ Monocytes, CD14+ Monocytes| CD14+ Monocytes,
Dendritic cells| CD14+ Monocytes, FCGR3A+ Monocytes| CD14+
Monocytes

CPI-SS002DF6C31 LGALS9 SLC1A5 TRUE 0.062 B cells| Dendritic cells, CD14+ Monocytes| Dendritic cells, Dendritic
cells| Dendritic cells, FCGR3A+ Monocytes| Dendritic cells

CPI-SS09C52F54E LGALS9 SORL1 TRUE 0.375 B cells| CD14+ Monocytes, B cells| CD14+ Monocytes, B cells| CD4 T
cells, B cells| CD8 T cells, B cells| dendritic cells, B cells| FCGR3A+
Monocytes, B cells| NK cells, CD14+ Monocytes| CD14+ Monocytes,
CD14+ Monocytes| CD4 T cells, CD14+ Monocytes| CD8 T cells,
CD14+ Monocytes| Dendritic cells, CD14+ Monocytes| FCGR3A+
Monocytes, CD14+ Monocytes| NK cells, Dendritic cells| CD14+
Monocytes, Dendritic cells| CD4 T cells, Dendritic cells| CD8 T cells,
Dendritic cells| Dendritic cells, Dendritic cells| FCGR3A+ Monocytes,
Dendritic cells| Megakaryocytes, Dendritic cells| NK cells, FCGR3A+
Monocytes| CD14+ Monocytes, FCGR3A+ Monocytes| CD4 T cells,
FCGR3A+ Monocytes| CD8 T cells, FCGR3A+ Monocytes| Dendritic
cells, FCGR3A+ Monocytes| FCGR3A+ Monocytes, FCGR3A+
Monocytes| Megakaryocytes, FCGR3A+ Monocytes| NK cells

CPI-SS0703338F5 LGALS9 CD44 TRUE 0.500 B cells| B cells, B cells| CD14+ Monocytes, B cells| CD4 T cells, B cells|
CD8 T cells, B cells| Dendritic cells, B cells| FCGR3A+ Monocytes, B
cells| Megakaryocytes, B cells| NK cells, CD14+ Monocytes| B cells,
CD14+ Monocytes| CD14+ Monocytes, CD14+ Monocytes| CD4 T
cells, CD14+ Monocytes| CD8 T cells, CD14+ Monocytes| Dendritic
cells, CD14+ Monocytes| FCGR3A+ Monocytes, CD14+ Monocytes|
Megakaryocytes, CD14+ Monocytes| NK cells, Dendritic cells| B cells,
Dendritic cells| CD14+ Monocytes, Dendritic cells| CD4 T cells,
Dendritic cells| CD8 T cells, Dendritic cells| Dendritic cells, Dendritic
cells| FCGR3A+ Monocytes, Dendritic cells| Megakaryocytes, Dendritic
cells| NK cells, FCGR3A+ Monocytes| B cells, FCGR3A+ Monocytes|
CD14+ Monocytes, FCGR3A+ Monocytes| CD4 T cells, FCGR3A+
Monocytes| CD8 T cells, FCGR3A+ Monocytes| Dendritic cells,
FCGR3A+ Monocytes| FCGR3A+ Monocytes, FCGR3A+ Monocytes|
Megakaryocytes, FCGR3A+ Monocytes| NK cells

CPI-SS014958F32 LGALS9 CD47 TRUE 0.500 B cells| B cells, B cells| CD14+ Monocytes, B cells| CD4 T cells, B cells|
CD8 T cells, B cells| Dendritic cells, B cells| FCGR3A+ Monocytes, B
cells| Megakaryocytes, B cells| NK cells, CD14+ Monocytes| B cells,
CD14+ Monocytes| CD14+ Monocytes, CD14+ Monocytes| CD4 T
cells, CD14+ Monocytes| CD8 T cells, CD14+ Monocytes| Dendritic
cells, CD14+ Monocytes| FCGR3A+ Monocytes, CD14+ Monocytes|
Megakaryocytes, CD14+ Monocytes| NK cells, Dendritic cells| B cells,
Dendritic cells| CD14+ Monocytes, Dendritic cells| CD4 T cells,
Dendritic cells| CD8 T cells, Dendritic cells| Dendritic cells, Dendritic
cells| FCGR3A+ Monocytes, Dendritic cells| Megakaryocytes, Dendritic
cells| NK cells, FCGR3A+ Monocytes| B cells, FCGR3A+ Monocytes|
CD14+ Monocytes, FCGR3A+ Monocytes| CD4 T cells, FCGR3A+
Monocytes| CD8 T cells, FCGR3A+ Monocytes| Dendritic cells,
FCGR3A+ Monocytes| FCGR3A+ Monocytes, FCGR3A+ Monocytes|
Megakaryocytes, FCGR3A+ Monocytes| NK cells

were used to eliminate platform effect and batch effect between
different dataset. Wilcoxon rank-sum test suggested that the
fractions of B cells naive (P < 0.001), plasma cells (P < 0.001),
T cells CD4 memory resting (P < 0.001), T cells CD4 memory
activated (P < 0.001), T cells follicular helper (P = 0.004),

T cells regulatory (Tregs) (P < 0.001), T cells gamma delta
(P < 0.001), NK cells resting (P < 0.001), macrophages M1
(P < 0.001), macrophages M2 (P = 0.002), dendritic cells
activated (P < 0.001), mast cells resting (P = 0.001), and
eosinophils (P < 0.001) also had significantly different cellular
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TABLE 2 | Transcription factors enrichment analysis of ADRB2, LGALS9, PECAM1, HAVCR2, and LRP1.

TF Counts in DEGs Percent of DEGs (%) Fold Enrichment P-value FDR

ELK1 1150 49.69749352 1.211034109 7.59E-20 9.32E-17

SP1 588 25.41054451 1.288547397 9.6E-13 1.18E-09

RREB1 859 37.1218669 1.195598062 2.38E-11 2.93E-08

MZF1 1022 44.16594641 1.11604408 0.00000103 0.001270396

YY1 1468 63.43993086 1.076131756 0.00000131 0.001610992

CEBPB 1165 50.34572169 1.100197888 0.00000153 0.00187979

AHR 715 30.8988764 1.146008606 0.00000482 0.005924797

ARNT 1000 43.21521175 1.106636605 0.00000847 0.010404583

SRF 1466 63.35350043 1.068036681 0.0000121 0.014861228

GATA1 1675 72.38547969 1.051350602 0.0000355 0.043593096

TF, transcription factor; DEG, differential expression genes; FDR, false discovery rate.

fractions between peripheral blood samples from SCI patients
and normal control samples (Supplementary Figure S2).

GSVA
Gene Set Variation Analysis was performed to estimate the
expression levels of 185 KEGG pathways and 12 pathways
were identified as differentially expressed pathways between
peripheral blood samples from SCI patients and normal control
samples (Figures 6A,B). Especially, some critical pathways
were significantly associated with cellular communication
and immune response such as “mTOR signaling pathway,”
“complement and coagulation cascades pathway,” and “cysteine
and methionine metabolism pathway.”

Transcription Factor Enrichment Analysis
The TFs enrichment analysis was firstly performed based on all
2,314 DEGs and a total of 41 TFs were identified with FDR
value < 0.05. Moreover, the enrichment analysis revealed that
10 significantly differentially expressed TFs might regulate the
promoter regions of ADRB2, LGALS9, PECAM1, HAVCR2, and
LRP1 (Table 2).

Co-expression Analysis
A co-expression Pearson correlation analysis was used among
significantly enriched TFs, key cellular communication genes and
differentially expressed KEGG pathways. A regulation network
was constructed based on TFs and key cellular communication
genes (Figure 7A). The bi-clustering heatmap and co-expression
heatmap illustrated the expression levels and co-expression
patterns of the three components (Figures 7B,C). In the co-
expression heatmap, the TF Yin and Yang 1 TF (YY1) had
significantly co-expression pattern with cellular communication
receptor HAVCR2 (R = −0.54, P < 0.001), while HAVCR2
was also co-expressed with mTOR signaling pathway (R = 0.57,
P < 0.001). Besides, the TF CEBPB was significantly co-
expressed with LGALS9 (R = −0.52, P < 0.001), which was
the ligand of HAVCR2 and also co-expressed with HAVCR2
(R = 0.70, P < 0.001). Moreover, the cellular localizations
of the key TFs and target DEGs with co-expression patterns
showed that HAVCR2 and LGALS9 were located in NK cells and
CD14+monocytes, respectively (Figures 7D–L). Eventually, the

sketch map of the signaling axis with the most significant co-
expression pattern including YY1, HAVCR2, CEBPB, LGALS9,
NK cell, CD14 + monocyte and mTOR signaling pathway was
shown in Figure 8.

Reverse Transcription Quantitative
Real-Time PCR (RT-qPCR) Assays
Kruskal–Wallis test was used to identity the statistical difference
of gene expression among groups. The results suggested that TF
YY1 (Figure 9A, P < 0.001) and CEBPB (Figure 9C, P < 0.001)
were upregulated in the peripheral blood of patients with SCI
compared with patients with fractures but no SCI and normal
adults. HAVCR2 (Figure 9B, P< 0.001) and LGALS9 (Figure 9D,
P < 0.001) were also abnormally downregulated in peripheral
blood of patients with SCI. Some key genes of the mTOR
signaling pathway (MTOR, RPS6, RPS6KB1, RPS6KB2) were also
identified to be significantly down-regulated in peripheral blood
of patients with SCI (Figures 9E–H).

External Dataset Validation
Additionally, since the platform effect and batch effect could
inevitably affect the results of the differential genes, two Affy
Primeview dataset (GSE82152 and E-MTAB-5151) including
normal peripheral blood samples were used as the control
group for differential expression analysis. Two volcano plots
showing the results of differential expression analysis using two
Affy Primeview dataset [GSE82152 (Supplementary Figure S4)
and E-MTAB-5151 (Supplementary Figure S4)] including
normal peripheral blood samples as the control group. And
the differential expression analysis results of YY1, CEBPB,
HAVCR2, LGALS9, MTOR, RPS6, RPS6KB1, and RPS6KB2
using GSE82152 and E-MTAB-5151 as control group were
summarized in Supplementary Tables S1 and S2, respectively.

DISCUSSION

Spinal cord injury, one of the most devastating diseases, disrupts
communication between the central and peripheral nervous,
leading to the loss of essential neurological functions. Due to a
large number of traffic and industrial accidents, the incidence rate
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FIGURE 5 | The composition (A) and heat map (B) of immune cells estimated by Cell type identification by estimating relative subsets of RNA transcripts
(CIBERSORT) algorithm in peripheral blood samples from spinal cord injury (SCI) patients and normal control samples. (C) The violin plot identifying immune cells
different from the two groups (the blue and red bar stand for SCI group and primary normal control samples, respectively). (D) The Principal Component Analysis
(PCA) result of all samples suggesting the significant differences between the control group and the experimental group. CIBERSORT, cell type identification by
estimating relative subsets of RNA transcripts; SCI, spinal cord injury; PCA, principal component analysis.

FIGURE 6 | The heat map (A) and volcano plot (B) showing Kyoto Encyclopedia of Genes and Genomes (KEGG) 12 pathways were identified as differentially
expressed pathways [Quantitative by Gene Set Variation Analysis (GSVA)] between peripheral blood samples from spinal cord injury (SCI) patients and normal control
samples. KEGG, Kyoto Encyclopedia of Genes and Genomes; GSVA, Gene Set Variation Analysis; SCI, spinal cord injury.

of SCI is increasing rapidly around the world (Azarhomayoun
et al., 2018; Musubire et al., 2019). Chronic phase of SCI may
last a long period after the acute phase, which bring physically
and psychologically devastating traumas to persons with SCI

(Budh and Osteraker, 2007). SCI-related NeP is one of the most
common symptoms in chronic phase and severely decreases
the quality of life (Bryce et al., 2012). The molecular and
cellular features often have some changes during the process of
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FIGURE 7 | Construct regulation network and identify co-expression patterns among transcription factors (TFs), key cellular communication genes and differentially
expressed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. (A) The regulation network of TFs and key cellular communication genes (the V symbols
represented TFs, the ellipses represented target DEGs; Red represented significant upregulated and blue represented downregulated). (B) The bi-clustering heatmap
illustrating the expression levels of TFs, key cellular communication genes and differentially expressed KEGG pathways. (C) The co-expression heatmap illustrating
the co-expression patterns of TFs, key cellular communication genes and differentially expressed KEGG pathways (in the co-expression heatmap, the transcription
factor YY1 had significantly co-expression pattern with cellular communication receptor HAVCR2 (R = –0.54, P < 0.001), while HAVCR2 was also co-expressed with
mTOR signaling pathway (R = 0.57, P < 0.001). (D–L) The feature plots showing the cellular localizations of the key TFs and target DEGs with co-expression
patterns. TF, transcription factors; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEG, differentially expressed gene.
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FIGURE 8 | The sketch map of the signaling axis with the most significant co-expression pattern including YY1 (Yin and Yang 1 Transcription Factor), Hepatitis A
Virus Cellular Receptor 2 (HAVCR2) and mTOR signaling pathway. In conclusion, this study inferred that the mechanism of YY1 regulating HAVCR2 and mTOR
signaling pathway in the NK cells and the cellular communication between NK cells and CD14 + monocytes might play an important role in chronic phase of SCI and
neuropathic pain.

FIGURE 9 | The results of Kruskal-Wallis test identifying the statistical difference of gene expression estimated by Reverse Transcription Quantitative Real-Time PCR
(RT-qPCR) Assays. Total RNA was isolated from was extracted from human whole blood of 16 patients with fractures complicated with SCI, 16 patients with
fractures but no SCI and 8 normal adults. The results of Kruskal–Wallis test suggested that transcription factor YY1 (A, P < 0.001) and CEBPB (C, P < 0.001) were
upregulated in the peripheral blood of patients with SCI compared with patients with fractures but no SCI and normal adults. HAVCR2 (B, P < 0.001) and LGALS9
(D, P < 0.001) were also abnormally downregulated in peripheral blood of patients with SCI. Some key genes of the mTOR signaling pathway (MTOR, RPS6,
RPS6KB1, RPS6KB2) were also identified to be significantly down-regulated in peripheral blood of patients with SCI (E–H).
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SCI-related NeP, and are often viewed as important predictors
(Natinal Spinal Cord Injury Statistical Center [NSCISC], 2014).
Thus, the DEGs and cellular communications in peripheral blood
attract our interest, which is seldom reported by previous studies.

In the present study, an integrated transcriptome
bioinformatics analysis based on bulk RNA sequence and
single-cell RNA sequence was performed and the results inferred
that the mechanism of YY1 regulating HAVCR2 and the
downstream mTOR signaling pathway in the NK cells might
be associated with SCI-related NeP. In addition, the cellular
communication between NK cells and CD14+ monocytes
might also play an important role in the SCI-related NeP. This
hypothetical signaling axis might provide prognostic biomarkers
and therapeutic targets for the SCI-related NeP.

YY1 was upregulated in the peripheral blood of patients
with SCI in our study and almost distributed in all kinds of
PBMCs. As a ubiquitously distributed TF, YY1 is involved in
activating and repressing a diverse number of promoters. In
addition, it modulates a variety of biological processes, particular
in nerve and immune cells/tissues (Chen et al., 2017). NF-
κB/YY1 signaling was reported to be associated with microglial
activation in the progression of glaucoma, characterized with
the progressive loss of retinal ganglion cells and optic nerve
fibers (Lv et al., 2016). YY1 was expressed initially in pro-
myelinating Sox9 + /Sox10 + Schwann cells (SCs) by E18.5
and continued to express in the early postnatal and adult
SCs. Following acute nerve injury, YY1 expression was often
maintained (Balakrishnan et al., 2016). In Stratton et al.’s (2017)
study, YY1 was regarded as SC-associated proteins to promote
axonal growth and regenerated axons and formed myelin
following transplantation into the injured mouse sciatic nerve.
Thus, we supposed that YY1 was a key TF in the SCI-related NeP.

HAVCR2 is also named T-Cell Immunoglobulin Mucin
Family Member 3 (Tim-3). In this study, it was abnormally
down-regulated in peripheral blood of patients with SCI and
significantly correlated with the occurrence of SCI-related NeP.
The protein coding by HAVCR2 belongs to the immunoglobulin
superfamily and is involved in regulating innate and adaptive
immune responses, usually mediating inhibition of target
immune cells (Gorman and Colgan, 2014). HAVCR2 was
reported to be abnormally expressed in T-cell lymphoma, acute
myeloid leukemia, hepatitis A and injured nerve tissue. It
regulated the activity of target immune cells through NF-κB
signaling pathway, mTOR signaling pathway and RET signaling
pathway (Prokhorov et al., 2015; Goncalves Silva et al., 2017;
Avery et al., 2018). The role of HAVCR2 in nerve injury was
shown in patients with spontaneous intracerebral hemorrhage
whose increased HAVCR2 expression on CD14+monocytes was
associated with systemic inflammatory response and sub-acute
brain injury (Xu et al., 2018). Besides our results, several previous
studies revealed the close interaction between HAVCR2 and
LGALS9. The interaction could inhibit the activity and promote
the apoptosis of target cells, especially to the immune cells (Zhu
et al., 2005; Clayton et al., 2014).

In our study, HAVCR2 was mainly distributed in NK cells
in patients with SCI-related NeP, similar to the previous study
which reported that HAVCR2 expressed on the surface NK

cells was shown to act as a co-receptor to enhance IFN-gamma
production in response to LGALS9 (Gleason et al., 2012).
NK cells, originated from bone marrow derived lymphocytes,
are crucial for immunoreaction against several infections and
cancers (Nair et al., 2015). Post-SCI immunological changes
impede neurological recovery and mediate common medical
consequences of SCI, including NeP (Herman et al., 2018). It
was also reported that NK cells were involved in peroneal nerve
and their activation was essential in patients with traumatic
SCI (Turker et al., 2012; Laginha et al., 2016; Xu et al., 2019).
NK cells were observed a significant activation within 24 h
after traumatic SCI regarding to the NK cell frequency and the
presence of NK cells with the activated phenotype (Xu et al.,
2019). During the post-acute and sub-acute phases after SCI, the
function of NK cells was impaired (Laginha et al., 2016) and
a marked downregulation of NK cell genes was found during
chronic SCI (Herman et al., 2018). Therefore, we speculated
that in peripheral blood of chronic SCI, HAVCR2 might act
as a key receptor on the surface of NK cells and interact with
ligand LGALS9 secreted by CD14+ monocytes, inhibiting NK
cells through mTOR signaling pathway and ultimately predicting
the occurrence of SCI-related NeP.

Furthermore, cell-to-cell communication across multiple cell
types and tissues strictly governs proper functions of metazoans
and extensively depends on the interactions between ligands
and receptors (Hiramoto et al., 1993; Zhou et al., 2017; Cohen
et al., 2018; Kumar, 2018; Mukherjee et al., 2018; Zhou et al.,
2018). The specific communication utilized by the NK cell system
and central nervous system results in conditioned response
(Hiramoto et al., 1993). NK cells can engage the homotypic
NK-to-NI cell interactions for optimal survival, activation and
proliferation (Kim et al., 2014). However, the specific molecular
mechanism utilized by the NK cell system and post-SCI
central nervous system is not clearly understood. The PPI
network is performed based on key genes associated with SCI-
related NeP (YY1, HAVCR2, CEBPB, LGALS9), key members
of mTOR signaling pathway (MTOR, AKT1, MAPK1, WNT4,
PIK3CB) and the surface markers of NK cell (CD56, CD16,
CD94, CD3, NKp46) (Supplementary Figure S3). Due to the
extensive interaction between NK cell’s surface markers and
mTOR signaling pathway, we hypothesized that mTOR signaling
pathway might be associated with the NK cells in the SCI-
related NeP.

mTOR plays a crucial role in many physiological functions
of the CNS, including the regulation of neuronal cell growth
and the development of axon and dendrite (Gong et al.,
2015). Its function in SCI are associated with the time phase
following SCI (Pouw et al., 2011). With regard to the acute
phase of SCI, the mTOR signaling pathway participates in
the regulation of neuronal apoptosis, autophagy, activation of
macrophage/microglia, and local inflammatory response (Kanno
et al., 2012). During the chronic phase, mTOR signaling pathway
regulate the neuroregeneration and glial scar formation (Kanno
et al., 2012). Thus, Rapamycin, an inhibitor of mTOR, is supposed
to be a good treatment for SCI by preventing apoptosis of
nerve cells (Yuan et al., 2016), promoting axonal regeneration
and inhibiting the formation of glial scar (Kanno et al., 2012;
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Li et al., 2015). Moreover, mTOR regulates the development and
maturation of T, B and NK cells and control the activation
of macrophage/microglia (Powell et al., 2012; Xie et al., 2014;
Almutairi et al., 2019; Rostamzadeh et al., 2019).

Moreover, in addition to HAVCR2 and LGALS9, the
results suggested that ADRB2, PECAM1and LRP1 were also
potential biomarkers associated with SCI. Adrenoceptor Beta 2
(ADRB2) in our study was also upregulated in the peripheral
blood of patients after SCI and dominately distributed in
the NK cells. ADRB2 (Adrenoceptor Beta 2) is a member
of the G protein-coupled receptor superfamily. It is most
abundantly expressed on the vasculature and modulated the
release of nitric oxide and is involved in vascular function.
Damage to the vasculature is universal consequences after
SCI. Importantly, it has already been shown that ADRB2
agonists have neuroprotective effects and they improve the
neurological and functional outcome, such as isoproterenol,
salmeterol, and clenbuterol (Junker et al., 2002; Loy et al.,
2002; Graumann et al., 2011). Treatment with the ADRB2
agonist can enhance the recovery in rats post-SCI (Zeman
et al., 1999; Zeman et al., 2006; Brown et al., 2014). Scholpa
et al. (2019) performed using an FDA-approved compound
with the ability to be repurposed, reinforcing the potential
clinical applicability of their findings and demonstrating the
pharmacological activation of ADRB2 receptor for the treatment
of SCI. However, it seemed no previous studies that reported
the association between PECAM1/LRP1 and SCI. And due to
the main findings of this study was that HAVCR2 might act as
a key receptor on the surface of NK cells and interact with ligand
LGALS9 secreted by CD14 + monocytes, inhibiting NK cells
through mTOR signaling pathway and ultimately predicting the
occurrence of SCI-related NeP. Thus, PECAM1/LRP1 were not
discussed in details.

There are several unavoidable limitations in our study
that should be taken into consideration. Firstly, although the
results of the bioinformatics perdition suggested that the DNA
binding domain (DDD) of YY1 could bind the promoter
region of HAVCR2, no previous studies proved this interaction
relationship by the direct mechanism assays. Secondly, the
data released in public datasets are so limited that the
clinicopathological features analyzed are not comprehensive,
which might lead to potential statistical bias. Thirdly, due to the
rapid progress of sequencing technology, there is heterogeneity
between different batches and experimental platforms. Lastly,
we must admit that there are two major limitation in this
study, which are the bias between different platforms in the
expression profile data and the absence of PBMC single-cell
sequencing data of SCI patients. As the single-cell sequencing
data originate from normal PBMCs, the results cannot well reflect
the pathological changes of PBMCs following SCI. Therefore, a
more comprehensive study is being conducting in our lab with
data including bulk-RNA-seq and single-cell RNA-seq data of
peripheral blood from patients with different time sequence SCI,
and single-cell sequencing data of normal and injured spinal
cord tissues in mice, which can not only validate the stability of
the results in this study but also identify more biomarkers and
therapeutic targets for SCI.

CONCLUSION

In peripheral blood of chronic SCI, HAVCR2 might act as a
key receptor on the surface of NK cells and interact with ligand
LGALS9 secreted by CD14+ monocytes, inhibiting NK cells
through mTOR signaling pathway and ultimately predicting the
occurrence of SCI-related NeP. This hypothetical signaling axis
may provide prognostic biomarkers and therapeutic targets for
SCI-related NeP.
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FIGURE S1 | The protein-protein interaction (PPI) network based on the all 2,314
differentially expressed genes (DEGs), which including 4,807 protein-protein
interaction relationships related to 799 proteins. PPI, protein-protein interaction;
DEG, differentially expressed gene.

FIGURE S2 | The composition (A) and heat map (B) of immune cells estimated by
the next generation Cell type identification by estimating relative subsets of RNA
transcripts (CIBERSORTx) algorithm in peripheral blood samples from SCI patients
and normal control samples; Enable batch correction and disable quantile
normalization algorithm were used to eliminate platform effect and batch effect
between different dataset. (C) The violin plot identifying immune cells different from
the two groups (the blue and red bar stand for SCI group and primary normal
control samples, respectively). (D) The Principal Component Analysis (PCA) result
of all samples suggesting the significant differences between the control group
and the experimental group. (E) The co-expression heatmap illustrating the

co-expression patterns among 22 types of immune cells. CIBERSORT, cell type
identification by estimating relative subsets of RNA transcripts; SCI, spinal cord
injury; PCA, principal component analysis.

FIGURE S3 | The protein-protein interaction (PPI) network comprised YY1,
HAVCR2, CEBPB, LGALS9, key members of mTOR signaling pathway (MTOR,
AKT1, MAPK1, WNT4, PIK3CB) and NK cell’s surface markers (CD56, CD16,
CD94, CD3, NKp46). PPI, protein-protein interaction.

FIGURE S4 | Two volcano plot showing the results of differential expression
analysis using two Affy Primeview dataset [GSE82152 (A) and E-MTAB-5151 (B)]
including normal peripheral blood samples as the control group. The standard of
DEGs was an absolute log fold change greater than 1 and false discovery rate
(FDR) P value < 0.05.

TABLE S1 | The results of differential expression analysis of YY1, CEBPB,
HAVCR2, LGALS9, MTOR, RPS6, RPS6KB1, and RPS6KB2 using GSE82152
and E-GEOD-69901 as control group and experimental group, respectively.

TABLE S2 | The results of differential expression analysis of YY1, CEBPB,
HAVCR2, LGALS9, MTOR, RPS6, RPS6KB1, and RPS6KB2 using GSE82152
and E-GEOD-69901 as control group and experimental group, respectively.
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