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Abstract: The synthesis of ultra-small gold nanoclusters (Au NCs) with sizes down to 2 nm has
received increasing interest due to their unique optical and electronic properties. Like many peptide-
coated gold nanospheres synthesized before, modified gold nanoclusters with peptide conjugation
are potentially significant in biomedical and catalytic fields. Here, we explore whether such small-
sized gold nanoclusters can be conjugated with peptides also and characterize them using atomic
force microscopy. Using a long and flexible elastin-like polypeptide (ELP)20 as the conjugated
peptide, (ELP)20-Au NCs was successfully synthesized via a one-pot synthesis method. The unique
optical and electronic properties of gold nanoclusters are still preserved, while a much larger size
was obtained as expected due to the peptide conjugation. In addition, a short and rigid peptide
(EAAAK)3 was conjugated to the gold nanoclusters. Their Yong’s modulus was characterized using
atomic force microscopy (AFM). Moreover, the coated peptide on the nanoclusters was pulled using
AFM-based single molecule-force spectroscopy (SMFS), showing expected properties as one of the
first force spectroscopy experiments on peptide-coated nanoclusters. Our results pave the way for
further modification of nanoclusters based on the conjugated peptides and show a new method to
characterize these materials using AFM-SMFS.

Keywords: gold nanocluster; peptide conjugation; elastin-like polypeptide; single-molecule force
spectroscopy

1. Introduction

Gold nanoparticles, particularly gold nanospheres [1–8] (Au NSs, size < 200 nm) and
gold nanoclusters [9–17] (Au NCs, size < 2 nm), have received growing attention in recent
years because of their excellent optical and electronic properties [18–20]. Many biomolecule-
conjugated Au NSs have been prepared, such as peptide, protein, and DNA, which have
a potential use in many biomedical and biosensing applications [21–29]. Typically, the
peptides are conjugated to the surface of gold nanoparticles through the Au-S bond which
was formed between the cysteine and gold [30–33]. So far, most peptide-conjugated
nanoparticles are prepared by using the larger size Au NSs, while the peptide-conjugation
of ultra-small Au NCs is relatively less. Considering the much larger size of peptides
compared with the nanoclusters, the synthesis of peptide-coated nanoclusters may be
complex. Moreover, many protein-conjugated Au NSs have been prepared with more
diverse and powerful applications [8,34–38], which are typically directly immobilized by
non-specific interactions [39,40]. Here, the conjugation of a lengthy peptide on Au NSs can
be the first step toward site-specific protein modification. By conjugating a proper peptide
with a recognition site for enzymatic connection, a target protein can be further coated
on the nanoclusters via an enzymatic ligation with the peptide, such as using sortase or
asparaginyl ligase (AEP) [41–43]. Thus, we explore here whether such small-sized Au
NCs can be conjugated with a long peptide, with the ultimate goal for site-specific protein
immobilization on nanocluster.
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Tow peptides with different lengths were used for conjugation (Figure 1). First, a long
and flexible elastin-like polypeptide (ELP), consisting of a repeat unit of Val-Pro-Gly-Xaa-
Gly derived from human tropoelastin, was selected. Due to its unique thermos-responsive
ability and low-mechanical strength, the ELP fragment has been used to synthesize smart-
nanoparticle responsible for the change of temperature and be used as a soft linker for
single-molecule studies [42,44–50]. Specifically, a polypeptide of twenty ELP units, (ELP)20,
was used here, which has nearly twenty times higher length than the nanocluster (~20 nm
vs. 1 nm) with a high molecular weight (~10 kDa). Secondly, a rigid peptide (EAAAK)3 with
a comparable length (~7.5 nm) as the nanoclusters was tested. Moreover, it is worth noting
that (EAAAK)3 has been widely used as the scaffold in biomacromolecule conjugation [51].
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Figure 1. Schematic illustration of the synthesis of (a) (ELP)20-Au NSs. (b) (ELP)20-Au NCs. (c) (EAAAK)3-Au NCs.

2. Materials and Methods
2.1. Materials

Hydrogen tetrachloroaurate (III) trihydrate (HAuCl4·3H2O) was purchased from Alfa
Aesar (Shanghai, China). Trisodium citrate dihydrate was purchased from Sinopharm
Chemical Reagent Co. Ltd. (Shanghai, China). Peptide CCY(EAAAK)3 was synthesized
using a solid-phase method (Sangon Biotech Co. Ltd., purity 95%) (Shanghai, China). Other
reagents were purchased from Sangon Biotech Co. Ltd. (Shanghai, China). All reagents
were used without further purification. Ultrapure water (18 MΩ cm−1) was obtained from
a Millipore Milli-Q Advantage water purification system (Burlington, MA, USA). E. coil
BL21 (DE3) and XL1-Blue cells were purchased from TransGen Biotech Co. Ltd. (Beijing,
China). The glass coverslips were purchased from Sail Brand, China. The AFM cantilevers
(MLCT-Bio-DC) were purchased from Bruker Corp (Billerica, MA, USA).

2.2. Sample Characterizations

The size and morphology of nanoparticles and clusters were observed using a JEOL
JEM-2100 transmission electron microscope (Tokyo, Japan) at 200 kV and a Thermo Sci-
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entific Talos L120C TEM (Waltham, MA, USA) at 120 kV. Dynamic light scattering (DLS)
was recorded at a wavelength of 659 nm and zeta potential experiments were conducted
on 90 Plus/BI-MAS equipment (Brookhaven, NY, USA). The concentration of Au was
determined by inductively coupled plasma mass spectrometry (Thermo X Series 2 ICP-
MS, Waltham, MA, USA). The UV-Vis spectra were measured on an Ocean Optics Maya
2000 Pro spectrometer (Orlando, FL, USA). The fluorescence spectra were measured on
a HORIBA Jobin Yvon Fluoromax-4 fluorescence spectrometer (Irvine, CA, USA). The
concentrations of CCY(ELP)20 and C-(ELP)20 were determined using the Ellman method.
The AFM experiments were performed on a Nanowizard4 AFM (JPK, Berlin, Germany).
Mass spectrometric analyses were performed using an UltrafleXtreme MALDI-TOF mass
spectrometer (Bruker Daltonics, Billerica, MA, USA) operating in linear positive ion mode
with 2,5-Dihydroxybenzoic acid (DHB) as the matrix.

2.3. Protein Engineering

ELP is the abbreviation of the elastin-like polypeptide. The genes of (ELP)20 were
purchased from Genscript (Nanjing, China). Construction of C-(ELP)20 and CCY(ELP)20
was in the expression vector pET-28a by standard molecular biology and PCR techniques.

The plasmids were transformed and then overexpressed in E. coli BL21 (DE3) cells.
The bacteria kept in the LB medium containing 50 µg mL−1 kanamycin were grown to
an OD600 = 0.6 and then were induced by 0.5 mM isopropyl β-D-thiogalactoside (IPTG)
overnight at 18 ◦C. The cells were obtained by centrifugation at 9000 rpm for 5 min at 4 ◦C
(Avanti JXN series, Beckman Coulter, Brea, CA, USA). The cells were redispersed in buffer
(50 mM Tris, 100 mM NaCl, pH 7.0) and lysed via a high-pressure homogenization. The
supernatants were mixed with Co-NTA affinity beads and then kept for 2 to 3 h after the
centrifugation operation at 20,000 rpm for 30 min. The mixture was washed with buffer
(20 mM Tris, 400 mM NaCl, 2 mM imidazole, pH 7.0) several times and eluted in buffer
(20 mM Tris, 400 mM NaCl, 250 mM imidazole, pH 7.0) immediately.

2.4. Synthesis of (ELP)20-Au Nanospheres

Citrate capped Au nanospheres were synthesized according to a previously published
method [52]. Briefly, HAuCl4 (1 mL, 25 mM) was injected into a boiling aqueous solution
of sodium citrate (2.2 mM, 150 mL) under magnetic stirring. The solution was cooled to
room temperature when the solution turned red. The concentration of Au (0.18 mM) was
determined by ICP-MS.

1.5 mL of C-(ELP)20 (1.3 µmoL) solution was added into the 20 mL Au-Cit solution
dropwise [53]. The sample was stirred for three hours at room temperature. The product
(ELP)20-Au NSs were collected by centrifugation and washed with buffer (50 mM Tris,
100 mM NaCl, pH 7.0) several times. Finally, the (ELP)20-Au NSs were dispersed in buffer
(50 mM Tris, 100 mM NaCl, pH 7.0). Based on the quantity of the reactant HAuCl4 and
peptide, we estimated the concentration of NSs is 5 × 104 ppm with a cove rate of 5.

2.5. Synthesis of (ELP)20-Au Nanoclusters

First, CCY(ELP)20 was obtained from C-(ELP)20 using the standard molecular biology
method. Then, (ELP)20-AuNCs were synthesized accordingly to the previously reported
method. In a typical experiment, an aqueous solution of HAuCl4 (70 µL, 25 mM) was
added slowly to the CCY(ELP)20 solution (1.7 mL, 1 mM) under vigorous stirring in a 5 mL
flask. Then NaOH solution (300 µL, 0.5 M) was added to adjust the pH of the sample
to 9. The mixture was reacted for 12 h in the dark. Finally, the product (ELP)20-Au NCs
were purified by dialysis (Dialysis Membrane MWCO: 100 KD) against buffer (50 mM Tris,
100 mM NaCl, pH 7.0) for three days. Similarly, we estimated the concentration of NCs is
77.5 ppm with a cove rate of 37.
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2.6. Synthesis of (EAAAK)3-Au Nanoclusters

The synthesis of (EAAAK)3-Au NCs was similar to (ELP)20-Au NCs. First, 3.4 mg
peptide CCY(EAAAK)3 was dissolved in 1.65 mL H2O. Next, an aqueous solution of
HAuCl4 (66 µL, 25 mM) was added slowly to the CCY(EAAAK)3 solution (1 mM) under
vigorous magnetic stirring in a 5 mL flask. Then NaOH solution (300 µL, 0.5 M) was added
to adjust the pH of the sample to 13. The mixture was reacted for 12 h in the dark. Finally,
the product (EAAAK)3-Au NCs were purified by dialysis (Dialysis Membrane MWCO:
10 KD) against H2O for three days. We estimated the concentration of NCs is 116 ppm with
a cover rate of 38.

3. Results and Discussions
3.1. Synthesis and Characterization of Au-Cit and (ELP)20-Au NSs

To better demonstrate the synthesis and property of the (ELP)20-conjugated gold nan-
oclusters, we synthesized the (ELP)20-gold nanospheres with a larger particle size first for
comparison. The Au-Cit NSs were synthesized by the classic method described above. The
TEM picture (Figure S1) showed that the Au-Cit NSs were monodispersed in water with an
average diameter of 9 nm. Peptide C-(ELP)20 was naturally produced using E. coli expression.
The purified peptide showed an expected molecular weight of ~10 kDa, verified by SDS-PAGE
gel (Figure S2). Then the (ELP)20-Au NSs were synthesized by the ligand-exchange method
owing to the Au-S bond formation between cysteine residues in C-(ELP)20 and Au-Cit NSs
(Figure 1a). Dynamic light scattering (DLS) and zeta potential experiments were conducted
to further prove its peptide conjugation on the nanospheres. The changes of hydrodynamic
diameter distribution along with Zeta potential indicated that the conjugation of flexible
peptide C-(ELP)20 on the NSs is successful (Figure 2a,b). In addition, the UV-Vis absorption
spectroscopy showed that the surface plasmon resonance peak is red-shifted from 520 to
530 nm after being modified with peptide C-(ELP)20 (Figure 2c). The modified (ELP)20-Au
NSs were well monodisperse without aggregation in buffer (50 mM Tris, 100 mM NaCl,
pH 7.0) as shown in the TEM picture (Figure 2d). Furthermore, the morphology of the
prepared (ELP)20-Au NSs experienced no change at all compared with the Au-Cit NSs
(Figure S1).

3.2. Synthesis and Characterization of (ELP)20-Au NCs

Next, we explore whether the ultra-small Au nanocluster conjugated with the long
peptide, CCY(ELP)20, can also be synthesized (Figures 1b, S3 and S4). Here, the peptide-
conjugated gold nanoclusters were synthesized using a one-pot method, in which the for-
mation of gold nanoclusters and the peptide conjugation were achieved at the same step. In
short, the tyrosine in the CCY(ELP)20 functioned as a reducing agent and participated in the
formation of (ELP)20-Au NCs [10,54]. Thus, the ELP peptide was conjugated in the same
step. The details for the synthesis can be found above. As shown in Figure 3a, the solution of
(ELP)20-Au NCs exhibited light yellow under room light and pink fluorescence under UV
light, consistent with the formation of gold nanoclusters. Compared to Au NSs, luminescence
is the unique property of Au nanoclusters. It is believed that the small size of the Au NSs
(2 nm) is comparable to Fermi wavelength of electrons (<1 nm) and thus has a visible-to-near
infrared fluorescence. It indicates the unique optical property of Au NCs is preserved after the
conjugation of a long peptide. The negative-stain EM image and the histogram revealed the
Au NCs with an average diameter of 1.29 nm (Figure 3b,c). In addition, the aggregation state
of CCY(ELP)20 from the negative-stain EM image also confirmed the successful synthesis of
the nanoclusters (Figure S5). Moreover, DLS results of (ELP)20-Au NCs (Figure 3d) showed
that the hydrodynamic diameter was about 40 nm, much larger than the size observed with
TEM. It agrees well with a long ELP peptide’s conjugation and proves the CCY(ELP)20
conjugation on the nanocluster. The (ELP)20-Au NCs showed a broad absorption band
ranging from 250 nm to 800 nm with a small absorption peak located at 280 nm, which can
be attributed to the absorption of tyrosine. The location of this peak and the absorption
spectrum matched with CCY(ELP)20 (Figure 3e). The fluorescence excitation and emission
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spectra of CCY(ELP)20 and (ELP)20-Au NCs were depicted in Figure 3f. The fluorescence
emission spectra of (ELP)20-Au NCs ranged from 600 to 800 nm, with the emission peak
locating at 659 nm when excited at 250 nm with the insertion of 300 nm optical filter in
the excitation window. At the same time, the CCY(ELP)20 exhibited almost negligible
emission. In summary, all data proved that the (ELP)20-Au NCs are successfully synthe-
sized. Moreover, the composition of the (ELP)20-Au NCs were characterized by using
matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF
MS). The mass spectrum indicated that (ELP)20-Au NCs were mainly composed of Au21
and Au23 (Figure S6).
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3.3. Synthesis and Characterization of (EAAAK)3-Au Nanoclusters

In addition to the synthesis of a long (ELP)20-conjugated gold nanoclusters, we demon-
strate the synthesis of another short peptide CCY(EAAAK)3 -conjugated nanoclusters
(Figures 1c and S7). The synthesis procedure is almost the same as the previous one, which
can be found in Section 2.6. As shown in Figure 4a, the solution of (EAAAK)3-Au NCs
appeared light brown under room light and pink fluorescence under UV light. TEM im-
ages showed the morphology and monodispersity of (EAAAK)3-Au NCs with an average
diameter of 1.1 nm (Figures 4b,c and S8). It is noted that the peptide was not detectable
in TEM, and the value here reflects the diameter of the Au nanocluster core. Indeed, DLS
results of (EAAAK)3-Au NCs (Figure 4d) showed an average diameter of ~3 nm (Raw data
in Table S1). Nevertheless, the detection limit of our DLS is 2 nm. Thus, the actual diameter
may be biased and smaller than the apparent DLS result. The (EAAAK)3-Au NCs showed
a broad absorption band ranging from 250 nm to 800 nm with a small absorption peak
located at 273 nm, which is the characteristic absorption of tyrosine. The location of this
peak and the absorption spectrum fitted with CCY(EAAAK)3 (Figure 4e). Figure 4f showed
the fluorescence excitation and emission spectra of CCY(EAAAK)3 and (EAAAK)3-Au NCs.
The fluorescence emission spectra of (EAAAK)3-Au NCs ranged from 550 to 850 nm, with
the emission peak at 660 nm when excited at 498 nm, similar to the preceding experimental
results. The emission spectra of (EAAAK)3-Au NCs were shown in Figure S9 and the peak
of emission spectrum peak was at 660 nm. Furthermore, the mass spectrum showed that
(EAAAK)3-Au NCs mainly consisted of Au16 and Au21 (Figure S10).
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3.4. Characterization of Peptide-Modified Nanocluster by Atomic Force Microscopy

To verify the differences between the two types of peptides-modified Au NCs, atomic
force microscopy imaging and Young’s modulus measurement experiments were conducted.
Briefly, the Au NCs were dispersed on the mica evenly and immersed in the corresponding
buffer. The Au NCs on the mica showed a distinct difference in the morphology and Young’s
modulus (Figure 5) when compared with the substrate mica (Figure S11). In addition,
(ELP)20-Au NCs appeared larger in size and irregular in morphology in contrast with
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(EAAAK)3-Au NCs (Figure 5a,d), which is possibly attributed to the larger molecular
weight of CCY(ELP)20 than CCY(EAAAK)3. It is worth noting that the brighter particle in
Figure 5d is the aggregation of the (EAAAK)3-Au NCs, which is caused by the addition
of the adsorption buffer (KCl), which helps the adsorption of (EAAAK)3-Au NCs on the
mica. Moreover, Young’s modulus of (ELP)20-Au NCs measured is about 50 MPa, which is
higher than the (EAAAK)3-Au NCs (~35 MPa) (Figure 5).

1 
 

 
Figure 5. AFM imaging and Young’s modulus measurement of the Au NCs. (a) AFM image (b) Young’s modulus
measurement and (c) distribution of (ELP)20-Au NCs. (d) AFM image (e) Young’s modulus measurement and (f) distribution
of (EAAAK)3-Au NCs.

AFM imaging showed that the Au NCs were dispersed uniformly and in the state of a
single nanoparticle (Figure 5a,d). Based on this, we conducted the atomic force microscopy-
based single-molecule force spectroscopy (AFM-SMFS) experiment to pull the coated
peptide (Figure 6a). First, the AFM tip approached and captured the peptide. Then the
tip pulled the peptide vertically, leading to a length increment from the peptide extension.
Finally, the peptide detached from the tip, and the detachment force was recorded. All
corresponding force-extension curves on the (ELP)20-Au NCs (Figure 6b), and (EAAAK)3-
Au NCs (Figure 6d) were shown and fitted by the worm-like chain model describing
the elasticity of peptide/protein polymer (red dash line). A representative curve was
highlighted and colored in cyan. Their statistic of the contour length showed an average
contour length of 20 nm and 7.5 nm for the two clusters (Figure 6c for (ELP)20, Figure 6e
for (EAAAK)3, respectively. Interestingly, the values are approximately equal to the length
of all amino acids stretched completely in the peptide.
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(EAAAK)3-Au NCs. 
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Figure 6. AFM-based single-molecule force spectroscopy (AFM-SMFS) pulling experiments. (a) Schematic illustration
of pulling the peptide conjugated Au NCs. (b) The overlay of all pulling curves of peptide CCY(ELP)20 coated on the
(ELP)20-Au NCs. A representative curve is colored in blue. (c) The distribution of contour length (Lc) of (ELP)20-Au NCs.
(d) The overlay of all pulling curves from peptide CCY(EAAAK)3 coated on the (EAAAK)3-Au NCs. (e) The distribution of
Lc of (EAAAK)3-Au NCs.

4. Conclusions

In this work, we demonstrate the conjugation of a long and flexible peptide CCY-
(ELP)20 on an ultra-small gold nanocluster via the one-pot synthesis. The nanocluster
remains its unique optical property while the hydrodynamic diameter increases signifi-
cantly due to the conjugated long peptide. Also, a short and rigid peptide-conjugated gold
nanocluster is synthesized with the expected property, characterized by classic method
and atomic force microscopy. Thus, we believe gold nanocluster is suitable for conjuga-
tion/functionalization with most peptide sequences, regardless of their size and length.
And many previous works on peptide-conjugated nanoparticles can be adopted for nan-
ocluster and may show better performance due to the smaller nanocluster size.

In addition, the conjugated peptide may modify the properties of AuNCs. For example,
the coated long peptide (ELP)20 may increase the contact area between the AuNCs and the
surface, leading to increased friction and a modification of the tribological properties of the
nanocluster. And the coated peptide may change the optical properties of the AuNCs if the
peptide possesses additional optical properties.

Moreover, the demonstration here may have great potentials for further modification
of gold nanoclusters. Enzymes can recognize many specific peptide sequences for ligation,
such as sortase and asparaginyl ligase OaAEP1 [42,43,55–57], and the use of a suitable
peptide as a linker for protein immobilization may allow further characterization by single-
molecule force spectroscopy [58–66], which may provide mechanical information about
the nanocluster and immobilized protein [67–71]. Thus, by designing a proper peptide
sequence for a first step peptide-conjugation, further functionalization and characterization
of the nanoclusters can be possible [72–77].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11112932/s1, Table S1. Raw data of hydrodynamic diameter distribution of (EAAAK)3-Au
NCs measured by DLS. Figure S1. TEM image of Au-Cit NSs. Figure S2. SDS-PAGE result of C-ELP20.
Figure S3. SDS-PAGE result of CCY(ELP)20. Figure S4. MALDI-TOF MS result of CCY(ELP)20.
Figure S5. Low-magnified negative-stain EM image of (ELP)20-Au NCs. Figure S6. MALDI TOF-MS
result of (ELP)20-Au NCs. Figure S7. MALDI-TOF MS result of CCY(EAAAK)3. Figure S8. TEM
image of (EAAAK)3-Au NCs. Figure S9. The emission spectra of (EAAAK)3-Au NCs. Figure S10.

https://www.mdpi.com/article/10.3390/nano11112932/s1
https://www.mdpi.com/article/10.3390/nano11112932/s1
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MALDI TOF-MS result of (EAAAK)3-Au NCs. Figure S11. AFM imaging and Young’s modulus
measurement of mica substrate.
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