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Role of activin receptor-like kinase 1 in vascular 
development and cerebrovascular diseases

Introduction
During embryonic vascular development, the vascular endo-
thelium senses cardiac pulsations and blood flow, and under-
goes endothelial-mesenchymal transition (EndoMT) chang-
es, including cellular budding, resulting in increased ability 
to hydrolyze extracellular matrix and decreased intercellular 
junctions. These cells recruit pericytes and smooth muscle 
cells, and also receive negative feedback, ultimately resulting 
in the formation of a mature cardiovascular system (Coultas 
et al., 2005). The transforming growth factor beta (TGFβ) 
pathway, and particularly activin receptor-like kinase-1 
(ALK1), plays an important role in EndoMT changes and 
pericyte-endothelial cell interactions within blood vessels 
(Feige and Bailly, 2000; Tillet and Bailly, 2015). Bone mor-
phogenetic protein-9 (BMP9) and BMP10 are endogenous 
ligands for ALK1 and activate the downstream SMAD1/5/8 
signaling pathway to promote the migration of endothelial 
cells (David et al., 2007). Compared with BMP9 and BMP10, 
TGFβ isoforms have a lower affinity for ALK1 and ALK5. 
In contrast to SMAD1/5/8 activation, SMAD2/3 activation 
induces endothelial cell quiescence (Townson et al., 2012; 
Jonker, 2014). The biological effects of TGFβ may depend on 
the ALK1/ALK5 ratio. Overexpression of ALK5 simultane-
ously promotes the activation of SMAD1/5/8 and SMAD2/3; 

however, overexpression of ALK1 activates SMAD1/5/8, 
but inhibits the activation of SMAD2/3. This indicates that 
the regulation of SMAD1/5/8 is relatively independent of 
ALK1 expression compared with ALK5 (González-Núñez et 
al., 2013). The presence of the co-receptor endoglin signifi-
cantly increases the affinity of BMP9/BMP10 for ALK1 and 
enhances the activation of SMAD1/5/8 (González-Núñez et 
al., 2013). To better understand the pathogenesis of cerebro-
vascular diseases, it is extremely important to elucidate the 
role of ALK1 in angiogenesis and the maintenance of phys-
iological vascular homeostasis. Therefore, in this review, we 
focus on the role of ALK1 in angiogenesis, and discuss their 
relationship with cerebrovascular diseases.

Search Strategy and Selection Criteria
Searches were performed using PubMed, encompassing 
literature published from 1995 to December 31, 2019. The 
eligibility criteria were as follows: reviews, in vivo and in 
vitro studies, studies performed on humans and animals, 
and published in English. The key search words were as fol-
lows: ALK1, ENG, Cerebral arteriovenous malformation, 
hereditary hemorrhagic telangiectasia, HHT, cardiovascular 
disease, aneurysm, pericyte, hypertension, atherosclerosis, 
neural regeneration.
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Relationship between Angiogenesis and 
Activin Receptor-Like Kinase 1 in Embryonic 
Development
The TGFβ signaling pathway, especially ALK1, plays an im-
portant regulatory role in angiogenesis. ALK1 is expressed 
specifically in endothelial cells. Knockout of the gene for 
ALK1 in endothelial cells causes vascular dilatation, the 
disappearance of pericytes (vascular smooth muscle cells 
and myofibroblasts), and results in abnormal vascular wall 
development (Lan et al., 2007; Tu et al., 2010; Corti et al., 
2011; Chen et al., 2013b; Sweeney et al., 2016). Factors such 
as changes in shear force generated by blood flow and blood 
TGFβ1 concentration affect ALK1 activity, which in turn 
modulates vascular homeostasis and may be involved in the 
development of various vascular diseases (Winkler et al., 
2017).

Cardiac tube pulsation is synchronized with activation of 
endothelial progenitor cell ALK1, and is involved in the 
initiation of angiogenesis
The expression of TGFβ receptor members (ALK1, en-
doglin) on endothelial cells and BMP10 concentration are 
tem-porally synchronized with blood island cell entry into 
the vasculature and vascular shaping (embryonic day 8.5) 
(Chen et al., 2013a). The increase in local blood flow stimu-
lates endothelial cells at this site and leads to an increase in 
ALK1 expression (Seki et al., 2003). However, it is still un-
clear whether blood island cells or changes in luminal pres-
sure induce activation of endothelial ALK1. Deletion of the 
cardiac excitation-contraction-related genes (mlc2a, NCX1, 
titin) leads to the weakening or disappearance of the origi-
nal beating ability of the heart tube, which can perturb the 
angiogenic process (Koushik et al., 2001; May et al., 2004; 
Lucitti et al., 2007). It appears that endoglin, rather than 
ALK1, directly induces changes in blood flow shear force 
(Seghers et al., 2012). Therefore, ALK1 may induce changes 
in peripheral blood flow shear force with the help of endog-
lin, which increases the affinity for ligands and promotes 
angiogenesis. Studies in zebrafish show that during develop-
ment, the intravascular pressure is highest at the blind end 
of the neovascularization duct and is accompanied by high 
expression levels of endothelial ALK1, which drives the 
outward migration of endothelial cells (Corti et al., 2011; 
Rochon et al., 2016; Figure 1).

Pericyte recruitment and differentiation
After progenitor cells in the blood islands enter the circula-
tion, they are recruited to the outer edge of endothelial cells 
and differentiate into pericytes/vascular smooth muscle cells, 
which form the middle membrane of the vascular wall. This 
process depends on ALK1 activation, which regulates the 
expression of a series of genes in endothelial cells. The extra-
cellular ligand-induced signal is transduced via phosphory-
lation of cytoplasmic SMAD proteins on C-terminal serines. 
Phosphorylated, dimerized SMADs bind to the common 
partner SMAD4, and this heterotrimeric complex translo-

cates to the nucleus, binds DNA, and recruits coactivators 
or corepressors to upregulate or downregulate gene expres-
sion. Similar to ALK1, knockout of SMAD4 in endothelial 
cells also results in decreased recruitment of pericytes and 
abnormalities in the vascular wall (Crist et al., 2018). Trans-
plantation of bone marrow from ALK1–/– transgenic mice, a 
model of cerebral arteriovenous malformation, into normal 
mice induces local expression of vascular endothelial growth 
factor (VEGF) and vascular malformations characterized by 
the loss of pericytes in the vascular wall. This may occur be-
cause although ALK1–/–-deficient endothelial progenitor cells 
recruited by local VEGF can differentiate into vascular cells, 
depletion of ALK1 cannot induce bone marrow-derived 
mesenchymal stem cells to accumulate, differentiate, and 
form normal vascular walls (Chen et al., 2013b). Endoglin 
also affects the recruitment of pericytes to endothelial cells, 
which in turn affects the formation of vascular walls (Rossi 
et al., 2016). It has been reported that blood flow and blood 
pressure affect the interaction between endoglin and ALK1 
and significantly increase the sensitivity of ALK1 to its li-
gands. This, in turn, results in the activation of SMAD1/5/8 
through phosphorylation and facilitates the recruitment of 
pericytes, which may be related to an impact of ALK1 on 
platelet-derived growth factor-B (PDGF-B; Stratman et al., 
2010; Chen et al., 2013b; Baeyens et al., 2016). Platelet-de-
rived growth factor-B and its ligand platelet-derived growth 
factor receptor β are crucial for the formation of middle lay-
er cells in vascular walls (Bjarnegård et al., 2004; Chen et al., 
2013b). Genetic loss or mutation of the ligand (e.g., altering 
its extracellular matrix retention motif) or receptor leads to 
substantial loss of pericytes and vascular defects (Payne et 
al., 2019). Studies have shown that pericytes may be derived 
from CD44+ stem cells in the bone marrow. Therefore, re-
ducing CD44+ cells in vivo may perturb neovascularization 
(Chan-Ling et al., 2011). TGF signaling also controls pericyte 
differentiation. Activation of ALK5, preferentially expressed 
in pericytes, leads to phosphorylation of the receptor-reg-
ulated SMAD2/3, which translocates to the nucleus after 
association with SMAD4 and regulates the transcription of 
specific target genes (e.g., SM22α, fibronectin, connexin 37, 
and plasminogen activator inhibitor-1) that inhibit cell mi-
gration, reduce proliferation, and promote vessel maturation 
and smooth muscle differentiation (Orlova et al., 2011) (Fig-
ures 2 and 3).

Maintenance of vascular homeostasis
During blood vessel formation and maturation, endothe-
lial cells must transition from an activated to a stable state, 
which depends on feedback from pericytes in the vascular 
wall. The vascular basement membrane participates in the 
maintenance of endothelial cell and pericyte functions. En-
dothelial cells secrete most of the proteins that form the bas-
al membrane, but can also secrete matrix metalloproteinases, 
whereas pericytes secrete tissue inhibitors of metallo-pro-
teinases to inhibit basement membrane hydrolysis (Stratman 
and Davis, 2012). In tumor neovascularization, pericytes 
form gap junctions with endothelial cells via the gap junc-
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tion protein connexin 43, which promotes endothelial stabil-
ity (van Dijk et al., 2015).

At the end of vascular remodeling, the levels of BMP10 
secreted by the fetal heart are significantly reduced (only 
small amounts are secreted by the mature heart, liver, and 
lungs), resulting in decreased ALK1 activity, and the endo-
thelium tends to be static (Chen et al., 2004). TGFβ1 also has 
different effects on endothelial cells and pericytes. Because 
TGFβ1 has a greater affinity for ALK5 than ALK1, high con-
centrations of TGFβ1 activate endothelial ALK1 and ALK5, 
thereby in turn simultaneously activating SMAD1/5/8 and 
SMAD2/3. The overall effect is to induce EndoMT-like 
changes in endothelial cells. However, low concentrations of 
TGFβ1 tend to stimulate ALK5 in endothelial and smooth 
muscle cells, thereby activating downstream plasminogen 
activator inhibitor 1 and SMAD7, which in turn promote the 
secretion of cellulose and elastic fibers, and ultimately make 
endothelial cells more static (Van Geest et al., 2010). Lack of 
ALK5 expression in cerebrovascular pericytes can lead to de-
creased expression of tissue inhibitors of metalloproteinase 3 
and destruction of the blood-brain barrier, leading to diffuse 
stromal-intraventricular hemorrhages (Dave et al., 2018a, b). 
Currently, the interaction between pericytes and endothelial 
cells is considered critical to the maintenance of vascular 
homeostasis; however, the molecular feedback mechanisms 
that regulate the interaction between these cell types remain 
unclear and need further study for clarification (Figure 3).

In general, angiogenesis can promote ALK1 expression 
and the activation of endothelial cells via hemodynamic 
changes in pressure or shear force and lead to EMT-like 
changes in endothelial cells. However, as the fetal heart ma-
tures, the secretion of BMP10 decreases, and the relatively 
low TGFβ1 concentrations in the circulation promote the ac-
tivation of ALK5 in recruited endothelial cells and pericytes, 
which weakens the ALK1 signal in endothelial cells. The 
endothelial cells then transition from an activated state to a 
quiescent state, which helps in the maintenance of vascular 
homeostasis (Capasso et al., 2019; Otterbein et al., 2019).

ALK1 plays an extremely important role in vascular 
homeostasis during angiogenesis. Most cerebrovascular 
diseases are caused by disruption of vascular homeostasis, 
which in turn impairs normal cellular functions (Winkler et 
al., 2011). For example, if the balance between lumen pres-
sure and vessel wall stiffness is perturbed, the blood vessel 
wall grows and the number of pericytes increases gradually, 
leading to vascular plaques, stenosis, fibrosis, and a series 
of clinical symptoms. Decreased recruitment of pericytes or 
their ability to inhibit endothelial cell feedback leads to arte-
rial dysplasia or decreased blood vessel wall stiffness, which 
is the main pathophysiological change in the formation of 
aneurysms and arteriovenous malformations, ultimately 
leading to arterial rupture and bleeding (Winkler et al., 
2017, 2018). Therefore, clarifying the relationship between 
ALK1 expression and functions and the occurrence and 
progression of cerebrovascular diseases is of great signifi-
cance for future basic and clinical research in cerebrovascu-
lar diseases.

Relationship between Activin Receptor-Like 
Kinase 1 in Vascular Endothelial Cells and 
Cerebrovascular Diseases
ALK1 and cerebral arteriovenous malformation
Cerebral arteriovenous malformation is the leading cause 
of spontaneous intracranial hemorrhage in young people 
(Cheng et al., 2019; Shaligram et al., 2019; Winkler et al., 
2019). In addition to heterozygous mutations in the ACVRL1 
gene, which encodes ALK1, that cause type II hereditary 
telangiectasia, a single nucleotide polymorphism in this 
gene is also closely associated with sporadic cerebral arte-
riovenous malformations (Sturiale et al., 2013; Kremer et al., 
2016; Weinsheimer et al., 2016). The pathological features of 
arteriovenous malformation include lack of normal develop-
ment of capillaries between arteries and veins, significant re-
duction in cellular (e.g., smooth muscle cells and pericytes) 
and extracellular matrix components of the arterial vascular 
membrane, lowered recruitment capacity caused by the re-
duction of pericytes, and impaired communication between 
pericytes and endothelial cells. This results in arterial dyspla-
sia or decreased wall toughness, leading to aneurysms and 
arteriovenous malformations (Winkler et al., 2010, 2011, 
2017, 2018).

The formation of the vascular network depends on the 
budding growth of blood vessels, which requires the migra-
tory ability of endothelial cells and the ability to hydrolyze 
the basement membrane. In pathological conditions, muta-
tion or decreased expression of ALK1 causes an imbalance in 
cerebral vascular homeostasis. Under the influence of blood 
flow, the blood vessels form abnormal vascular clusters and 
undergo various degrees of expansion, causing cerebral 
arteriovenous malformations. In this process, deficiency of 
ALK1 will lead to a decrease in the ability of endothelial cells 
to germinate, which ultimately leads to a decreased density 
of the vascular network. ALK1 deletion also affects the re-
cruitment of pericytes. In a mouse model of cerebral arterio-
venous malformation, dysplastic blood vessels have no layer 
of smooth muscle cells. ALK1 knockout reduces the expres-
sion of the chemokine PDGF-B in human microvascular en-
dothelial cells after VEGF stimulation and reduces the ability 
of endothelial cells to recruit pericytes (Chen et al., 2013b, 
2014; Zhu et al., 2018). Additionally, ALK1 has a strong 
impact on endothelial lineage differentiation. The tip cell 
interacts with stalk cells via Notch signaling to induce stalk 
cell differentiation. ALK1 upregulates hairy/enhancer-of-
split related with YRPW motif proteins 1 and 2 (Itoh et al., 
2004), downstream of Notch, by activating SMAD1/5/8 and 
antagonizing the effect of VEGF (Larrivée et al., 2012). Fur-
thermore, abnormalities in ALK1 affect local inflammation, 
which is another feature of the formation of cerebral arterio-
venous malformations. More macrophages are present in ar-
teriovenous malformation lesions in mice with ALK1 knock-
out endothelial cells than in endoglin knockout mice (Zhang 
et al., 2016). Macrophage-secreted matrix metalloproteinase 
9 can degrade key components of the cerebral vascular ma-
trix, including laminin, collagen, and cellular tight junction 
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Figure 1 Cardiac tube pulsation is involved in the initiation of angiogenesis.
(A) ALK1 and its ligands (BMP9/BMP10) in the embryo. The initial capillary plexus of the mouse embryo yolk sac forms between embryonic day 
(E) 7.5 and E8.5. The heart begins to beat at E8.0, but initially only plasma flows through the capillaries, while the erythroblasts are confined to the 
blood islands of the yolk sac. At E8.5, erythroblasts are released into the circulation, marking the beginning of true blood flow. At the same time, 
vascular remodeling is initiated, and Bmp10 and Alk1 begin to be expressed. (B) BMP9/BMP10 directly activate ECs, and induce the EndoMT 
process (proliferation and migration). ALK1: Activin receptor-like kinase 1; BMP: bone morphogenetic protein; ECM: extracellular matrix; ECs: 
endothelial cells; EndoMT: endothelial-mesenchymal transition; ENG: endoglin; TGFBR: transforming growth factor beta receptor.

Figure 2 Activated ECs secrete platelet-derived growth 
factor-B, which binds the ECM and helps recruit circulating 
bone marrow-derived pericytes.
EC: Endothelial cells; ECM: extracellular matrix; PDGF-B: plate-
let-derived growth factor-B; PDGFBR: platelet-derived growth 
factor-B receptor.

Figure 3 TGFβ1 concentration affects 
blood vessel maintenance.
Low concentrations of TGFβ1 tend to ac-
tivate ALK5 and maintain the stable status 
of ECs. In contrast, high concentrations of 
TGFβ1 activate both ALK1 and ALK5, and 
tend to activate ECs. Increased blood shear 
in hypertensive status may also promote en-
doglin activation, and further enhance the 
effect of ALK1. ALK: Activin receptor-like 
kinase 1; BMP: bone morphogenetic pro-
tein; EC: endothelial cells; EndoMT: endo-
thelial–mesenchymal transition; TGFBR2: 
transforming growth factor beta receptor 2; 
TGFβ1: transforming growth factor β1.

proteins, leading to leakage and bleeding of the blood-brain 
barrier (Hashimoto et al., 2003; Chen et al., 2009). Although 
it is currently unclear how ALK1 abnormalities cause local 
inflammation in arteriovenous malformations, hypoxia may 
play a key role. Although blood flow is increased in cerebral 
arteriovenous malformations, the rarefaction of the capillary 
network reduces oxygen exchange, leading to hypoxia in the 
local tissue (Chen et al., 2008; Neyazi et al., 2017). However, 
whether this is related to increased secretion of inflammato-
ry chemokines and increased recruitment of inflammatory 

cells remains unclear and is in need of further study.

ALK1 and cerebral aneurysms
At present, no study has shown that ALK1 is directly related 
to the occurrence of clinical cerebral aneurysms. This may 
be because the treatment of cerebral aneurysms mainly in-
volves craniotomy clipping and intracranial embolization, 
and consequently, corresponding tissue specimens are lack-
ing. Notably, ALK1 is closely associated with hypertension, 
one of the major risk factors for cerebral aneurysms. Studies 

 A    B   
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have shown that TGFβ1, an ALK1 ligand, is closely related 
to hypertension, and elevated TGFβ1 levels are significantly 
correlated with target organ damage (Lin et al., 2015; Chen 
et al., 2019). Serum TGFβ1 is significantly elevated in hy-
pertensive patients with atrial fibrillation. The steady-state 
levels of TGFβ1 mRNA are also associated with the degree 
of hypertension (Lin et al., 2015), and hypertensive patients 
with heart necrosis have higher serum TGFβ1 concentra-
tions than patients without cardiac damage. Furthermore, 
polymorphisms in the TGFB1 gene, serum TGFβ1 levels, the 
severity of hypertension, and hypertension-induced organ 
damage are correlated (Xi et al., 2012; Ferrario et al., 2013; 
Ge et al., 2014). Genetically, the 915C single nucleotide poly-
morphism in the TGFβ type I receptor is associated with 
increased hypertension risk in European and American pop-
ulations (Cambien et al., 1996; Lu et al., 2012), and the 869C 
polymorphism is associated with hypertension risk in Asian 
populations (Niu, 2011). In animal studies, hypertension 
is also closely related to elevated concentrations of TGFβ1 
in the serum (Tipton et al., 2017). Small molecule drugs 
against TGFβ1 or anti-TGFβ1 antibodies can antagonize the 
TGFβ1 signaling pathway to alleviate hypertensive disease 
in rats (Dahly et al., 2002; Lavoie et al., 2005; Murphy et al., 
2012; Liang et al., 2017; Fu et al., 2018). The maturation of 
elastin microfibril interfacer 1 (EMILIN1) can be inhibited 
by binding to pre-TGFβ, and deletion of EMILIN1 promotes 
TGFβ1 maturation and stimulation of the TGFβ1 signaling 
pathway (Zacchigna et al., 2006; Shen et al., 2009). EMILIN1 
knockout mice showed increased TGFβ1 signaling in blood 
vessel walls, as well as hypertension. These EMILIN1 knock-
out mice have reduced blood vessel diameters, resulting in 
increased peripheral vascular resistance and elevated blood 
pressure. In contrast, the combined knockdown of EMILIN1 
and TGFβ1 prevents hypertension (Zacchigna et al., 2006; 
Shen et al., 2009). This indicates that increased activity of 
the TGFβ pathway is closely related to vascular remodeling. 
Moreover, ALK1+/– transgenic mice also show activation 
of the renin-angiotensin system, reduction of choliner-
gic neurons, and phenotypically significant hypertension 
(González-Núñez et al., 2015). Endoglin, the ALK1 co-re-
ceptor, has been shown to be associated with neurovascular 
abnormalities. Endoglin mRNA level changes (Cooke et al., 
2018), mutation of the ENG gene (p.A60E) (Santiago-Sim 
et al., 2009; Ruigrok et al., 2012) and a single-nucleotide 
polymorphism (rs1800956) (Zholdybayeva et al., 2018) are 
significantly correlated with the occurrence of cerebral aneu-
rysms. However, direct empirical evidence of a link between 
ALK1 and aneurysms is lacking. Therefore, the role of ALK1 
in the pathogenesis of cerebral aneurysms requires further 
study. Whether changes in endoglin affect the susceptibility 
for cerebral aneurysms through ALK1 also remains unclear.

ALK1 and atherosclerosis
Cerebral atherosclerosis is a major senile cerebrovascular 
disease (Li et al., 2018; Yuan et al., 2019). Studies have shown 
that ALK1 is expressed in the middle layer of the endotheli-
um, the neointima, and in human coronary atherosclerotic 

lesions (Yao et al., 2007). ALK1 is highly expressed in blood 
vessel bifurcations, where increased shear force is present, 
and these sites are also prone to atherosclerosis. ALK1 ex-
pressed by endothelial cells can co-bind low-density lipo-
protein-containing ApoB100 in a low-affinity manner and 
mediate lipid deposition in endothelial cells through endo-
cytosis (Kraehling et al., 2016). This process does not rely on 
the activation of BMP, endoglin or the ALK1 signaling path-
way. However, transgenic mice overexpressing apolipopro-
tein A1 exhibit upregulation of BMP4 through high-density 
lipoprotein, and activation of the downstream ALK2/ALK1 
and SMAD pathways, and show reduced formation and 
severity of atherosclerotic plaques (Yao et al., 2008). There-
fore, during the process of atherosclerotic plaque formation, 
ALK1 may have two distinct roles in low-density lipoprotein 
endocytosis and BMP signaling. The role of ALK1 defects in 
vascular endothelial cell lipid deposition and atheromatous 
plaque formation remains to be clarified. The infiltration of 
vascular smooth muscle cells and macrophages in athero-
sclerotic plaques may be similar to processes during vascular 
development. During plaque formation, the expression of 
chemokines is promoted by ALK1 activation in endothelial 
cells, which in turn results in the recruitment of circulating 
macrophages and mesenchymal stem cells. However, this 
concept needs experimental confirmation.

In addition to endothelial cell lipid deposition, increased 
proliferation and migration of vascular smooth muscle cells 
is also involved in the formation of atheromatous plaques 
(Tong and Qi, 2018; Novikova et al., 2019). Under patholog-
ical conditions, vascular smooth muscle cells also express 
ALK1 to a certain extent. ALK1 can induce the expression of 
matrix-Gla-protein in vascular mesenchymal cells and pro-
mote their proliferation and phenotypic differentiation into 
smooth muscle cells (i.e., positive for alpha-smooth mus-
cle actin and calponin) (Yao et al., 2007). In patients with 
chronic kidney disease, high levels of BMP9 induce vascular 
smooth muscle calcification via the ALK1-SMAD pathway 
and alkaline phosphatase-dependent mechanisms (Zhu et 
al., 2015). Because of a lack of studies on ALK1 in smooth 
muscle cells, further study is required to elucidate how ALK1 
signaling pathways in vascular smooth muscle cells affect 
atherosclerosis. Conditional knockout of the ACVRL1 gene 
in smooth muscle cells in the course of atherosclerosis may 
help clarify its biological functions.

Prospects
ALK1 plays a critical role in angiogenesis and in the main-
tenance of vascular homeostasis. The occurrence of vascular 
diseases, especially cerebrovascular diseases, is often closely 
related to an imbalance in vascular homeostasis. ALK1 also 
plays an extremely important role in the development of var-
ious cerebrovascular diseases. However, there are many un-
knowns in the study of the relationship between ALK1 and 
cerebrovascular diseases. For example, the elevated TGFβ1 
pathway activity in the vascular wall may be the cause or 
consequence of hypertension. Furthermore, the endothelial 
cell-expressed protein that directly senses blood flow chang-
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es remains to be identified. Drawing on models and tech-
niques in other research fields can sometimes overcome in-
herent limitations and provide novel solutions to unresolved 
problems.
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