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Background: Polyamine metabolism is critically involved in the proliferation and metastasis of tumor cells, 
including in kidney renal clear cell (KIRC) cancer. However, the molecular mechanisms underlying the effect 
of polyamines in KIRC cancer remain largely unknown. 
Methods: The messenger RNA (mRNA) expression profile of KIRC was downloaded from The Cancer 
Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and ArrayExpress database. Differential 
expression analysis was performed with the “limma” package in R. Univariate Cox regression and multivariable 
Cox regression were used to estimate correlation between variables and prognosis. Least absolute shrinkage 
and selection operator (LASSO) Cox regression analysis was employed to screen variables and construct a 
risk signature. A nomogram model was established using the risk signature and clinical variables. Receiver 
operating characteristic (ROC), calibration curve, and decision curve analysis (DCA) were used to assess the 
predicted accuracy and clinical benefit of the model.
Results: We identified nine differentially expressed polyamine metabolism-related genes (PMRGs) in 
TCGA-KIRC. Of these, six were closely associated with patients’ outcomes. These six genes participated in 
different pathways and originated from different cell types within the tumor microenvironment (TME). Using 
the mRNA expression values of these genes, we constructed a 4-gene PMRG risk signature. Patients with 
high PMRG risk exhibited worse outcomes, and our analysis showed that the PMRG risk signature was an 
independent prognostic factor when clinical information was used as a covariate. We also found that multiple 
immune- or metabolism-related pathways were differentially enriched in high or low PMRG risk groups, 
suggesting that altering these pathways could lead to different clinical outcomes. Finally, in two external 
datasets, we found that the PMRG risk signature could predict the response of patients to immune therapy.
Conclusions: In summary, our study identified several potentially important PMRGs in KIRC and 
constructed a practical risk signature, which could serve as a foundation for further development of 
polyamine metabolism–based targeted therapies for KIRC.
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Introduction

Renal cell carcinoma (RCC) is among the top 10 most 
prevalent malignancies worldwide and has exhibited 
increasing incidence over the past decade, with its most 
common histological type being kidney renal clear cell 
(KIRC) carcinoma (1). Although various treatment methods 
such as surgery, chemotherapy, targeted therapy, and 
immunotherapy have been used in clinical practice, their 
efficacy is still limited, especially for metastatic kidney 
cancer (2). Therefore, it is imperative that new therapeutic 
targets for kidney cancer be developed.

Polyamines are a class of compounds containing two 
or more amino groups, which exist in mammalian cells at 
millimolar levels and play a significant role in normal and 
neoplastic cell function and replication (3). Dysregulation 
of polyamine metabolism is a common phenomenon in 
cancer. The discovery of polyamine-related pathways in 
cancer has made it possible to develop cancer therapies 
targeting polyamine metabolism. The RAS–RAF–MEK–
ERK signaling pathway has been shown to control 
polyamine metabolism in multiple aspects and may augment 
polyamine transport in colon cancer (4). PTEN–PI3K–
mTOR complex 1 (mTORC1) has been found to play an 
essential role in prostate tumors, and inhibition of mTOR 
results in reduced levels of intracellular polyamines (5). 
In addition, polyamines and their metabolites have been 
developed as biomarkers in lung, liver, prostate, pancreatic, 
and colon cancers (6-9). A previous study showed that the 
regulation of polyamine metabolism can inhibit KIRC 

progression (10). However, the biomarkers and detailed 
molecular mechanism underlying the effect of polyamine 
metabolism on RCC remain unclear. The development of 
bioinformatics and biostatistical analyses have provided the 
means to exploring the correlation between tumors and 
gene alteration. Using large-scale multiomics databases, 
researchers have made significant progress in various fields 
of medical research by, for example, identifying target 
genes, clarifying mechanisms of disease, developing targeted 
drugs, and diagnosing disease (11-13). As polyamine 
influences KIRC, characterizing the relationship between 
polyamine metabolism-related genes (PMRGs) and KIRC 
based on large-scale public data with the bioinformatics 
method may be valuable in providing a foundation for 
subsequent experiments and the development of polyamine 
metabolism-based targeted drugs.

In this study, we aimed to investigate the function 
of PMRGs in KIRC and identify potential biomarkers. 
Through a series of analyses, we found 6 PMRGs related 
to the overall survival (OS) of patients with KIRC and 
constructed a 4-gene (SRM, AGMAT, HDAC10, and AOC1) 
risk signature. We further developed a nomogram that 
combined the PMRG signature and other clinical factors, 
which showed a better ability to predict patient outcomes. 
Additionally, our results suggested that the PMRG risk 
signature may also predict the response to immune therapy 
in KIRC. In conclusion, our study identified several PMRGs 
that may play an essential role in KIRC and constructed a 
clinical prediction model to predict prognosis and immune 
therapy response. These findings provide a theoretical 
basis for subsequent research. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://tcr.amegroups.com/article/view/10.21037/tcr-23-
344/rc).

Methods

Acquisition of public data

We acquired the PMRGs from the publicly available 
resources of the molecular signatures database (MSigDB) 
(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp) 
(Table S1) and downloaded the gene expression data for 
KIRC from The Cancer Genome Atlas (TCGA) integrated 
website (https://xena.ucsc.edu/). We normalized and 
transformed the messenger RNA (mRNA) expression data 
to log2[transcripts per million (TPM) +1] units. To validate 
the differentially expressed genes (DEGs), we obtained two 
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external RNA-sequencing (RNA-seq) expression datasets 
(GSE11151 and GSE36895) from the Gene Expression 
Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/). 
We also collected the expression profiles and clinical data 
of three additional external datasets (E-MTAB-1980, 
GSE78820, and IMvigor210). The E-MTAB-1980 dataset 
(https://www.ebi.ac.uk/arrayexpress) was used to validate 
the risk model, and the anti-programmed cell death protein 
1 (PD1) datasets, GSE78820 (https://www.ncbi.nlm.nih.
gov/geo/) and IMvigor210 (14) were used to evaluate the 
predictive accuracy of the risk model for immune therapy 
response. This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Verification of survival prediction

To investigate the impact of DEGs on the OS rate 
of patients with KIRC, we performed univariate Cox 
proportional hazards regression analysis using the “survival” 
package in R (The R Foundation for Statistical Computing). 
Kaplan-Meier analysis was used to assess the OS rate of 
patients with KIRC. The optimal cutoff value for DEGs 
was determined using the surv_cutpoint function from the 
“survminer” package in R. The log-rank test was used to 
evaluate the relationship between different variables and 
patient OS.

Differential expression and protein level analysis

DEGs between tumor and normal tissues were identified 
using the “limma” package in R and filtered with an adjusted 
P value of less than 0.05 and an absolute log2(fold change) 
greater than 0.5. Further exploration of protein levels was 
carried out using the Human Protein Atlas (HPA) database 
(https://www.proteinatlas.org/), which currently contains 
44 protein datasets of human tissue, including 15,323 genes 
and corresponding antibodies.

Molecular mechanism and single-cell sequence analysis

The activity score of 50 cancer-related hallmark pathways 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways was evaluated using the single-sample gene set 
enrichment analysis (ssGSEA) method from the “GSVA” R 
package to identify the pathways affected by the PMRGs. 
Gene set variation analysis (GSVA) is a nonparametric and 
unsupervised method for estimating gene set enrichment 
variation through the expression data set of the samples (15).  

The Pearson correlation coefficient (PCC) between gene 
mRNA expression value and pathway activity score was 
calculated, and the P value was adjusted with the false 
discovery rate (FDR). To analyze the distribution of 
PMRGs in the tumor microenvironment (TME), we used a 
single-cell RNA-seq database of the TME from the Tumor 
Immune Single-cell Hub 2 (TISCH2) public website and 
obtained detailed cell-type annotation at the single-cell level 
(http://tisch.comp-genomics.org/home/) (16). For each 
individual single-cell sequence dataset, we calculated the top 
100 coexpressed genes of the PMRGs and subjected them to 
gene enrichment analysis via the Database for Annotation, 
Visualization and Integrated Discovery (DAVID) website 
(https://david.ncifcrf.gov/).

Construction and validation of the PMRG risk signature

We randomly divided the patients into training and 
testing cohorts in a 1:1 ratio using the createDataPartition 
function in R. Subsequently, we employed the least absolute 
shrinkage and selection operator (LASSO)-penalized 
Cox (LASSO-Cox) regression model with the “glmnet” 
R package to identify candidate genes and develop a 
risk signature in the training cohort. LASSO-Cox is a 
Cox proportional hazards model that uses the LASSO 
for variable selection and shrinkage (17). The risk score 
formula was derived using the coefficients obtained from 
the LASSO regression algorithm and gene expression values 
and is expressed as follows:

0.20341398 0.109279797
0.43899545 10 0.06096654 1

Risk score SRM AGMAT
HDAC AOC

= × − ×
+ × − ×

0.20341398 0.109279797
0.43899545 10 0.06096654 1

Risk score SRM AGMAT
HDAC AOC

= × − ×
+ × − ×     

[1]

After verifying the signature in the testing cohort and 
the E-MTAB-1980 dataset, we conducted 3-, 5-, and 7-year 
receiver operating characteristic (ROC) curve analyses 
using the “survivalROC” R package. We also performed 
univariate and multivariable Cox regression models for 
the prognosis analysis. In the multivariable Cox regression 
analysis, variables with a P value less than 0.05 were 
identified as independent risk factors.

Molecular mechanism analysis

We initially calculated the DEGs [absolute log2(fold 
change) greater than 0.5 and adjusted P value less than 
0.05] between the high-risk group and the low-risk group. 
Subsequently, using the “clusterProfiler” package in R, 
we subjected these genes to gene set enrichment analysis 
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(GSEA), a method that can identify common biological 
pathways.

Construction and verification of the nomogram

We employed stepwise regression methods to screen 
variables, selecting only those that yielded a minimum 
Akaike information criterion (AIC) value for our model. 
These variables were subsequently used to construct a 
nomogram for assessing the probability of 3- and 5-year 
OS via the “rms” R package. ROC curve, calibration plots, 
and decision curve analysis (DCA) were used to evaluate the 
model.

Immune cell infiltration

The R package “estimate” was used to determine the 
immune score, stromal score, and tumor purity for each 
patient. Additionally, we quantified the infiltration levels 
of immune cells using the ssGSEA method of GSVA via 
the “xCell” R package. “xCell” is a webtool that conducts 
cell type enrichment analysis from gene expression data for  
64 immune and stroma cell types (https://github.com/
dviraran/xCell).

Statistical analysis

The unpaired t-test was use to compare the mean difference 
of two groups for two consecutive variables. Univariate and 
multivariate Cox regression analysis was used to determine 
the relation between variables and clinical outcomes, and 
the log-rank test was used to evaluate the significance. Based 
on Pearson method, the PCC was computed to characterize 
the correlation between two consecutive variables.

Results

Identification of differential expression genes

We first identified nine DEGS of polyamine metabolism in 
TCGA-KIRC tissues. Among these, four genes (including 
HDAC10, SMOX, NNMT, and SRM) were upregulated, 
and five genes (including AOC1, SMS, ODC1, AGMAT, and 
SAT2) were downregulated in tumor tissues (Figure 1A,1B).  
In the GSE36895 and GSE11151 datasets, we also observed 
the same expression alteration (Figure S1A,S1B). We 
further used the HPA database to validate the results. 
We found that AOC1, AGMAT, ODC1, SAT2, and SMS 

Consistently showed a lower expression in kidney cancer 
tissues than in normal tissues, while SRM and NNMT 
showed a higher expression in kidney cancer tissues than in 
normal tissues (Figure S1C).

Identification of prognosis-related PMRGs and function 
analysis

To determine the prognosis-related PMRGs, we conducted 
the univariate Cox regression and found that six PMRGs 
correlated with the OS of patients with KIRC. NNMT, 
SRM, and HDAC10 were found to risk genes, while 
AGMAT, AOC1, and ODC1 were the protective genes for 
the OS of patients with KIRC (Figure 1C). The detailed 
information of these six genes are shown in Table S2. 
The patients with a high expression of NNMT, SRM, and 
HDAC10 and those with a low expression of AGMAT, 
AOC1, and ODC1 experienced worse clinical outcomes 
(Figure S2). In expression levels, these six genes showed a 
weaker correlation with each other (Figure S3A). In addition, 
we found that these PMRGs interacted with different 
proteins, indicating that these PMRGs might play various 
roles in regulating different substrates in cancer (Figure S3B,  
Table S3). Further analysis indicated that these six genes 
were correlated with different molecular mechanisms and 
located in different cells in the TME (Figure 2A-2D, details 
in available online: https://cdn.amegroups.cn/static/public/
tcr-23-344-1.xls and Tables S4). For example, AGMAT 
was highly positively correlated with multiple metabolism-
related pathways and located in malignant cells. SRM 
and HDAC10 showed a negative correlation with these 
metabolism-related pathways and were located in multiple 
immune-related cells. Overall, these PMRGs exerted a 
variety of functions in regulating KIRC.

Construction of the risk signature

We further separated the TCGA-KIRC samples into 
training and test cohorts. In the training cohort, we 
constructed the risk signature based on the mRNA 
expression of these six PMRGs (Figure S4A,S4B). A 4-gene 
PMRG risk signature was finally constructed (Figure S4C), 
and the risk score was calculated as follows:

PMRG risk score 0.20341398 0.10927979
0.43899545 10 0.0609665 1

SRM AGMAT
HDAC AOC

= × − ×
+ × − ×

 [2]

We found that patients with a high PMRG risk score 
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Figure 1 Screening of DEGs. (A) Volcano plot showing the differentially expressed PMRGs in KIRC. (B) Heatmap showing the expression 
value of the genes in tumors and normal tissues. (C) Forest plot of prognosis-related genes. The red box in the line represents the risk 
factors, the blue box in the line represents the protective factors, and the black box represents no correlation between factors and prognosis. 
****, P<0.0001. DEG, differentially expressed gene; PMRG, polyamine metabolism-related gene; KIRC, kidney renal clear cell; CI, 
confidence interval.

showed worse outcomes in the training cohort. The area 
under the ROC curve (AUC) showed that the prediction 
accuracy of PMRGs at 3, 5, and 7 years was 0.6717, 
0.7245, and 0.7593, respectively. As risk scores increased, 
the number of deaths in the patient groups increased. In 
addition, we found that SRM and HDAC10 had a higher 
expression while AGMAT and AOC1 had a lower expression 
in the high PMRG risk group than in the low PMRG risk 
group (Figure 3A). In the test and external cohorts, we also 
observed the same results (Figure 3B,3C). The AUC curve 
showed a feasible predicted accuracy on 3-, 5-, and 7-year 
survival (test cohort: AUC at 3 years =0.7081, AUC at  
5 years =0.6848, AUC at 7 years =0.7377; E-MTAB-1980: 

AUC at 3 years =0.7991, AUC at 5 years =0.7776, AUC at  
7 years =0.7124).

Correlation of PMRG risk score and clinical

In the whole TCGA-KIRC cohort, the risk score showed 
no significant difference in age or gender, but increasing 
risk score was associated with advanced histological grade 
and pathological stage (Figure 4A). We further divided 
the clinical information into different clinical subgroups 
and found that the high and low PMRG risk groups also 
experienced different clinical outcomes, indicating that the 
PMRG risk signature has strong robustness (Figure 4B). In 
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Figure 3 The prognostic analyses and prediction accuracy of the PMRG risk signature in TCGA-KIRC training cohort, test cohort, and the 
E-MTAB-1980 cohort. (A-C) Survival curve of the patients in the high- and low-risk groups. The ROC curve demonstrates the prediction 
accuracy of the risk signature; the risk dot plot shows the distribution of risk score and survival status, and the heatmap shows the expression 
difference of PMRGs in the high and low PMRG risk groups. PMRG, polyamine metabolism-related gene; TCGA-KIRC, The Cancer 
Genome Atlas–kidney renal clear cell; ROC, receiver operating characteristic; AUC, area under the curve.
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addition, the prognosis-related clinical variables (including 
PMRG risk score, age, grade, and stage) analyzed via 
univariate Cox regression were used to perform multivariate 
Cox regression analysis. We found that the PMRG risk 
score was an independent prognostic factor (Figure 4C). 
Similar results were found in the E-MTAB-1980 dataset 
(Figure S5A-S5C). Overall, our PMRG risk signature could 
independently predict the prognosis of patients with KIRC 
and had robust accuracy.

Nomogram construction of the PMRG risk signature

We used the “rms” in package in R to construct a 
nomogram based on the variables correlated with prognosis 
in multivariate Cox regression. The nomogram could 
predict the 3- and 5-year OS of the patients with KIRC 

(Figure 5A). The AUC and calibration curve indicated that 
the clinical model had good prediction accuracy (AUC at 
3 years =0.8075, AUC at 5 years =0.7740), superior to that 
of using the PMRG risk signature alone. Furthermore, 
DCA revealed that combining all clinical variables could 
yield the best prediction of patients’ prognoses. The same 
results were observed in the E-MTAB-1980 dataset (AUC 
at 3 years =0.8868, AUC at 5 years =0.8438), indicating 
that PMRG risk signature could predict the prognosis of 
patients with KIRC (Figure 5B).

Mechanism analysis

To determine the potential mechanisms underlying the 
survival difference between the high and low PMRG risk 
groups, we screened the DEGs between these groups 

https://cdn.amegroups.cn/static/public/TCR-23-344-Supplementary.pdf


Translational Cancer Research, Vol 12, No 10 October 2023 2485

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(10):2477-2492 | https://dx.doi.org/10.21037/tcr-23-344

Figure 4 The model evaluation of the PMRG risk signature. (A) Dot plots showing the difference in the risk score in different clinical 
variables. (B) The clinical variables were divided into different clinical subgroups, and then the survival curve was used to show the survival 
difference between the high and low PMRG risk groups. (C) Univariate Cox regression and multivariate Cox regression analysis of the 
PMRG risk score and clinical variables (age, male, grade, and stage). The red box in the line represents the risky factors, the blue box in 
the line represents the protective factors, and the black box represents no correlation between factors and prognosis. PMRG, polyamine 
metabolism–related gene; NS, no significance; CI, confidence interval.
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Figure 5 Construction of nomogram and model evaluation based on TCGA-KIRC database. (A,B) The nomogram was constructed 
using the risk score and other clinical variables determined via multivariate Cox regression analysis and stepwise regression methods. The 
prediction accuracy was evaluated with ROC curve analysis and calibration curve. The clinical benefit was evaluated with decision curve 
analysis. PMRG, polyamine metabolism-related genes; TCGA-KIRC, The Cancer Genome Atlas–kidney renal clear cell; ROC, receiver 
operating characteristic; DCA, decision curve analysis.
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Figure 6 The concrete mechanisms of the PMRG risk signature. The heatmap shows the activity score of 50 cancer-related hallmark 
pathways in the high- and low-risk groups. The bar plot shows the PCC between the PMRG risk score and activity score of the hallmark 
pathways. *, P<0.05; **, P<0.01; ****, P<0.0001; NS, no significance. PMRG, polyamine metabolism-related gene; PCC, Pearson correlation 
coefficient.
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and input them into the “clusterProfiler” package in R 
(available online: https://cdn.amegroups.cn/static/public/
tcr-23-344-2.xls). For cell components (CC), we found 
that blood microparticle, immunoglobulin complex, 
circulating immunoglobulin complex, nuclear body, nuclear 
lumen, nuclear protein-containing complex, nuclear speck, 

nucleolus, ribonucleoprotein complex, and spliceosomal 
complex were highly enriched in high PMRG risk group 
(Figure S6A). For biological process (BP), we found 
that several immune-related processes, such as humoral 
immune response, B cell-mediated immunity, complement 
activation, and regulation of B-cell activation, were highly 

https://cdn.amegroups.cn/static/public/tcr-23-344-2.xls
https://cdn.amegroups.cn/static/public/tcr-23-344-2.xls
https://cdn.amegroups.cn/static/public/TCR-23-344-Supplementary.pdf


Li et al. Polyamine metabolism risk signature in kidney cancer2488

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(10):2477-2492 | https://dx.doi.org/10.21037/tcr-23-344

Figure 7 Immune infiltration and immune therapy response analysis. (A) The dot plots show the differences in the expression 3 immune 
checkpoints (including PD1, PDL1, and CTLA4), immune score, tumor purity, and stromal score in the high- and low-risk groups. (B) 
The immune infiltration levels between the high- and low-risk groups. (C) The difference in the PMRG risk score in the CR/PR and 
SD/PD groups. The ROC curve shows the prediction accuracy of the PMRG risk signature for immune therapy response. *, P<0.05; **, 
P<0.01; ***, P<0.001; ****, P<0.0001; NS, no significance. aDC, activated dendritic cells; Tcm, T central memory cells; Tem, T effector 
memory; cDC, conventional dendritic cells; CLP, common lymphoid progenitors; CMP, common myeloid progenitors; DC, dendritic cells; 
GMP, granulocyte macrophage progenitors; HSC, hematopoietic stem cell; iDC, immature dendritic cells; MEP, megakaryocyte erythroid 
progenitor; MPP, multipotent progenitor; NK, natural killer; pDC, plasmacytoid dendritic cells; Th1, T helper type 1; Tregs, T regulatory 
cells; AUC, area under the curve; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; PMRG, 
polyamine metabolism-related gene.
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enriched in the high PMRG risk group (Figure S6B). For 
molecular function (MF), we found that antigen binding, 
cytokine activity, immunoglobulin receptor binding, RNA 
binding, and small molecule binding were significantly 
enriched in the high PMRG risk group (Figure S6C). 
In addition, we found several immune-related pathways 
that were highly enriched in the high PMRG risk group, 
including the interleukin 17 (IL-17) signaling pathway 
and tumor necrosis factor (TNF) signaling pathway. In 
contrast, several metabolism-related pathways were highly 
enriched in the low PMRG risk group, including metabolic 
pathways and carbon metabolism (Figure S6D). These 
results suggested that immune- and metabolism-related 
pathways were highly enriched in either the low or high 
PMRG risk groups. We further calculated the activity score 
of 50 cancer-related hallmark pathways to characterize 
the activity difference between the high- and low-risk 
groups (Figure 6). We found that the activity score of some 
hallmark pathways, including DNA repair and MYC targets 
V2, was higher in the high PMRG risk group than in the 
low PMRG risk group. Moreover, the PMRG risk score 
showed a positive correlation with the activity of these 
two pathways. Interestingly, several metabolism-related 
pathways were activated in the low-risk group, such as 
adipogenesis, fatty acid metabolism, bile acid metabolism, 
and heme metabolism. The PMRG risk score showed a 
significantly negative correlation with these pathways.

Immune infiltration and prediction of hot  
and cold tumors

Due to the PMRG risk score being correlated with 
immune-related pathways, we further observed the 
expression of immune checkpoints in the high and low 
PMRG risk groups. We found that the expression of CD274 
[also knowns programmed death-ligand 1 (PDL1)] was 
higher in the low-risk group, whereas that of CTLA4 and 
PDCD1 (also known as PD1) was higher in the high-risk 
group (Figure 7A). In addition, the high-risk group showed 
a higher immune score and a higher activity score of CD8 
T cells, cytotoxic cells, natural killer (NK) cells, and T 
regulatory cells (Tregs), among others; meanwhile, the 
low-risk group showed higher tumor purity and a higher 
activity score for mast cells and neutrophils (Figure S7). 
The same results were observed with the “xCell” R package 
(Figure 7B). CD8+ T cells, T helper type 1 (Th1) cells, B 
cells, and NK T cells showed a higher infiltration level in 
the high-risk group. The immune and microenvironment 

scores were also higher in the high-risk group. Tumors 
with a high degree of infiltration of CD4 and CD8 T cells 
are considered to be hot tumors, while tumors with a low 
degree of infiltration are considered to be cold tumors (18). 
Our study indicated that the PMRG risk signature could 
identify the hot and cold tumors of KIRC and thus may 
offer a feasible stratification method for selecting those 
patients who are sensitive to immune therapy. We used 
two external anti-PD1 datasets to explore the correlation 
between the PMRG risk signature and immune therapy 
response. The results pointed to a tendency of patients 
in the low-risk group to receive clinical benefit after 
immune therapy (Figure 7C). The AUC for the risk score in 
predicting immune therapy response was 0.59 and 0.60 in 
the IMvigor120 and GSE78820 datasets, respectively.

Discussion

Targeted and immune checkpoint therapy have shown 
promising results in clinical trials for RCC. Despite the 
relatively high response rate of RCC to immunotherapy and 
targeted therapy, the majority of patients with RCC fail to 
receive long-lasting clinical benefit due to the development 
of drug resistance (19). Therefore, there is an urgent need 
to develop new therapeutic targets for RCC.

In normal cells, polyamines are essential for cell growth, 
and the depletion of polyamines can result in cytostasis. In 
cancer, polyamine metabolism is frequently dysfunctional (6).  
Polyamines and their metabolites are involved in many 
significant tumor BPs, including metabolism, immunity, 
tumor cell genesis, and metastasis (3). Both experimental 
and clinical depletion of polyamines have shown that this 
metabolism is a promising target for therapy. For instance, 
ornithine decarboxylase (ODC) is a rate-limiting enzyme 
in polyamine biosynthesis, and inhibiting ODC was found 
to limit tumor formation and progression in preclinical 
models (20). The ODC inhibitor difluoro-methylornithine 
(DFMO) is a highly effective chemopreventive agent for 
cancer and is thought to act via polyamine depletion (21).  
KIRC i s  charac ter i zed  by  cons i s t ent  metabo l i c 
abnormalities, such as highly elevated glycogen and lipid 
deposition. Alteration of polyamine levels may influence 
KIRC tumor growth. For example, ARG2 deletion can 
prevent the toxic polyamine accumulation that promotes 
KIRC tumor growth (10). However, there is little research 
concerning the relationship between polyamine metabolism 
and KIRC, and further investigation is needed to determine 
the exact mechanism of effect and function of polyamine 
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metabolism in KIRC.
Polyamines and their metabolites are currently used 

as cancer biomarkers. Recently developed metabolomic 
techniques represent more effective methods for predicting 
the biomarkers in cancer and treatment response. For 
example, in lung and liver cancers, polyamines and their 
metabolites have been used in diagnosis and as markers 
of cancer progression (22). In prostate, pancreatic, and 
colon cancer, polyamines and metabolites have shown 
potential as biomarkers (7-9). In our study, we identified 
several PMRGs in KIRC. Among these, NNMT, SRM, and 
HDAC10 were upregulated in KIRC and were found to be 
correlated with worse prognosis in patients. In tumors, high 
NNMT expression is associated with worse prognosis (23).  
N N M T  i n  c o m b i n a t i o n  w i t h  T T PA L  p r o m o t e s 
carcinogenesis through the P13K/AKT pathway (24). In 
colorectal cancer, ABHD5 suppresses the SRM-dependent 
spermidine production in tumor-associated macrophages 
and potentiates tumor growth (25). HDAC10, a histone 
deacetylase, has been reported to be correlated with tumor 
progression and poor prognosis in multiple cancers, 
including ovarian, lung, and colon cancer (26-28). AGMAT, 
AOC1, and ODC1 have been reported to be oncogenes 
in several types of tumor (29-32), promoting tumor 
progression and metastasis. Interestingly, we observed that 
their expression was downregulated in KIRC and that they 
acted as protective factors for patients with KIRC. In KIRC, 
multiple metabolic pathways are universally depleted, so 
KIRC is not generally heterogeneous compared with other 
cancers (10). Inhibition of toxic polyamine accumulation 
promotes KIRC growth, which might be why these genes 
are downregulated in the tumor; however, this is merely 
speculation and should be further validated.

We used the PMRGs to construct a risk model. A 4-gene 
risk signature was constructed to predict the prognosis of 
patients with KIRC. The patients with high PMRG risk 
showed worse outcomes and more advanced histological 
grade and pathological stage. Multivariate Cox regression 
revealed the PMRG risk signature to be an independent 
prediction factor, indicating that the PMRGs were not 
affected by other clinical variables. Interestingly, we found 
that the PMRG risk signature was negatively correlated 
with multiple metabolism-related pathways, which 
further indicated that depletion of metabolism pathways 
is correlated with poor outcomes for patients with KIRC. 
Furthermore, DNA repair showed high activity in the high-
risk group. A considerable amount of research has been 
conducted concerning the relationship between polyamine 

and DNA repair. Mechanistically, polyamines promote 
homologous recombination-mediated double-strand break 
repair and maintain the integrity of the genome (33).  
Polyamines can facilitate the pairing between single strands 
of DNA and stabilize double-stranded DNA (34,35). 
DFMO has been found to induce DNA damage and prevent 
gastric carcinogenesis (36). Polyamine-depleted HeLa 
cells are at increased nickel-induced DNA damage (37).  
Therefore, polyamine has an important role in the 
maintenance of genome stability, which might be a potential 
mechanism of polyamine in regulating KIRC that is worthy 
of further exploration.

Tumors can be classified into three dominant immune 
phenotypes—immune excluded, immune desert, and 
immune inflamed—which show different responses 
to PD1 blockade (38). The immune-inflamed tumor, 
which is also known as a hot tumor, is characterized 
by increased infiltration of CD4 and CD8 T cells to 
the tumor cell nest and stroma. This tumor type is 
considered to be immunoreactive. Transforming the cold 
tumor to a hot tumor may elevate the tumor response for 
immune therapy (18).

Research indicates  that  polyamines  have ant i-
inflammatory, immunosuppressive properties, which 
suggests that altering the levels of polyamines can improve 
the antitumor immune response (39). Recent data suggest 
that the level of polyamines may contribute to the presence 
of immune-desert tumors that do not respond to immune 
checkpoint blockade (3). Our study found multiple 
immune-related pathways highly enriched in the high 
PMRG risk group. The patients with high PMRG risk 
scores showed a high infiltration level of CD4 T cells and 
immune scores, indicating that the PMRG risk score can 
distinguish between the cold and hot tumors of KIRC. 
Furthermore, PD1 and CTLA4 showed a higher expression 
in the high PMRG risk group, indicating that the patients 
in this group might be sensitive to immune therapy. Two 
external anti-PD1 datasets provided indirect confirmatory 
evidence. Patients in the high PMRG risk group treated 
with anti-PD1 therapy tended to experience stable disease 
(SD) or progressive disease (PD), whereas patients in the 
low PMRG risk group tended experience to complete 
response (CR) or partial response (PR). Although the 
difference in risk scores between the CR/PR and SD/PD 
groups was not significant, this suggested the potential 
for the PMRG signature to predict response to anti-PD1 
therapy. However, whether the alteration of polyamine 
levels influences antitumor immunotherapy still needs to 
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be determined.

Conclusions

Our study identified several potential markers which may be 
critical factors in KIRC; however, these need to be verified 
with further experimental validation. In addition, although 
we constructed a risk signature to predict the prognosis 
and immune therapy response, more prospective clinical 
studies are needed to evaluate this signature. We hope these 
findings can help form the foundation of future research in 
polyamine metabolism and KIRC.
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