A granulocytic signature identifies COVID-19 and its severity

Joana Vitte^{1,2}, Aïssatou Bailo Diallo^{1,2}, Asma Boumaza^{1,2}, Alexandre Lopez^{1,2,3}, Moïse Michel^{1,2}, Jérôme Allardet-Servent⁴, Soraya Mezouar⁵, Youssouf Sereme^{1,2}, Jean-Marc Busnel⁶, Tewfik Miloud⁶, Fabrice Malergue⁶, Pierre-Emmanuel Morange⁷, Philippe Halfon⁸, Daniel Olive⁹, Marc Leone^{1,2,3*}#, Jean-Louis Mege^{1,2,10}*

1 Aix Marseille Univ, IRD, APHM Hôpitaux Universitaires de Marseille, UMR-D258 MEPHI, Marseille, France

2 IHU Méditerranée Infection, Marseille, France

3 Aix Marseille Univ, APHM Hôpitaux Universitaires de Marseille, Hôpital Nord, Service d'anesthésie et de réanimation, Marseille, France

4 Service de Réanimation, Hôpital Européen de Marseille, Marseille, France

5 Genoscience, Marseille, France

6 Beckman Coulter, Marseille, France

7 C2VN Aix Marseille Univ INSERM, INRAE, APHM Hôpitaux Universitaires de Marseille, Hôpital Timone, Service d'hématologie, Marseille, France

8 Internal Medicine and Infectious Diseases Department, Hôpital Européen – laboratoire Alphabio, Marseille, France

© The Author(s) 2020. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. 9 Aix Marseille Univ, Institut Paoli - Calmettes, Cancer Research Center of Marseille, INSERM U1068, CNRS U7258, Marseille, France

10 Aix Marseille Univ, APHM Hôpitaux Universitaires de Marseille, Hôpital de la Conception, Service d'Immunologie, Marseille, France

* JLM and ML contributed equally to designing the study, supervising its implementation and writing the paper

Corresponding author: Pr Marc Leone

Corresponding author contact information:

Pr. Marc Leone

Service d'anesthésie et de réanimation

Hôpital Nord, Chemin des Bourrely, 13015 Marseille, France

e-mail: marc.leone@ap-hm.fr

Phone: +33491968655

Summary:

Unsupervised mapping of leukocyte surface markers identified a granulocytic COVID-19 signature comprising eosinophil and basophil CRTH2 downregulation, increased counts of CD15⁺CD16⁺ neutrophils, and decreased granulocytic CD11b expression, while PDL1 checkpoint expression in basophils and eosinophils was associated with severity.

Accepted Manuschi

Footnote page

Conflict of interest: TM, JMB and FM are employees of Beckman Coulter Life Sciences. JV has received speaker and consultancy fees from Meda Pharma, Mylan, Sanofi, Thermo Fisher, Beckman Coulter, outside this work. ML received fees as speaker from MSD, Edwards LifeScience and as consultant from Aguettant, Amomed and Gilead. DO is cofounder and shareholder of Imcheck Therapeutics, Emergence Therapeutics and Alderaan. The other authors declare no conflict of interest.

Funding statement: This work was supported by a grant from the French National Research Agency (Agence Nationale de la Recherche, ANR Flash COVID, grant IMMUNO-COVID)

Trial registration. ANSM (France) ID-RCB: 2020-A00756-33

cce

Meeting(s) where the information has previously been presented: none

Abstract

Background An unbiased approach of SARS-CoV-2-induced immune dysregulation has not been undertaken so far. We aimed to identify previously unreported immune markers able to discriminate COVID-19 patients from healthy controls and to predict mild and severe disease.

Methods An observational, prospective, multicentric study was conducted in patients with confirmed COVID-19: mild/moderate (n=7) and severe (n=19). Immunophenotyping of whole blood leukocytes was performed in patients upon hospital ward or intensive care unit admission and in healthy controls (n=25). Clinically relevant associations were identified through unsupervised analysis.

Results Granulocytic (neutrophil, eosinophil and basophil) markers were enriched during COVID-19 and discriminated between mild and severe patients. Increased counts of CD15⁺CD16⁺ neutrophils, decreased granulocytic expression of integrin CD11b, and Th2-related CRTH2 downregulation in eosinophils and basophils established a COVID-19 signature. Severity was associated with the emergence of PDL1 checkpoint expression in basophils and eosinophils. This granulocytic signature was accompanied by monocyte and lymphocyte immunoparalysis. Correlation with validated clinical scores supported pathophysiological relevance.

Conclusion Phenotypic markers of circulating granulocytes are strong discriminators between infected and uninfected individuals as well as between severity stages. COVID-19 alters the frequency and functional phenotypes of granulocyte subsets with the emergence of CRTH2 as a disease biomarker.

Keywords SARS-CoV-2; COVID-19; neutrophil; eosinophil; basophil; CRTH2; immune checkpoint; CD11b; CD16; PD-L1

Introduction

The hallmark of COVID-19, the infection caused by the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), is the occurrence, in 10-20% of patients, of a sudden deterioration 7-10 days after the onset of symptoms, increasing the risk of acute respiratory distress syndrome, of intensive care unit need and ultimately of death [1]. Studies exploring the immune response suggested that SARS-CoV-2 may induce unique patterns of immune dysregulation [2-3]. To our knowledge, a systematic approach of SARS-CoV-2-induced immune dysregulation at the phenotype level has not been undertaken so far. Single-cell RNA sequencing of peripheral blood mononuclear cells evidenced phenotypic remodeling affecting innate and adaptive populations [4]. Our aim was to establish a comprehensive, unsupervised map of circulating immune cells in COVID-19 patients using a first-in-class flow cytometry approach for rapid whole-blood assessment. The primary objective was the identification of immunophenotypic patterns most accurately associated with COVID-19 diagnosis and severity. Among the large number of phenotypic markers of circulating immune cells modulated by SARS-CoV-2, those related to granulocyte lineage (neutrophils, basophils and eosinophils) were strong discriminators between infected and uninfected individuals as well as between different degrees of disease severity. Beside SARS-CoV-2 associated lymphopenia, changes in frequency and activation of granulocyte subsets may be predictive of clinical worsening during

COVID-19.

Methods

Study design

This open multicenter prospective observational study was conducted in the intensive care unit (ICU) of North Hospital of Marseille and the COVID-19 ward unit of European Hospital of Marseille.

Patients and controls

Patients admitted to ward and ICU with confirmed SARS-CoV-2 infection were included in the study if they fulfilled the criteria: i) age 18 or older and ii) a positive SARS-CoV-2 reverse transcriptase-polymerase chain reaction (RT-PCR) in nasopharyngeal swabs or tracheal aspiration. Exclusion criteria were preexisting treatments interfering with immune functions, pregnancy and missing clinical or laboratory data.

Demographic, clinical and laboratory data (arterial blood gas analysis, complete blood count, biochemistry, virology) including SARS-CoV-2-related symptoms, date of disease onset, organ support, and medications were collected for each patient upon admission to ICU or conventional ward. The same data were collected on the day of blood sampling. At day 28 after COVID-19 diagnosis, the duration of mechanical ventilation, length of ICU and hospital stays, and ICU and hospital mortality rates were also recorded. The Simplified Acute Physiology Score II (SAPS II) (5], the Sepsis-related Organ Failure Assessment (SOFA) [6], the National Early Warning Score 2 (NEWS2) [7], and the World Health Organization (WHO) progression scale [8-9] were calculated at admission and on the day of blood sampling. Patients were classified as mild/moderate (WHO grade 4 and 5, hereafter termed "mild") depending on the presence of oxygen supply, while those receiving high-flow oxygen

therapy (WHO grade 6) or invasive mechanical ventilation (WHO grade 7-9) were considered as severe.

Samples of healthy blood donors (HBD) group, serving as controls, were received from Etablissement Français du Sang (EFS), Marseille, France.

Study approval

The study was conducted in accordance with the Declaration of Helsinki and the French law on research involving humans. It was registered with the French ANSM under the reference ID-RCB: 2020-A00756-33 and received approval from the national review board Comité de Protection des Personnes IIe de France XI (20027-60604, March 25th 2020). The patients were informed and agreed to participate to this study. Patient enrollment took place from March 30 to April 8th, 2020. HBD samples were obtained through an institutional agreement between EFS and UMR-D258 MEPHI.

Flow cytometry

All antibodies and reagents were from Beckman Coulter (Villepinte, France). Blood (4 mL) was collected by venipuncture on EDTA-anticoagulated tubes, stored and delivered at room temperature to the Immunology laboratory. Multiparametric flow cytometry was used for immune cell enumeration and immune phenotyping less than 24 hours after blood collection. Each immune phenotyping panel (**Table 1**) was provided in a pre-mix dry antibody cocktail completed in some cases by the addition of liquid conjugates prior to sample addition. Staining of leukocytes for enumeration was performed by the addition of 100 µl whole blood to the IM Count tube followed by 15 min incubation at room

temperature. Lysis of red blood cells was achieved with 2 ml Versalyse (Beckman Coulter) followed by a 15 min incubation prior to acquisition. Immune phenotyping followed a similar protocol except for the incubation (20 and 10 minutes, respectively, in the dark). Lysed cells were washed with 3 ml PBS and the cell pellet re-suspended in 0.5 ml PBS 1X, 0.1% formaldehyde. Acquisition was done with a Navios flow cytometer (Beckman Coulter).

Data analysis and statistics

Multiparameter flow cytometry data files were analyzed using the Kaluza software, version 2.1 (Beckman Coulter). Parameters were exported to JMP 14.2.0 software (SAS) for statistical analysis. The response screening platform of JMP, not only yielding a p value but also a false discovery rate (FDR) corrected value, was then used to identify the parameters with the highest discriminative capabilities. Most discriminating parameters were ranked according to the LogWorth of their FDR corrected p-values. Multivariate analyses following the principal component analysis (PCA) approach were also conducted with JMP. Non-parametric Wilcoxon Rank Sum tests, equivalent to Mann Whitney tests, were also performed by JMP to compare parameter levels across different subgroups of individuals. The X² with Yate correction, Fisher's exact test, t test, Mann Whitney test and Wilcoxon test were used to compare clinical and laboratory variables between the mild and severe groups as appropriate. Statistical significance was defined as p<0.05.

Results

Demographic characteristics of the study population

During the study period, 55 confirmed COVID-19 cases were referred to the participating centers. Among them, 19 patients were admitted to the ICU (severe group) and seven to the conventional ward (mild group). Twenty-five HBD served as control group (**Supplementary Figure 1**). Demographic data are presented in **Table 2**. Differences were observed between the mild and the severe group. Elevated body mass index and hypertension were more frequent in the severe group than in the mild group (p = 0.005 and 0.03, respectively). Severity scores, including the WHO progression score and the SOFA score, were significantly higher in the severe group than in the mild group. C-reactive protein was increased in the severe group as compared with the mild group whereas eosinophils and monocytes were significantly decreased between patient groups (**Table 2**). Lymphopenia, defined as a lymphocyte count of less than 1 giga/L, was found in 85% of COVID-19 patients comprising 71% of the mild group and 89% of the severe group, a non-significant difference (**Table 2**).

Controls versus COVID-19 patients

An unsupervised analysis of circulating leukocyte subsets and immune phenotypic markers yielded more than 100 significant discriminators between COVID-19 patients and controls, with FDR p-values less than 0.05. Further analysis was arbitrarily restricted to the 25 most discriminant markers (**Fig. 1a**). PCA of these 25 markers effectively discriminated COVID-19 patients from controls (**Fig. 1b**). Eleven of 25 were granulocyte-associated markers, followed by lymphocyte, NK and dendritic cell (DC) variables (**Fig. 1a**). Enrichment in granulocyte-associated markers affected the three granulocytic lineages: neutrophils, eosinophils, and basophils. There was a significant increase in the frequency of CD15⁺ granulocytes (mainly

comprising neutrophils), an increase in the frequency of CD15⁺CD16⁺ neutrophil subset, and a decrease in the frequency of basophils in COVID-19 patients, as compared with controls (**Fig. 2 a-b**). Two prominent function-associated membrane antigens were modulated in COVID-19 patients as compared to HBD: CD11b (αM subunit of integrin CD11bCD18, also known as complement receptor 3, CR3), whose expression was decreased at the surface of neutrophils and basophils (**Fig. 2 c**), and CRTH2 (CD294), a receptor for prostaglandin D2 (PGD2), whose expression was decreased on basophils and eosinophils (**Fig. 2 d**). Hence, SARS-CoV-2 infection was characterized by changes in frequency of granulocyte subsets and alteration of their functional phenotypes with the emergence of CRTH2 as a biomarker for COVID-19.

Effect of disease severity

We wondered if the granulocyte signature displayed specific changes associated with disease severity (**Fig. 3a**). Unsupervised analysis followed by PCA of the best markers discriminating between mild and severe COVID-19 patients (**Fig. 3b**) evidenced the predominance of granulocytic markers (8 out of 19 with a FDR p value less than 0.05). Some of the markers discriminating COVID-19 patients from HBD also discriminated mild from severe patients. Neutrophil subset frequency was one of these shared markers. The frequency of CD15⁺ granulocytes and CD15⁺CD16⁺ neutrophils was significantly increased in the severe group (p = 0.002), while the levels of expression of both CD15 and CD16 were decreased in the severe group as compared with the mild group (**Fig. 4a**). Another shared marker was eosinophil CRTH2 expression, which was profoundly decreased in the severe group (**Fig. 4b**). Hence, COVID-19 severity was associated with a more profound imbalance of granulocyte subsets and functional markers of the disease.

However, severe disease was associated with the emergence of specific markers. Severe patients differed from mild ones with respect to functional markers of eosinophils and basophils. At the surface of both basophils and eosinophils, the expression of checkpoint inhibitors such as PDL1 was significantly higher in the severe group than in the mild group (**Fig. 4c-d**). Such prominent changes in surface expression of functional granulocytic markers prompted us to ask whether granulocyte alterations correlated with clinical scores. We found that both WHO and SOFA scores correlated positively with innate immune checkpoints such as PDL1 expression on basophils and eosinophils, and negatively with neutrophil CD11b and eosinophil CRTH2 expression (**Fig. 5**). The level of correlation between immunophenotypic markers and clinical scores was similar to that of clinical scores between them (WHO versus SOFA: $R^2 = 0.567$).

Partners of the granulocyte signature

The granulocytic signature of COVID-19 was not isolated since it was associated with a decreased representation of CD4⁺ T cells, CD8⁺ T cells, and plasmacytoid dendritic cells (**Supplementary Fig. 2**). The upregulation of checkpoint inhibitors was not restricted to the granulocyte lineage: PDL1 expression on monocytes and NK cells, and PD1 expression on T cells were also increased in the severe group (**Supplementary Fig. 3**).

Discussion

This study was undertaken as a holistic description of immune cells and markers from COVID-19 whole blood samples. Alterations of lymphocyte subsets have been widely reported [4;10-11]. Here, a multiparametric flow cytometry approach using whole blood samples allowed us to assess the features of the cells involved in the innate response, beyond the lymphocyte response. As opposed to monocytes and lymphocytes, granulocyte investigation requires freshly isolated whole blood samples. A combination of dry antibody panels optimized for whole blood investigation and the detection of rare events [12] enabled the simultaneous study of more than 100 phenotypic markers. This unbiased approach showed that changes in the frequency of granulocyte subsets and alteration of their functional phenotypes characterize patients during the course of COVID-19.

In previous studies, the neutrophil-to-lymphocyte ratio was used to predict the degree of disease severity in patients with early-stage COVID-19 [13-14]. Eosinopenia was reported in severe patients [15-16] and was also present in our study population. We show here that the increase in neutrophil counts is characterized by the emergence of cells involved in the inhibition of immune responses. At the neutrophil level, the increase in absolute numbers was due to CD15⁺CD16⁺ neutrophils, which may have pro-inflammatory properties [17]. Neutrophils express predominantly the glycophosphatidyl inositol-linked CD16b isoform, also known as low affinity IgG receptor Fc γ RIIIb, which acts as a suppressive Fc γ R receptor [18]. Low fucosylation of anti-SARS-CoV-2 antibodies [19] suggests that increased CD16⁺ neutrophils in severe patients might contribute to persistent inflammation through synergistic mechanisms.

Neutrophils from COVID-19 patients also expressed lower levels of CD11b as compared to HBD. CD11b is a subunit of the $\alpha M\beta 2$ (CD11bCD18) integrin involved in intercellular adhesion, transmigration, fibrinogen adhesion, and neutrophil-T cell crosstalk during infection [20-22]. CD11b

13

has been found to play a critical role in the resolution of inflammation process [23]. Although neutrophil CD11b is mobilized from intracellular stores to the cell surface upon activation, alterations of circulating neutrophil CD11b expression are reported in autoimmune conditions, e.g. low levels of neutrophil CD11b in rheumatoid arthritis [24] and strong associations with systemic lupus erythematosus in genome-wide studies [20]. Thus, altered neutrophil CD11b expression may contribute to the autoimmune and hypercoagulable status reported in COVID-19 and its severe prognosis [25].

At the surface of basophils and eosinophils, we found a high expression of immune checkpoint PD-L1. Immune checkpoints are regulatory molecules involved in tissue repair at the end of an immune response [26], prevent immune-driven diseases but can also be subverted by pathogens, including viruses, to reduce the clearance of pathogens during infectious processes [26-28]. Immune checkpoint studies have addressed mainly T lymphocytes, resulting in a relative lack of information on granulocyte immune checkpoint regulation and clinical implications [27,29]. Upregulation of neutrophil checkpoint molecules including PD-L1 has been associated with poor outcomes in sepsis patients [29,30]. Our results show that SARS-CoV-2-induced immune dysregulation and immunoparalysis target the first steps of the virus encounter with granulocytic first-line defenses.

Downregulation of basophil and eosinophil CRTH2 (CD294), a high-affinity receptor of prostaglandin D [31], suggests that SARS-CoV-2 infection might be associated with an inhibition of Th2-polarized immune responses and decreased chemotaxis of CRTH2+ cells. CRTH2, a central activator of eosinophils, basophils and Th2-type responses in allergy and hypereosinophilic asthma, might bear the explanation for decreased ACE2 expression and apparent protection conferred against SARS-CoV-2 infection and severity by such conditions [32-34]. Conversely, CRTH2 deficiency was associated with pulmonary fibrosis in a mouse model [35], suggesting a role for CRTH2 and Th2 downregulation in the pathophysiology of post-COVID-19 pulmonary fibrosis. The combination of increases in CD15⁺CD16⁺ neutrophil frequency, checkpoint inhibitor expression and reduction in

basophil and eosinophil CRTH2 suggest that the granulocyte signature may serve as a reliable biomarker for COVID-19 diagnosis and severity assessment.

The strength of our study is the translational dimension. We explored the association between immune status and disease severity assessed with validated scores in two distinct, well-characterized patient groups. There were marked clinical differences between the mild and the severe group, notably the recourse to invasive mechanical ventilation required in 89% of the latter. We found a continuum between the decreased counts and surface marker expression of immune cells and the disease severity, suggesting an association between disease severity and the impairment of the immune response. Taken together, our data show an early and deep impairment of the immune response, and question the use of drugs that could alleviate the immune response in COVID-19 patients, especially in the most severe forms requiring intensive care unit admission.

Several limitations must be acknowledged. The small size of the study population precludes definitive conclusions. However, our results are homogenous in each subgroup, and consistent with other published COVID-19 cohorts. Second, the timing of blood sampling differed between mild and severe groups, however it reflected immune status at turning points in disease progression: at diagnosis and upon progression to severity.

In conclusion, we show here that immune exhaustion during SARS-CoV-2 infection markedly affects first line immune cells: neutrophils, eosinophils, and basophils as evidenced by increased expression of inhibitory checkpoints, decreased expression of adhesion molecules and decreased expression of CRTH2. These findings provide further clues for dysregulated induction of adaptive immune responses and the observed risk mitigation in allergic patients. The predominance of inhibitory systems may preclude the efficiency of viral clearance mechanisms. Further pathophysiological investigations of this new COVID-19 granulocytic signature are required in order to better understand and manage this disease.

Author contributions: JLM, ML, PH, DO, PM and JV designed the study. AB, ABD, MM, SM, YS conducted experiments and acquired data. ML, JAS, AL enrolled the patients, collected, and analyzed demographic, clinical and laboratory data. JMB, TM, FM provided antibody panels. JLM, ML, JAS, AL, JV, JMB, TM, FM, SM analyzed experimental data. ML, JLM, JV, JAS, AL, MM wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgments: Dr Isabelle Arnoux for technical assistance with flow cytometry.

certer

References

- 1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. **2020**; 395(10223):497–506.
- Giamarellos-Bourboulis EJ, Netea MG, Rovina N, et al. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe. 2020; 27(6):992– 1000.
- 3. Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. **2020**; .
- 4. Wilk AJ, Rustagi A, Zhao NQ, et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med. **2020**; .
- Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993; 270(24):2957– 2963.
- Vincent JL, Moreno R, Takala J, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996; 22(7):707–710.
- Smith GB, Redfern OC, Pimentel MA, et al. The National Early Warning Score 2 (NEWS2). Clin Med (Lond). 2019; 19(3):260.
- World Health Organization. Infection prevention and control during health care when novel coronavirus (nCoV) infection is suspected [Internet]. 2020 [cited 2020 Jun 23]. Available from: https://www.who.int/publications-detail-redirect/10665-331495
- WHO Working Group on the Clinical Characterisation and Management of COVID-19 infection. A minimal common outcome measure set for COVID-19 clinical research. Lancet Infect Dis. 2020; .

- Zhao Q, Meng M, Kumar R, et al. Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systemic review and meta-analysis. Int J Infect Dis. 2020; 96:131–135.
- 11. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. **2020**; 20(6):363–374.
- Bourgoin P, Hayman J, Rimmelé T, Venet F, Malergue F, Monneret G. A novel one-step extracellular staining for flow cytometry: Proof-of-concept on sepsis-related biomarkers. J Immunol Methods. 2019; 470:59–63.
- Ma A, Cheng J, Yang J, Dong M, Liao X, Kang Y. Neutrophil-to-lymphocyte ratio as a predictive biomarker for moderate-severe ARDS in severe COVID-19 patients. Crit Care. 2020; 24(1):288.
- Yan X, Li F, Wang X, et al. Neutrophil to lymphocyte ratio as prognostic and predictive factor in patients with coronavirus disease 2019: A retrospective cross-sectional study. J Med Virol. 2020; .
- 15. Liu F, Xu A, Zhang Y, et al. Patients of COVID-19 may benefit from sustained Lopinavircombined regimen and the increase of Eosinophil may predict the outcome of COVID-19 progression. Int J Infect Dis. 2020; 95:183–191.
- 16. Lindsley AW, Schwartz JT, Rothenberg ME. Eosinophil responses during COVID-19 infections and coronavirus vaccination. J Allergy Clin Immunol. **2020**; .
- 17. Li Y, Li H, Wang H, et al. The proportion, origin and pro-inflammation roles of low density neutrophils in SFTS disease. BMC Infect Dis. **2019**; 19(1):109.
- Wang TT, Ravetch JV. Functional diversification of IgGs through Fc glycosylation. J Clin Invest. 2019; 129(9):3492–3498.
- Chakraborty S, Edwards K, Buzzanco AS, et al. Symptomatic SARS-CoV-2 infections display specific IgG Fc structures. medRxiv. Cold Spring Harbor Laboratory Press; 2020; :2020.05.15.20103341.

- Aarts CEM, Hiemstra IH, Béguin EP, et al. Activated neutrophils exert myeloid-derived suppressor cell activity damaging T cells beyond repair. Blood Adv. 2019; 3(22):3562– 3574.
- Tak T, Rygiel TP, Karnam G, et al. Neutrophil-mediated Suppression of Influenza-induced Pathology Requires CD11b/CD18 (MAC-1). Am J Respir Cell Mol Biol. 2018; 58(4):492– 499.
- Scott NR, Swanson RV, Al-Hammadi N, et al. S100A8/A9 regulates CD11b expression and neutrophil recruitment during chronic tuberculosis. J Clin Invest. 2020; 130(6):3098– 3112.
- Pilione MR, Agosto LM, Kennett MJ, Harvill ET. CD11b is required for the resolution of inflammation induced by Bordetella bronchiseptica respiratory infection. Cell Microbiol.
 2006; 8(5):758–768.
- Leite Pereira A, Bitoun S, Paoletti A, et al. Characterization of Phenotypes and Functional Activities of Leukocytes From Rheumatoid Arthritis Patients by Mass Cytometry. Front Immunol. 2019; 10:2384.
- 25. Iba T, Levy JH, Levi M, Thachil J. Coagulopathy in COVID-19. J Thromb Haemost. 2020; .
- 26. Wang Z, Wang S, Goplen NP, et al. PD-1hi CD8+ resident memory T cells balance immunity and fibrotic sequelae. Sci Immunol. **2019**; 4(36).
- 27. Wykes MN, Lewin SR. Immune checkpoint blockade in infectious diseases. Nat Rev Immunol. **2018**; 18(2):91–104.
- 28. Kahan SM, Zajac AJ. Immune Exhaustion: Past Lessons and New Insights from Lymphocytic Choriomeningitis Virus. Viruses. **2019**; 11(2).
- Patera AC, Drewry AM, Chang K, Beiter ER, Osborne D, Hotchkiss RS. Frontline Science: Defects in immune function in patients with sepsis are associated with PD-1 or PD-L1 expression and can be restored by antibodies targeting PD-1 or PD-L1. J Leukoc Biol. 2016; 100(6):1239–1254.

- 30. Patil NK, Guo Y, Luan L, Sherwood ER. Targeting Immune Cell Checkpoints during Sepsis. Int J Mol Sci. **2017**; 18(11).
- 31. Huang T, Hazen M, Shang Y, et al. Depletion of major pathogenic cells in asthma by targeting CRTh2. JCI Insight. **2016**; 1(7):e86689.
- 32. Jackson DJ, Busse WW, Bacharier LB, et al. Association of respiratory allergy, asthma, and expression of the SARS-CoV-2 receptor ACE2. J Allergy Clin Immunol. **2020**; .
- 33. Kimura H, Francisco D, Conway M, et al. Type 2 inflammation modulates ACE2 and TMPRSS2 in airway epithelial cells. J Allergy Clin Immunol. **2020**; .
- 34. Carli G, Cecchi L, Stebbing J, Parronchi P, Farsi A. Is asthma protective against COVID-19? Allergy. **2020**; .
- Ueda S, Fukunaga K, Takihara T, et al. Deficiency of CRTH2, a Prostaglandin D2 Receptor, Aggravates Bleomycin-induced Pulmonary Inflammation and Fibrosis. Am J Respir Cell Mol Biol. 2019; 60(3):289–298.

x certer

Figure legends

Figure 1. Best immunophenotype discriminants between controls and COVID-19 patients. (A) Ranking of the 25 most discriminant variables between controls and COVID-19 patients resulting from an unsupervised analysis of immunophenotypic markers. Population frequency is expressed in percentage of gated populations and marker expression is expressed as the Median Fluorescence Intensity (MFI) of those markers on a defined cell subset.

(B) Representation of the principal component analysis results obtained with the 25 most discriminant markers. COVID-19 patients (red dots) and controls (black dots) are well separated with no overlap (left panel). The contribution of each parameter to each cluster is displayed on the right panel.

Figure 2. Granulocyte immunophenotypic markers in controls and COVID-19 patients.

Box plots summarizing (A) the differences observed in basophils and SS^{hi}CD15⁺ granulocytes frequency, and the differential expression of (B) CRTH2 on basophils and eosinophils and (C) CD11b on basophils and SShiCD15+ granulocytes observed between controls and COVID-19 patients.

Figure 3. Best immunophenotype discriminants between mild/moderate and severe COVID-19 patients. (A) Ranking of the most discriminant variables (FDR<0.05) between mild/moderate and severe COVID-19 patients resulting from an unsupervised analysis of immunophenotypic markers. Population frequency is expressed in percentage of gated populations and marker expression is expressed as the Median Fluorescence Intensity (MFI) of those markers on a defined cell subset. (B) Representation of the principal component analysis results obtained with the most discriminant markers (FDR<0.05). Mild/moderate patients (blue triangles) and severe SARS-CoV-2 (red dots) are well separated with no overlap (left panel). The contribution of each parameter to each cluster is displayed on the right panel.

Figure 4. Granulocyte immunophenotypic markers in mild/moderate and severe COVID-19 groups. Box plots summarizing the differential expression of (A) CD16 on SS^{hi}CD15⁺ granulocytes (B) CRTH2 on eosinophils, (C) PDL1 on eosinophils, and (D) PDL1 on basophils, observed between the mild/moderate and severe COVID-19 patients.

Figure 5. Correlation of granulocytic immune markers and severity scores. In SARS-CoV-2 patients group, the correlation between the most discriminant flow cytometry markers of COVID-19 granulocytic signature and two standard measures of clinical severity scale, i.e. WHO and SOFA, is displayed. Blue triangles: mild/moderate COVID-19 patients; red dots: severe COVID-19 patients.

CeR'

Table 1. Dry antibody panels for whole blood flow cytometry.

7-AAD, 7-aminoactinomycin D (viability marker); AF, AlexaFluor; APC, allophycocyanin; CB, counting beads; ECD, Phycoerythrin-Texas Red; FITC, fluorescein isothiocyanate; KrO, Krome Orange; Lin, lineage; NK, Natural Killer; PB, Pacific Blue; PC, phycoerythrin cyanin; PE, phycoerythrin.

									×	
Variables	РВ	KrO	FITC/AF 488	PE	EC	PC 5.5	PC7	АРС	AF 700	APC-AF750
Count			CD45	СВ		7-AAD				
Basic		CD45	CD16	CD56	CD19		CD14	CD4	CD8	CD3
Granulocytes	CD15	CD45	CD294		CD16	CD33	CD11b	PD-L1	Lin	CD62L
T cell subsets	CD57	CD45	CD45RA	CCR7	CD28	PD1	CD27	CD4	CD8	CD3
Regulatory T cells	Helios	CD45	CD45RA	CD25	0	CD39	CD4	FoxP3		CD3
B cells	lgM	CD45	lgD	CD21	CD19		CD27	CD24		CD38
Innate lymphoid cells		CD45	CD294	CD1a/CD3/ CD14/CD16 /CD19/CD34/ CD94/ TCRαβ/ TCRγδ/ CD123/FcεRI NKp46/		CD117	NKp46	CD127		CD161 CD3/CD14/
NK subsets	CD57	CD45	CD16	NKp30			KIR2DL2L3	NKG2a	CD56	CD19
NK checkpoint 1	CD16	CD45	CD54	NKp46	CD137	PD-1	CD274	NKG2A	CD56	CD3/ CD14/ CD19/ CD66b
NK checkpoint 2	TIM-3	CD45	CD16	NKp46	LAG-3	HLA-DR	CD69	NKG2D	CD56	CD3/ CD14/ CD19
Dendritic cells	HLA-DR	CD45	CD16	Lin		CD1c	CD11c	Clec9A	CD123	

Table 2. Demographic, clinical and laboratory data of enrolled patients.

Variables	Healthy	COVID-	Р	Mild	Severe	Р
	donors	19		group	group	
	n = 25	patients		n = 7	n = 19	
		n = 26			X	
		Character	istics	(
D dala	10 (20)	20 (72)	0.007	F (74)	15 (70)	0.60
Male	10 (38)	20 (73)	0.007	5 (71)	15 (79)	0.69
Age, median (IQR 25-75),	45 (31-	66 (57-	<0.0001	71 (49-	65 (57-74)	0.79
years	54)	74)	2	75)		
BMI, median (IQR 25-75),	-	28 (25-	-	24 (23-	29 (27-36)	0.005
kg/m²		33)		26)		
Co-morbidities	0		-			
Coronary disease		7 (27)	-	1 (14)	6 (32)	0.6
Hypertension	-	17 (65)	-	2 (29)	15 (79)	0.03
COPD	-	3 (12)	-	0	3 (16)	0.5
Stroke	-	0	-	0	0	-
Smoker	-	5 (19)	-	0	5 (26)	0.3
Active cancer	-	3 (12)	-	0	3 (16)	0.5
Immunodepression	-	3 (12)	-	1 (14)	2 (11)	1
Chronic kidney disease	-	0	-	0	0	-
Liver disease	-	2 (8)	-	1 (14)	1 (5)	0.5

Diabetes	-	10 (38)	-	2 (29)	8 (42)	0.7
	At	hospital ac	Imission			
Clinical features						
Temperature, median (IQR	-	38	-	37	38.5 (38-	0.08
25-75), °C		(37.4-		(36.6-	39)	
		39)		39)	×	
MAP, median (IQR 25-75),	-	790 (72-	-	87 (73-	78 (69-85)	0.2
mmHg		91)		94)		
Heart rate, median (IQR	-	95 (80-	-	90 (67-	100 (80-	0.2
25-75), bpm		107)		95)	122)	
Respiratory rate, median	-	28 (18-		17 (16-	32 (27-35)	0.002
(IQR 25-75), cpm		34)	0	22)		
Oxygen low flow	-	1 (4)	-	1 (14)	0	0.3
Non-invasive ventilation		2 (8)	-	0	2 (11)	1
Mechanical ventilation	0	17 (65)	-	0	17 (89)	
						<0.0001
WHO progression scale,	-	6 (4-6)	-	4 (4-4)	6 (5-6)	<0.0001
median (IQR 25-75)						
SpO2, median (IQR 25-75),	-	94 (90-	-	96 (95-	93 (84-95)	0.003
%		95)		97)		
SpO2/FiO2 ratio, median	-	186	-	457	176 (142-	0.0001
(IQR 25-75)		(154-		(452-	194)	
		407)		462)		

PaO2/FiO2 ratio, median	-	135	-	275	124 (106-	0.007
(IQR 25-75)		(108-		(271-	172)	
		193)		476)		
		(n=22)		(n=3)		
SAPS II, median (IQR 25-	-	29 (22-	-	21 (13-	32 (28-39)	0.002
75) ^a		37)		23)	×	
NEWS2 score, median (IQR	-	7 (4-10)	-	3 (1-3)	9 (7-10)	0.0001
25-75)				(
SOFA Score, median (IQR	-	4 (2-6)	-	0 (0-4)	4 (3-7)	0.005
25-75)				5		
Use of vasopressors	-	13 (50)		0	13 (68)	0.008
Laboratory data			0	I		
Serum Aspartate-Amino-	-	51 (38-	-	38 (31-	54 (43-71)	0.04
Transferase, median (IQR		67)		52)		
25-75), UI/I	6	(n=25)		(n=6)		
Serum Alanine-Amino-	-	33 (22-	-	24 (14-	39 (23-52)	0.2
Transferase, median (IQR		52)		50)		
25-75), UI/I		(n=24)		(n=5)		
Serum creatinine, median	-	72 (62-	-	65 (58-	78 (63-	0.3
(IQR 25-75), μmol/l		98)		71)	100)	
C-Reactive Protein, median	-	110 (64-	-	17 (12-	150 (88-	0.0003
(IQR 25-75), mg/l		164)		59)	181)	

Red blood cells, median	-	4.4 (4.2-	-	4.4 (4.2-	4.4 (4.2-	0.5
(IQR 25-75), G/L		4.7)		4.8)	4.8)	
Platelets, median (IQR 25-	-	212	-	214	210 (159-	0.8
75), G/L		(168-		(171-	259)	
		263)		307)		
White blood cells, median	-	6.3 (4.3-	-	5.7 (4.2-	6.3 (4.3-	0.2
(IQR 25-75), G/L		7.9)		6.5)	10)	
Neutrophils, median (IQR	-	4.3 (3.3-	-	3.8 (2.9-	4.8 (3.4-	0.15
25-75), G/L		5.4)		4.5)	6.5)	
Basophils, median (IQR 25-	-	0.01	-	0.01	0.01	0.98
75), G/L		(0.01-		(0.01-	(0.01-	
		0.02)	0	0.03)	0.02)	
Eosinophils, median (IQR	-	0 (0-	-	0.01 (0-	0 (0-0)	0.002
25-75), G/L		0.01)		0.04)		
×	0					
Lymphocytes, median (IQR	-	0.8 (0.6-	-	1 (0.4-	0.8 (0.6-1)	0.7
25-75), G/L		1.1)		1.6)		
Lymphopenia ^b	-	22 (85)	-	5 (71)	17 (89)	0.28
Monocytes, median (IQR	-	0.4 (0.2-	-	0.5 (0.4-	0.3 (0.2-	0.02
25-75), G/L		0.5)		0.7)	0.5)	
Neutrophil-to-lymphocyte	-	4.9 (3.6-	-	3.9 (1.8-	5.3 (4-7.9)	0.2
ratio, median (IQR 25-75)		8.2)		9.3)		
Platelet-to-lymphocyte	-	237	-	212	241 (192-	0.7

ratio, median (IQR 25-75)		(183-		(147-	344)	
		346)		475)		
Labo	oratory da	ta at blood	d sample c	ollection		
Red blood cells, median	-	3.7 (3.1	-	4.4 (4.1-	3.3 (3-3.9)	0.002
(IQR 25-75), G/L		- 4.2)		5)		
Platelets, median (IQR 25-	-	318	-	236	412 (302-	0.003
75), G/L		(243-		(150-	458)	
		429)		278)		
White blood cells, median	-	9.5 (6.4-	-	5.2 (3.9-	11 (8.3-	0.0002
(IQR 25-75), G/L		12.3)		5.8)	14)	
Neutrophils, median (IQR	-	7.7 (4.4-		3.6 (2.8-	8.9 (7-12)	0.0001
25-75), G/L		9.1)	O	4)		
Basophils, median (IQR 25-	-	0.04	-	0.02	0.05	0.002
75), G/L		(0.02-		(0.01-	(0.03-	
×	0	0.05)		0.02)	0.06)	
Eosinophils, median (IQR	-	0.08	-	0.02	0.09	0.03
25-75), G/L		(0.02-		(0.01-	(0.03-	
		0.12)		0.03)	0.16)	
Lymphocytes, median (IQR	-	1.1 (0.7-	-	0.8 (0.5-	1.2 (0.7-	0.52
25-75), G/L		1.7)		1.7)	1.7)	
Lymphopenia ^b	-	16 (62)	-	5 (71)	11 (57)	0.67
Monocytes, median (IQR	-	0.7 (0.5-	-	0.5 (0.4-	0.7 (0.6-	0.05
25-75), G/L		1)		0.7)	1.2)	

Neutrophil-to-lymphocyte	-	6.3 (3.6-	-	3.5 (1.6-	8.9 (5.1-	0.02
ratio, median (IQR 25-75)		10.7)		5.9)	11.8)	
Platelet-to-lymphocyte	-	276	-	188	297 (201-	0.13
ratio, median (IQR 25-75)		(174-		(140-	459)	
		435)		312)		
	Covid	19 Infectio	on's history	y	×	
Respiratory symptoms at			-			
hospital admission				6	$\langle \cdot \rangle$	
Cough	-	18 (69)	-	4 (57)	14 (74)	0.6
Dyspnea	-	19 (73)	-	3 (43)	16 (84)	0.06
Systemic symptoms at						
admission			0			
Fever	-	23 (88)	-	7 (100)	16 (84)	0.5
Diarrhea		8 (31)	-	2 (29)	6 (32)	1.0
Myalgia	Q	14 (54)	-	3 (43)	11 (58)	0.8
Anosmia, dysgeusia	-	6 (23)	-	1 (14)	5 (26)	0.65
Duration of symptoms	-	5 (2-7)	_	7 (2-16)	5 (2-7)	0.4
before hospital admission,						
median (IQR 25-75), days						
Time between onset of	-					
symptoms and RT-PCR,		4 (2-8)		4 (2-16)	4 (1-7)	0.46
median (IQR 25-75), days						
Duration between	-					0.02

symptom onset and blood		16 (11-		8 (5-18)	18 (15-20)	
sample collection, median		20)				
(IQR 25-75), days						
Duration between hospital	-					0.0001
admission and blood		11 (3-		2 (1-2)	13 (10-16)	
sample collection, median		14)			×	
(IQR 25-75), days						
Time between RT-PCR and	-	11 (4-		2 (2-3)	13 (10-16)	0.0001
blood sample collection,		15)		C	5	
median (IQR 25-75), days				5		
		Treatme	ent			
Hydroxychloroquine	-	14 (54)	0	0	14 (74)	0.004
Lopinavir - Ritonavir	-	4 (15)		0	4 (21)	0.55
Azithromycin		22 (85)		5 (71)	17 (89)	0.3
X	Ø	Follow-	up			
In-hospital mortality	-	5 (19)		0	5 (26)	0.3
Day 28 mortality	-	3 (12)		0	3 (16)	0.5
Length of stay in hospital,	-	25 (17-		12 (4-	28 (24-38)	0.0004
median (IQR 25-75), days		33)		17)		
Oxygen administration	-	3 (0-15)		28 (20-	0 (0-6)	<0.0001
free days, median (IQR 25-				28)		
75), days						

Data are expressed as N (%) of participants unless otherwise indicated.

Abbreviations: BMI, Body Mass Index; COPD, Chronic obstructive pulmonary disease; MAP, mean arterial pressure; bpm, beats per minute ; cpm, cycle per minute ; WHO, World Health Organization ; SpO2, pulse oximetry ; SpO2/FiO2, ratio of pulse oximetry to the fraction of inspired oxygen ; PaO2/FiO2 ratio, ratio of partial of arterial oxygen partial to the fraction of inspired oxygen ; NEWS2, National Early Warning Score 2 ; SAPS II, Simplified Acute Physiology Score II; SOFA, Sepsis-related Organ Failure Assessment; RT-PCR, Reverse Transcriptase Polymerase Chain Reaction; SD, Standard Deviation. ^a The SAPS II ranges from 0 to 163, with higher scores indicating higher risk of mortality. A patient with a score of 30 has an estimated mortality risk of 10 %.

Figure 1

Stron	ger discrimin	ators between C	OVID' subjects :	and COVID [*] patient	s		B					
Parameter	Count P	Value Lo	gWorth FD	R Pvalue FDR L	ogWorth	Change	_ 0					
% SS ^N CD15 ⁺ Granulocytes	51	1,94E-18	17,7116	1,24E-16	15,9053	7						
% SS ^N CD15 ⁺ CD16 ⁺ Granulocytes	51	3,55E-18	17,4494	1,24E-16	15,9053	7						
% SS ^N CD16 ⁺ Granulocytes	50	6,50E-13	12,1874	1,52E-11	10,8194	7					1.0	
% CD3 CD56 Lymphocytes	50	3,04E-12	11,5178	5,31E-11	10,2747	м			1		1	
% SS ^{Io} CRTH2* Basophiles	51	6,73E-11	10,1723	9,42E-10	9,0261	м	4-					
% lineage CD11c HI A-D8*CD123* pDCs	50	9 245-11	10.0341	1.085-09	8 9672	N	-					
Arti Schichtu 2'Fasianabile	50	1.405.00	0.0341	1,435,08	7.9471							MFI _{CD66b} Eosinophils
WPICITIQ 33 CKTH2 E0siliophilis	31	1,492-09	0,0234	1,422-08	7,0471					•	0.5	MIFI _{HLA-DR} Mionos
MFI _{CD16} SS CD15 Granulocytes	51	1,80E-09	8,7450	1,42E-08	/,84/1	ы	<u> </u>		•			
% PD1*CD56*CD3' NK Cells	50	1,83E-09	8,7380	1,42E-08	7,8471	7	° 2-				-	MFI _{CRTH2} Basos
CD3*CD8* T Cells count (cells/L)	50	2,96E-09	8,5282	2,07E-08	7,6831	м	6,9		•		9,3	
CD3* T Cells count (cells/L)	50	9,54E-09	8,0205	5,86E-08	7,2322	м	0	•	•••		0	MFI _{CETH2} Eosino
MFI CRTH2 SS ¹⁰ CRTH2* Basophiles	51	1,00E-08	7,9981	5,86E-08	7,2322	м	t i	•	•••	' .	2 0,0	% PD1*NK Cells
MEL SS ^h Grapulocytes	51	2.835-08	7.5481	1.525-07	6,8169	2	ē 0				- E	% pDCs
MEL CO2*CO4*CCR7*RD1*T Colle	49	2 225 08	7 4912	1 615.07	6 7922		d l				<u>d</u>	% PDL1* NK Cells
MPICCR7 CD3 CD4 CCK7 PD1 1 Cells	49	3,235-08	7,4913	1,612-07	6,/923	~	Lo Contra		•	. •	LO LO	% Basos
MFI _{CCR7} CD3 CD4 CD27 CD45RA T Cells	49	7,14E-08	7,1463	3,33E-07	6,4773	7	0			• •	0	MFI _{CD1c} mDCs
MFI CD1c Lineage CD11c "HLA-DR" mDCs	49	2,85E-07	6,5456	1,25E-06	5,9046	7	-2 -	•••			-0,5	CD3 ⁺ count (cells/L) 🍾 🍨 🖉
MFI _{CD11b} SS ^{hi} CD15*Granulocytes	51	3,13E-07	6,5051	1,29E-06	5,8905	м	~	•		•		CD3+CD4+ count (cells/L)
% PDL1*CD56*CD3' NK Cells	50	1,34E-06	5,8724	5,22E-06	5,2826	7						
CD3*CD4* T Cells count (cells/L)	50	3,19E-06	5,4957	1,18E-05	4,9294	м				•		
%CD4*SS ^{med} CD14* Monocytes	50	6.05E-06	5,2181	2.12E-05	4.6740	N						
% NKG2D*NKp46* NK Cells	50	7.516-06	5 1242	2 505-05	4 6013	N	-4-4-1				- I,0	
CONCONTRACTOR	30	9.305.06	5,1242	2,500-05	4,0013		-8 -6	-4 -2	0 2 4	1 6	8	-1,0 -0,5 0,0 0,5
% CD3 CD4 CCR7 PD1 T Cells	49	8,30E-06	5,0810	2,64E-05	4,5784	<i>2</i>		Compone	nt1 (57,1%)			Component 1 (57,1%)
MFI CD11b SS ¹⁰ CRTH2" Basophils	51	1,10E-05	4,9580	3,35E-05	4,4746	ы						
MFI _{HLA-DR} Monocytes	51	1,26E-05	4,9002	3,65E-05	4,4375	м						
MFI COBBB SS ^{hi} CRTH2*Eosinophils	50	1,30E-05	4,8846	3,65E-05	4,4375	7						
												(1)
	C											
C	X	\mathbf{O}										
	5											
V												

34

Figure 3

В

А

Stronger discriminators	between mild/inte	mediate and severe	ly affected patients		В
Parameter % lineage CD11c HLA-DR*CD123* pDCs	P Value LogWo 5,93E-06	th FDR Pvalue 5,2267 2,37E	FDR LogWorth 04 3,6247	Change ע	
MFI HLA-DR Monocytes	4,48E-06	5,3487 2,37E	-04 3,6247	И	
%CD4'SS ^{mer} CD14 ⁺ Monocytes	3,56E-05	4,4480 9,50E	04 3,0221	¥ م	1.0-
>5 CD 15 Granulocytes SS ¹⁰ CRTH2*DDI 1* Basophiles	3,62E-04	3,4418 7,23E	03 2,1408	7	
D3 [*] Lymphocytes	1.30E-03	2.8850 1 74E	02 1 7600	N	
th CD15 ⁺ CD16 ⁺ Granulocytes	2,61E-03	2,5834 1,76E	-02 1,7550	7	
I CRTH2 SS ^{NI} CRTH2 [*] Eosinophils	2,67E-03	2,5742 1,76E	-02 1,7550	ĸ	0,5 - % \$30
I CD16 SS ^{hi} CD15*Granulocytes	3,16E-03	2,5008 1,76E	-02 1,7550	И	
NKG2D [*] NKp46 [*] NK Cells	1,66E-03	2,7810 1,76E	-02 1,7550	R	• The second sec
I _{CD15} SS ^{hi} CD15 ⁺ Granulocytes	2,40E-03	2,6196 1,76E	-02 1,7550	И	% PDL1* NK
S ^{hi} CD16 [*] Granulocytes	3,23E-03	2,4903 1,76E	02 1,7550	7	0- MFI _{COLE} mE
I CD4 Monocytes	1,81E-03	2,7432 1,76E	02 1,7550	ы -	• · · · · · · · · · · · · · · · · · · ·
IFI PDLL SS"CRTH2 Eosinophils	3,00E-03	2,5228 1,76E	02 1,7550	7	MFIPDLI EOSINO MAEI
JUO (IVIFI CD169 Monos)/(MFI CD169 Lymphos)	3,30E-03	2,4820 1,76E	02 1,7550	N	-0,5 -
DDI 1*CD56*CD2: NK Calls	6,24E-03	2,2051 2,916	02 1,5300	3	
Flux-re NKG2D*NK046*NK Cells	7.81E-03	2,1044 2,910 2.1075 3.29E	-02 1,4831	N N	
SS ^h CD16 ⁺ Granulocytes	1.13E-02	1.9451 4.54E	-02 1.3431	7	
I CD69CD45+ Leukocytes	1,66E-02	1,7805 6,31E	02 1,1996	7	-5 0 5 10 -10 -0
CD16 [*] CD56 [*] CD3 [·] NK Cells	2,11E-02	1,6767 7,66E	-02 1,1160	ы	Component 1 (42,3 %)
CD1c Lineage CD11c*HLA-DR* mDCs	2,99E-02	1,5242 1,04E	-01 0,9829	7	
°CRTH2* Basophiles	4,08E-02	1,3892 1,26E	-01 0,9010	м	
De4 Monocytes	3,99E-02	1,3989 1,70E	-01 0,7707	м	
D11b SS"CD15" Granulocytes	6,46E-02	1,1900 2,50E	01 0,6018	ы	
2116 SS ^w CRTH2 [*] Basophils	6,49E-02	1,1881 2,50E	-01 0,6018	ы	
					5
			•		
		XX			

