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The actin cytoskeleton and Rho GTPase signaling to actin assembly are

prime targets of bacterial and viral pathogens, simply because actin is

involved in all motile and membrane remodeling processes, such as phagocyto-

sis, macropinocytosis, endocytosis, exocytosis, vesicular trafficking and mem-

brane fusion events, motility, and last but not least, autophagy. This article

aims at providing an overview of the most prominent pathogen-induced or -

hijacked actin structures, and an outlook on how future research might

uncover additional, equally sophisticated interactions.

Keywords: actin dynamics; bacterial invasion; host–pathogen interaction;

viral entry; virulence factors

Cellular actin assemblies

The shape of cells, their movement, phagocytosis, inter-

cellular communication, endo- and exocytosis as well as

the distribution of organelles all depend on dynamic

reorganizations of the actin cytoskeleton. Actin exists in

the cell in two distinct forms: globular actin (G-actin)

monomers and filamentous actin (F-actin) polymers.

The rearrangement of cellular actin structures is a

dynamic, often fast process driven by continuous assem-

bly, disassembly and/or reassembly of actin filaments.

This turnover is controlled by multiple factors including

major, ubiquitously operating machines, representatives

of which are found in all eukaryotes.

Molecular basis of actin polymerization

The first step in making a filament from G-actin

monomers is the so-called nucleation, driven by tightly

regulated catalytic molecular machines like Arp2/3

complex or members of the formin family of proteins.

A schematic overview of the most prominent mecha-

nisms of actin assembly (along with exemplary

virulence factors targeting them, see also below) is

given in Fig. 1. It is becoming increasingly clear that

these and similar machines come as multicomponent

complexes, which generate F-actin in response to sig-

nals that are transferred onto these machines foremost

by Rho-GTPases (see below and Refs [1–3]). In case

of Arp2/3 complex, an additional class of proteins or

protein complexes, namely the so-called nucleation

promoting factors (NPFs) operate as essential interme-

diates for the activation of actin assembly. Activation

of Arp2/3 complex by these NPFs leads to the forma-

tion of branched actin networks. Signal-dependent

ignition of any of these machines, therefore, results in

the spatiotemporally restricted generation of F-actin

on cellular membranes.

The WASP family of NPFs in mammals now con-

sists of four subgroups with eight members [4],

namely Wasp/N-WASP [5,6], three WAVES [7], and

the more recently identified WASH [8] and

WHAMM/JMY [9–11] with individual cellular func-

tions [12]. As opposed to the Arp2/3 complex, the

formin family, consisting of 15 members in mammals,

generates long, unbranched filaments [13]. Although
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certain formins are implicated in the formation of

filopodia, which are finger-shaped cell protrusions

[14] or of myosin-decorated stress fibers [13], sheet-

like protrusions termed lamellipodia embody the

most prominent Arp2/3 complex-mediated actin

structure. Last but not least, consecutive copies of

G-actin-binding domains, such as WH2 (WASP

homology 2, also termed V domains for Verprolin

homology domain) domains, are capable of generat-

ing filaments and represent an additional but in com-

parison still understudied class of actin nucleators

[15]. This class comprises members as different as

Spire [16], Cobl (Cordon-bleu, [17]), leiomodin in

muscle [18,19], or the bacterial factors VopL and

VopF from Vibrio sp. [20,21]. Finally, stability and

turnover of actin filaments are controlled by a

multitude of modulatory activities such as severing,

capping or bundling, which determines, for example,

texture, durability, or longevity of the given structure

built. Together, we are still facing huge gaps in our

understanding of how actin structures in living cells

are formed through the concerted biochemical activi-

ties that we already know—aside from the unknown.

A schematic overview of some actin-nucleating gears

and their preferred location of action—if known—are

provided in Fig. 2.

Rho GTPases signaling to actin assembly

Signaling pathways regulated by proteins of the Rho

GTPase family are involved in many cellular functions,

ranging from cell polarization, migration, cell division,

NPF
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Fig. 1. Molecular mechanisms of actin filament assembly and their targeting by virulence factors. Actin filament turnover is tightly regulated

by catalytic nanomachines and their cofactors (for details, see text or Ref. [12]). Assembly of F-actin is manipulated at virtually every level

by bacterial virulence factors. The columns mark the phases of F-actin production and the virulence actors (blue) are placed about where

they affect filament turnover. The factors depicted are only few examples and the list is far from being complete. Nonetheless, for the

future, we expect many more virulence factors and/or mechanisms to be identified that affect these and other steps of dynamic actin

turnover such as severing or capping. Note that the molecular mechanisms evolved by bacteria to nucleate/elongate actin are not identical,

but at best similar to those of the host cell as drafted in the chart.
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and vesicle trafficking to transcription and inflamma-

tory reactions, just to name a few [22].

Rho GTPases cycle between an inactive, GDP-bound

state and an active, GTP-bound state. They undergo

conformational changes during cycling between states,

which in turn is controlled by other classes of GTPase-

binding proteins [23]. So-called guanine nucleotide

exchange factors (GEFs, [24]) regulate their activation

by facilitating the exchange of GDP for GTP, whereas

GTPase-activating proteins (GAPs) enhance their

intrinsic hydrolase activity leading to inactivation [25].

In the GTP-bound state, the GTPase binds to a given

downstream effector, igniting a signaling cascade.

Finally, guanine nucleotide dissociation inhibitors

(GDIs) function to maintain Rho GTPases in an inac-

tive GDP-bound state [26] and/or protect them from

degradation [27]. The small GTPase activation cycle is

schematically depicted in Fig. 3. The Rho GTPase fam-

ily comprises 20 members in humans [28], with the best

characterized members being RhoA, Rac1, and Cdc42.

RhoA has been shown to be involved in the forma-

tion of stress fibers, while Rac is responsible for the for-

mation of actin-rich protrusions termed lamellipodia.

Cdc42 can instead contribute to the formation of vari-

ous protrusions and to endomembrane trafficking,

although it is still mostly associated with the formation

of finger-like filopodia. Owing to their conserved and

crucial roles in controlling actin cytoskeleton turnover,

cell survival, and proliferation, Rho GTPases are a

prime target for virulence mechanisms of bacterial

pathogens [29–31]. It is worth mentioning here that bac-

terial virulence factors have evolved sophisticated

examples of molecular mimicry, that is, harboring ana-

logs of GTPase-regulatory factors such as GEFs, GAPs,

and GDIs (highlighted and referenced in Fig. 3).

Actin structures induced or hijacked
by bacteria

A subgroup of pathogenic bacteria invades their host

cells such as nonphagocytic gut epithelium cells by

stimulating uptake processes reminiscent of phagocyto-

sis, macropinocytosis, or endocytosis. All these entry

pathways converge on actin polymerization, although

the phenotypic appearance is rather diverse. Histori-

cally, these invasion pathways were classified into so-

called ‘trigger’ and ‘zipper’ mechanisms [32,33], either

accompanied by excessive membrane ruffling mediated

by large, lamellipodia-like membrane folds, or alterna-

tively, accompanied by much smaller, local actin rear-

rangements, respectively. Today, however, we know

that this classification is not always as sharp between

entry strategies of pathogens, and that bacteria can

quite flexibly employ various entry pathways in differ-

ent experimental systems that are not necessarily

observed in their native target cells in vivo, which are

usually much less accessible to experimental manipula-

tion than established tissue culture models. Much

work remains to be done in this area. Notwithstanding

this, the virulence factors utilized and their molecular

mechanisms of functions established in simplified,

in vitro systems remain correct, although their output

effects may be quantitatively and qualitatively different

in cells of differentiated tissue.

mDia1/Fmnl1/FHOD1

mDia1/FHOD1
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WAVE

(N-)WASP

WASP/WAVE
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INF2 FHOD1mDia1/2
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Fig. 2. Cellular actin assemblies. Gross

structure of cell membranes with actin

assemblies and the respective Arp2/3-

complex activators (in red) or formins (in

blue) that were described to contribute to

their formation. The listing cannot be

complete and requires continuous revision,

as our knowledge on the cellular roles of

these actin-generating nanomachines is

continuously growing. Original references

for the mentioned actions of NPFs and

formins are numerous and can be found in

recent competitive reviews [2–4,11–13,15].

Note that pathogens were found capable to

usurp many if not most of these actin

assemblies and that the currently unseen

ones are expected to be found in the

future.
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For the trigger type of entry utilized for instance by

Shigella flexneri or Salmonella enterica serovar Typhi-

murium, the pathogen transfers effector proteins into

the host’s cytoplasm (see T3SS below), inducing fierce,

local actin polymerization, causing the plasma mem-

brane to lift up and around the bacterium in order to

envelop it. This is similar in appearance to the forma-

tion of phagocytic cups or large structures mediating

macropinocytosis and engages virtually the same sig-

naling and actin assemblies [34,35]. More recent

research has uncovered, however, that pathogens can

elicit many more and much more diverse responses in

cells to induce their entry, engaging additional

GTPases and actin-dependent mechanisms unrelated

to those initially identified, such as Rho-mediated con-

tractility [36] or SPIRE- and formin-induced actin

polymerization [37,38].

The zipper mechanisms which are utilized, for exam-

ple, by pathogenic Yersinia and Listeria species are initi-

ated by bacterial surface proteins that serve as ‘fake’

ligands of host cell surface receptors. The receptor

becomes activated and signals across the plasma mem-

brane, which leads to highly localized actin

polymerization events, reminiscent perhaps to those

accompanying clathrin-mediated endocytosis of the

receptor. In the case of Listeria, two such mechanisms

operate in parallel: one receptor-ligand mimicry

involves binding of bacterial Internalin A (InlA) to host

E-cadherin [39]; the second mechanism concerns the c-

MET receptor tyrosine kinase binding to InlB [40], trig-

gering of which during invasion of HeLa cells is accom-

panied by clathrin recruitment, supporting the idea of

pathogen-induced receptor endocytosis [41]. In contrast,

Yersinia utilizes the cell adhesion machinery through

binding to the transmembrane protein b1-integrin
through the bacterial surface protein invasin [42].

Bacterial virulence factors and Rho GTPases

A common virulence feature of gram-negative gas-

trointestinal bacterial pathogens is the delivery of pro-

teins directly into the host cell cytoplasm. The bacteria

inject virulence factors, also known as effectors, via a

syringe-like nanomachine named Type III secretion

system (T3SS), evolutionary related to the flagellum.

While T3SSs are conserved in composition and func-

tion among different species, each bacterium secretes

an individual set of effectors [43] thought to serve

establishment of the individual niche. For instance,

Salmonella and Shigella species are intracellular patho-

gens that trigger their uptake into nonphagocytic gut

epithelial cells [44]. Invasion into host cells of these

bacteria depends on the activation of Rho GTPases by

the concerted action of sets of T3 effectors that medi-

ate prominent actin rearrangements resulting in engulf-

ment of the bacteria [33]. Quite distinct from those,

members of the Enteropathogenic E. coli (EPEC)/

Enterohemorrhagic E. coli (EHEC) group (also known

GEF
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e.g. SopB [36]

GEF-mimics
e.g. SopE [108], Map
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Fig. 3. The Rho-GTPase activation cycle and its manipulation by virulence factors. Rho GTPases cycle between an inactive GDP-bound state

and an active GTP-bound state. So-called GEFs regulate their activation, whereas GAPs enhance their intrinsic hydrolase leading to

inactivation. In the GTP-bound state, the GTPase binds to its downstream effectors. Finally, GDIs keep Rho GTPases in an inactive state

and protect them from degradation. The small GTPase activation cycle is targeted by bacterial virulence factors at virtually every step.

Virulence factors (in blue) are certainly not complete but just exemplary for entire families of factors and the identification of more virulence

determinants and mechanisms is expected from future research. Targeting of these processes with small molecules might pave the way to

novel pathoblockers or anticancer drugs.
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as A/E lesion pathogens) are primarily extracellular,

adhering to the surface of gut epithelial cells. Doing

so, they induce loss of microvilli and induce formation

of so-called actin-rich pedestals underneath their

attachment points. These bacteria also deliver T3 effec-

tors to manipulate the actin cytoskeleton [45].

In the last decade, work by Alto and colleagues was

instrumental for the identification of a novel T3SS

effector family, the WxxxE family of bacterial GEF

mimics. Subsequent crystal structures revealed that

WXXXE proteins in fact share the fold with Sal-

monella T3 effectors SopE/SopE2, also harboring

GEF activity, and uncovered the elegant GEF mimicry

mechanism [46–48].
In addition to these bacterial GEFs, also GAP and

GDI mimics, or enzymes that modify GTPases for

constitutive activation or inactivation exist, enabling

manipulation of the host GTPase-signaling landscape

at various levels. All these factors have been described

in comprehensive reviews [30,49,50] and some repre-

sentative examples are given in Fig. 2.

Activation of specific individual Rho GTPases and

corresponding actin-generating machines engaged by

these model pathogens were studied in detail over the

past 20 years, but this has posed more questions than

were answered. For instance, it is still in the dark how

Rho is activated by the Salmonella phosphatidyl-phos-

phate phosphatase SopB [36], or why Shigella harbors

bacterial GEFs for the functionally antagonistic host

GTPases Rac1 and RhoA [48,51,52] or how it recog-

nizes tricellulin upon host contact [53], just to name a

few. While quite some biochemical details on individ-

ual, bacterial virulence factors are now established,

their intricate interplay—as they come as a cocktail—
and a more holistic understanding of their profound

effects in the host is galaxies away.

Bacterial virulence factors and actin

The simplest mechanism of attacking the actin

cytoskeleton is targeting it directly by modifying toxins,

causing cross-linking of actin or ADP-ribosylation.

These modifications either result in stimulation of actin

polymerization or block it [reviewed in Ref. 54]. Bacte-

rial virulence factors may also have modulatory func-

tions such as actin bundling, as it was described for

Salmonella SipA [55]. Molecular mimicry of actin regu-

latory factors can occur at all levels (also compare
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Fig. 4. Virus infections harness actin

assembly at membranes at all stages.

Schematic representation of cellular

locations where virus infection and

propagation engages membranes and

actin dynamics. The figure focuses on

entry (upper side) and egress (right side)

and only hints at the multiple possibilities

of where virus assembly can take place

such as ER and Golgi compartments.

Virtually, every type of membrane and

actin assembly is utilized by one or the

other virus. Hence, it is not surprising that

even mitochondria [98] or inhospitable

places like peroxisomes can be exploited

for virus propagation. Therefore, the figure

must remain superficial and just repeats

common themes. For instance, the term

‘endocytosis’ stands for all types of

endocytosis not only clathrin-mediated

mechanisms.
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Fig. 1): The Listeria surface protein ActA for instance

mimics an NPF and recruits and activates Arp2/3 com-

plex for actin tail formation. On the contrary, Shigella

IcsA mimics an NPF-activating signal and releases

autoinhibition of the host cell NPF N-WASP, which

then recruits and activates Arp2/3 complex. These

mechanisms lead to actin assembly at the bacterial sur-

face in the cytoplasm followed host cell invasion. A

further upstream type of mimicry is represented by

Vaccinia Virus A36R or EPEC Tir, both of which

mimic receptor tyrosine kinase (RTK) signaling

through the plasma membrane [56]. This leads to the

recruitment of the RTK-Adapters such as Nck, in turn

igniting the N-WASP-Arp2/3 cascade and mediating

actin tail formation at the plasma membrane abutting

the pathogen upon clustering of the pathogenic recep-

tor mimic. Alternative types of actin tail formation are

exerted through bacterial actin nucleators like the

Rickettsial protein Sca2 or the Burkholderial BimA,

mimicking nucleation factors that generate long

unbranched filaments with activities reminiscent of for-

mins or Spire [57] or of the Ena/VASP family of actin

polymerases [58]. Remarkably, in case of BimA, differ-

ent Burkholderia species have evolved this protein to

either operate as Ena/VASP mimic (B. pseudomallei

and mallei) or Arp2/3 complex activator (B. thailanden-

sis), which confirmed the versatility and flexibility of

virulence factor evolution to serve the specific patho-

gen’s need [59]. These and similar bacteria, residing

and spreading inside host cells in an actin polymeriza-

tion-dependent fashion, have to exit the phagosome in

order to unfold these features. Others like Salmonella

remain in the membrane cover, and instead mature and

remodel it to establish it as their specific niche. It is

intuitive that this type of membrane remodeling will

again involve Rho GTPases and actin dynamics, but

the exact contributions of specific host cell factors are

still in the dark.

Actin and the viral life cycle

Viruses depend as obligatory intracellular parasites on

multiple functions of their host cell. Thus, viral infec-

tions unsurprisingly alter the regular functions of a cell

to support replication and production of new virions.

A prime aspect of this conversion is profound reorga-

nization of the actin cytoskeleton, accompanying most

if not all stages of the viral life cycle, from entry

through replication and assembly to egress (Fig. 4)

[60]. One characteristic hallmark of viruses is their cel-

lular and host tropism [61]. In the absence of virus-

compatible host cells, they do not replicate at all. Two

distinct subtypes of cellular viral tropism were

described, namely receptor-dependent and -indepen-

dent tropisms. This means that restriction of viral

replication occurs either on the cell surface (receptor-

dependent entry) or intracellularly (post-entry steps)

through molecular incompatibilities. The state of dif-

ferentiation of a given cell dictates its gene expression

pattern, which in turn enables (or prohibits) viral

infection and propagation. Interestingly, several viruses

can transform cells, which can be seen as an active

step to design their new homes for persistence. This

process also profoundly changes host cell proliferation

and motility, often leading to tumor formation and

metastasis. However, these processes will not be dis-

cussed here because it mostly is not an immediate form

of host–pathogen interaction [62,63]. Nevertheless, it is

worth to consider that these viruses apparently prefer

to reside in motile and proliferating cells.

Virus entry

In the first step of viral infection, virions engage the

cell surface, subsequently penetrating the cell mem-

brane and entering the cytoplasm.

Prior to internalization, many viruses show a cell-

surface-surfing behavior, which is proposed to carry

them from initial contact sites, for instance filopodial

protrusions [64], to areas amendable for penetration

into the cytoplasm, for example, sites with high-endo-

cytic activity. This process was shown to depend on

actin and myosin II motor activity and likely be driven

by myosin II-dependent actin retrograde flow in these

structures [65].

For subsequent internalization, the cortical actin

meshwork is thought to embody a physical barrier that

has to be overcome, which can be achieved by actin

cytoskeleton remodeling [66]. Virions can ignite signal-

ing and induce internalization of their hijacked recep-

tor, taking a ride on, for example, clathrin- or

caveolin-mediated endocytosis. Some virions utilize

macropinocytosis or other clathrin-independent paths

into the cell, all involving actin in one of the other

way [reviewed in Refs 67,68]. Apparently, viruses have

learned to hijack the full spectrum of endocytic mecha-

nisms to gain access to the cells.

Moreover, enveloped viruses such as HIV, HRSV,

or HSV [69–71] may also gain entry by directly fusing

with the cell’s plasma membrane, which involves

action of Rho GTPases and actin in a way that is not

fully understood. Future research may identify corre-

lates of this process in nonpathogenic cell fusion pro-

cesses of the host, as found, for example, in muscle

cell precursors or inflammatory macrophages forming

giant cells.
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Finally, attachment of virions to host cells may pro-

mote uptake of additional virions by stimulating sig-

nals rendering the host more susceptible. Herpes

simplex virus (HSV), as an example, induces the exten-

sion of cell surface protrusions spiked with more

attachment sites for more virions [72,73].

Intracellular trafficking, replication, assembly,

and egress of virions

Dynamic actin turnover was shown to have strong

effects on some viruses during their propagation in the

host [74–77]. However, we are just beginning to distin-

guish the relative contributions of actin dynamics to

these steps, using for instance super-resolution video

microscopy. On one hand, it is reasonable to assume

that complex structures such as some virus factories in

the cell center will strongly rely on intact actin dynam-

ics to support rearrangements of ER and Golgi in

response to virion production. However, there is much

more to be explored in this phase of the viral life cycle:

actin impacts on eukaryotic gene expression directly

[78,79] and indirectly [80,81] and, in addition, con-

tributes to chromatin organization through nuclear

F-actin assemblies, but how precisely remains to be

established [82]. Although these aspects of actin

dynamics are incompletely understood and notoriously

difficult to visualize, even less is known about usurpa-

tion of them by virions. Nevertheless, several indica-

tions for the participation of these cellular processes in

virion production/assembly have emerged [83–88].
Lately, we have witnessed an explosion of knowl-

edge on autophagy. Autophagy comes in various fla-

vors in the cell, but is accompanied by distinct

membrane remodeling events that all involve actin

dynamics [89] mostly downstream of Arp2/3 complex-

dependent and the corresponding NPFs WASH,

WHAMM, and JMY [90–93]. Not surprisingly, there-

fore, this cellular process is also connected to the life

cycle of various viruses. Although some have evolved

to evade autophagy in the cell, others appear to have

modified autophagy for their own benefit. However,

the connection between actin dynamics, autophagy,

and viral infection is still comparably vague and I

would like to refer to two excellent recent reviews

summarizing this emerging field [94,95]. Future

research will have to define whether virions directly

target actin dynamics during manipulation of the

autophagic flux, or if this connection is indirect.

Next, budding and egress steps of viral pathogens

again involve passing through the plasma membrane,

which necessarily requires actin rearrangements. It is

known, for instance, that some viruses including HIV

induce actin-based protrusions/microvilli [96] and that

actin depolymerization diminishes viral yield. More-

over, cell to cell spread of this virus involving the viral

Env and GAG proteins is actin-dependent, and indeed,

HIV-GAG directly interacts with F-actin [97].

Finally, virus spread may also be promoted by

direct induction of actin structures. As a prominent

example, vaccinia virus and other members of the pox-

virus family are well known for inducing prominent

actin structures below the plasma membrane following

budding, again generating actin comet tails now con-

sidered important for efficient viral dissemination.

Comparable structures are induced at the cell surface

through signaling across the plasma membrane by

pathogenic Escherichia coli, for instance of the EPEC

or EHEC type (see above and Ref. [31]). Although cer-

tainly more static than Vaccinia virus tails (see above)

and thus specifically called actin pedestals, these struc-

tures are believed to mediate translocation of the bac-

teria along the plasma membrane and perhaps onto

neighboring cells. This emphasizes how the same path-

ways and machineries can lead to distinct output

responses, which must depend on the overall molecular

inventory of host cell proteins regulating these patho-

gen-induced actin structures.

Together, due to the intimate contact and obligate

dependence of the virus on the host cell equipment,

coevolution has shaped a multitude of strategies that

all either directly utilize manipulation of actin (dis-)

assembly or at least take into account that the targeted

membrane is under control of actin dynamics. Future

work needs to dissect the differential contribution of

signaling and actin assembly factors to the steps of

individual viral life cycles (Fig. 4).

Concluding remarks

All intracellular and even some extracellular pathogens

subvert the host cell cytoskeleton to promote their own

survival, replication, and dissemination. A study of

these microbes has led to important discoveries con-

cerning not only the specific infection mechanism at

play but also regarding the specific function of

cytoskeletal regulatory pathways and cellular mecha-

nisms. Importantly, the cellular pathways involved may

harbor attractive therapeutic targets to fight such infec-

tions. However, to reach this goal, much work is

required to tease apart ‘bystanders’, recruitment of

which just accompanies these processes, from ‘drivers’,

directly utilized by the pathogen, which might embody

promising targets. Aim of such approaches is not neces-

sarily to kill the microbe, which would pose a selection

pressure to developing further resistances, but to tune
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down the dynamics of a given infection allowing the

host to eradicate the intruder by itself. Novel systematic

analyses, including systems biology level comprehension

of these processes and molecular biology down to

atomic resolution, are required to enlighten the delicate

interaction processes between pathogen and host.
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