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Abstract

A total of 296 strains of protease-producing bacteria were isolated and purified from

medium-temperature Daqu produced by ZhangGong LaoJiu Wine Co. Ltd. After calculating

the ratio of transparent ring diameter to colony diameter and measuring the protease activi-

ties, a strain of high-yield protease bacteria, called DW-7, was screened out with a protease

activity of 99.54 U/mL. Through morphological observation, 16S rDNA sequence analysis,

and physiological and biochemical tests, the isolated bacteria DW-7 was determined to be

Bacillus velezensis. In addition, whole-genome sequencing (WGS), using PacBio and the

Illumina platform, was performed. Gene annotation was then conducted using the Clusters

of Orthologous Groups (COG), Kyoto Encyclopedia of Genes and Genomes (KEGG), Non-

Redundant Protein Sequence Database (NR), and Gene Ontology (GO) databases. The

results showed that the genome of DW-7 was 3,942,829 bp long with a GC content of

46.45%. A total of 3,662 protein-encoding genes were predicted, with a total length of

3,402,822 bp. Additionally, 2,283; 2,796; and 2,127 genes were annotated in the COG,

KEGG, and GO databases, respectively. A total of 196 high-yield protease genes were

mainly enriched in the metabolism of alanine, aspartic acid, glutamate, glycine, serine, and

threonine, as well as ABC transporter and transporter pathways.

Introduction

Chinese Luzhou-flavored liquor is typically created via an oriental solid-state fermentation

process. Liquor fermentation is a complex process that takes place in in an open environment

and is coordinated by various microorganisms and enzymes. The microorganisms in liquor

mainly come from the Daqu, the surrounding environment, pit mud, and yellow water [1].

Daqu is a unique saccharification starter for solid liquor brewing in China. It not only contains
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important crude enzymes and complex microflora, but it is also a source of important biologi-

cally active substances, such as aroma precursors that determine flavor characteristics [2, 3].

The quality of Daqu directly affects the quality, yield, and style of the liquor product.

The microorganisms in Daqu mainly include bacteria, yeasts, molds, and a small number of

actinomycetes. Bacteria are the vital microorganism in Daqu, the amount and quantity of

which directly determines its quality. Bacillus sp. is the dominant flora in Daqu, which pro-

duces various enzymes that are closely linked to the formation of flavor substances during the

fermentation process [4]. It has been reported that many flavor substances in liquor are

derived from proteins, and the functions of those proteins and their enzymes are s significant

for developing the flavor of liquor. For example, protease is an enzyme that hydrolyzes peptide

bonds into amino acids or short peptides [5] and functions by maintaining enzyme activities

under acidic, neutral, and alkaline conditions. Additionally, it is a metabolite of various micro-

organisms involved in the production of Daqu [6]. In the process of solid-state liquor fermen-

tation, proteases in Daqu can promote the dissolution of raw materials, decompose proteins,

produce amino acids, provide nitrogen sources, and flavor components, promote the growth

of microorganisms, degrade yeast cells, improve the utilization of raw materials, cooperate in

co-fermentation with other microbes, inhibit the production of fusel oil, and enhance the

yield, quality, and aroma of the original liquor [7, 8].

Whole-genome sequencing (WGS) is a fast, low-cost, and highly efficient third-generation

sequencing technology that can provide a complete bacterial genome sequence. The differ-

ences between species of the same genus can be better identified using WGS and by following

gene annotations using online databases, such as GO, KEGG, COG, and NR. WGS has become

a popular detection method and is widely used to identify microbial communities within intes-

tinal flora, soil, and fungi [9, 10]. It is necessary for mining the core genome, identifying spe-

cific genes, and analyzing functional genomics, which ultimately contributes to the

exploration of the diversity and biological characteristics of unknown microbial groups [11].

At present, domestic and foreign research mainly focuses on the physical and chemical

properties and the purification technologies of proteases, as well as the methods to obtain

high-yield protease strains and protease products through strain mutagenesis, genetic engi-

neering, and other methods. For example, Lu et al. [12] screened out a high-yield, neutral pro-

tease bacterium from high-temperature yeast for making hard liquor, which was identified as

B. amyloliquefaciens. Nie et al. [13] initially screened for microbes by calculating the transpar-

ent ring diameter, then re-screened by measuring protease activity, and finally identified two

strains of high-yield proteases from Daqu in Jiang-flavor Chinese spirits, which were charac-

terized as B. subtilis. However, the exact mechanism underlying the screening of high-yield

proteases from Daqu of Chinese Luzhou-flavored liquor is not well understood. In the present

study, we screened a strain of high-yield protease bacteria from the Daqu of ZhangGong Lao-

jiu. We obtained the whole-genome sequence by performing WGS using the PacBio and Illu-

mina platforms. Following gene annotations using online databases of GO, KEGG, COG, NR,

and Swiss-Prot databases, we further revealed the target enriched genes and metabolic path-

ways. Our findings provide theoretical references for the mining of high-yield proteases and

their biological functions.

Materials and methods

Materials and reagents

A medium-temperature starter for our study was provided by Henan ZhangGong Laojiu Wine

Co., Ltd. Sodium carbonate anhydrous was obtained from Tianjin Dingshengxin Chemical

Co., Ltd; the reagents L-tyrosine, agar powder, casein, trichloroacetic acid, and sodium
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chloride were purchased from Tianjin Kemiou Chemical Reagent Co., Ltd; beef extract pep-

tone was obtained from Beijing Aoboxing Biotechnology Co., Ltd; the Folin-Ciocalteu reagent

was from Solarbio, Biotechnology Co., Ltd; the Ezup Column Bacteria Genomic DNA Purifi-

cation Kit was from Sangon Biotech Co., Ltd.; DNA 1000 assay kit was from Lithuania Agilent

Technologies; and the ABI StepOnePlus Real-Time PCR System was purchased from Life

Technologies.

Instruments

A constant-temperature incubator was purchased from Shanghai Shcimo Medical Device

Manufacturing Co., Ltd; a high-speed refrigerated centrifuge was provided by Shanghai Ant-

ing Device Manufacturing Co., Ltd; a Dk-8D digital thermostatic laboratory water bath was

from Guangzhou Hezhong Biotechnology Co., Ltd; a three-dimensional autoclave was

obtained from Shanghai Shenan Medical Device Manufacturing Co., Ltd; 752 UV-VIS spectro-

photometer was from Shanghai Jinghua Instruments; the biological purification table was

from Suzhou Purification Equipment Co., Ltd; PacBio Single Molecule, real-time (SMRT)

sequencing system was acquired from Pacific Biosciences of California; the Novaseq 6000 sys-

tem was from Illumina; a 2100 Bioanalyzer Instrument was from Agilent Technologies; the

Eppendorf 5427R centrifuge was from Eppendorf; the NanoDrop 2000 spectrophotometer was

obtained from Thermal Fisher Scientific; the DYY-6C agarose gel electrophoresis kit was from

Beijing Liuyi Biotechnology Co., Ltd; and finally, the PCR instrument was from Dongsheng

Xingye Scientific Instrument Co., Ltd.

Culture media

The Casein medium [14] contained: 3 g beef extract, 5 g sodium chloride, 10 g peptone, 20 g

agar powder, and 4 g casein at the constant volume of 1000 mL of distilled water with a pH

level between 7.0 and 7.2. The medium was sterilized at 121˚C for 20 minutes.

The beef extract peptone agar medium contained: 3 g beef extract, 5 g sodium chloride, 10 g

peptone, 20 g agar powder, and 4 g casein in a constant volume of 1000 mL of distilled water at

pH 7.0–7.2. The medium was sterilized at 121˚C for 20 min.

The fluid medium [15] contained: 3 g beef extract, 5 g sodium chloride, and 10 g peptone in

a constant volume of 1000 mL of distilled water at pH 7.0–7.2, and sterilized at 121˚C for 20

min.

Solid medium [16]: 20 g bran and 20 mL distilled water, and sterilized at 121˚C for 20 min.

Experimental methods

Isolation of protease-producing bacteria.

I. Isolation: Daqu was ground into powder, 10 g of which was added to an Erlenmeyer flask

containing 90 mL of sterile distilled water. After gently shaking the solution in a shaking

incubator at 150 rpm for 30 min [17], 1 mL of the suspension was transferred to a tube con-

taining 9 mL of sterile water and diluted 10 times. 0.1 mL of 10−3, 10−4, 10−5, and 10−6-times

diluted bacteria solution was plated and cultured at 37˚C for 24 h in inverted position [18].

II. Initial screening: Under aseptic conditions, a sterile pipette tip was used to place a small

amount of purified bacteria on the casein medium plate, created three parallels, and cul-

tured for 24 h in inverted position to observe the formation of a transparent ring. The ratio

(D/d) of transparent ring diameter (D) to cell colony diameter (d) was calculated, and

those with a larger D/d ratio were selected for re-screening [19].
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Screening of protease-producing bacteria

I. Preparation of the standard curve: The standard curve was plotted using the absorbance

value and the concentration of L-tyrosine as the ordinate and abscissa, respectively.

II. Preparation of crude enzyme solution: To prepare the crude enzyme solution, bacteria were

inoculated into solid medium of beef extract peptone, and cultured at 37˚C for 24 h in

inverted position. Subsequently, a single colony with obvious morphology was picked for

inoculation into the liquid medium and then cultured on a shaker at 37˚C for 24 hours.

The bacterial suspension was inoculated into the solid culture medium at 10% of the inocu-

lation volume, and incubated at 37˚C for 3 days. Solid fermentation product (10 g) was

added to a 250 mL Erlenmeyer flask containing 90 mL of distilled water and incubated in a

40˚C water bath for 1 hour. Then, the mixture was stirred every 15 minutes. After centrifu-

gation, the crude enzyme solution was obtained [20].

III. Measurement of protease activity using the Folin-Ciocalteu method: Under the conditions

of 1 mL of protease solution, at pH 7.5 and 40˚C, the amount of protease required to

hydrolyze casein to produce 1 μg L-tyrosine per minute was defined as the protease activ-

ity, calculated using the 0

Protease activity U=mLð Þ ¼
A� 4�N�OD

10
;

The constant A was obtained from the standard curve and it is equal to the number of micro-

grams of L-tyrosine equivalent to OD680 = 1; 4 represents 1 mL of solution collected from the

total volume of 4 mL for measurement; N is the dilution multiple of protease solution to be

measured; 10 represents the reaction time of 10 min, and OD represents the mean optical den-

sity of the parallel sample.

Identification of protease-producing bacteria

I. Morphology identification: The high-yield, protease-producing bacteria were activated on

the plate, inoculated on the casein medium by the spot inoculation method, and subjected

to Gram staining. The morphology was observed under a microscope [21].

II. Molecular characterization: Using the DNA extracted from the high-yield, protease-produc-

ing bacteria as a template, the 16S rDNA gene in the bacterial genomic DNA was amplified

using the bacterial universal primers 27F (5’-AGA GTT TCA TCT GGC TCA G-3’)

and 1492R (5’-GGT TAC CTT GTT ACG ACT T-3’). PCR was performed at 94˚C for

5 minutes, followed by 35 cycles of denaturation at 94˚C for 30 seconds, annealing at 55˚C

45 seconds, and extension at 72˚C for 1.5 minutes. Finally, repair and extension at 72˚C

were performed for 10 minutes, and the sample was stored at 4˚C. A 50 μL PCR amplifica-

tion solution was prepared, and the amplification results were detected using 1% agarose

electrophoresis to observe the specific products and their relative molecular masses. The

amplified products were sent to Shanghai Sangon Biotech Co., Ltd. for sequencing [22].

Spliced sequences were compared with data in the NCBI database, and the standard bacteria

with similar genetic relationships were analyzed using the MEGA 6.0, software to construct

a phylogenetic tree used for visual observation of the genera and species of the bacteria [23].

Physiological and biochemical tests: Physiological and biochemical tests of the high-yield prote-

ase-producing bacteria were performed based on the 8th edition of Bergey’s Manual l of Deter-
minative Bacteriology and the Common Identification Methods of General Bacteria [24].
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WGS analysis

I. DNA extraction: Genomic DNA was extracted according to the instructions of the bacterial

DNA extraction kit. To ensure the quality of WGS as well as the purity and concentration of

the DNA, the samples were sent to Guangzhou Gene Denovo Biotechnology Co., Ltd. for

sequencing.

II. PacBio sequencing: g-TUBE for genomic DNA shearing was performed to process genomic

DNA into 8–10 kbp fragments, followed by DNA end repair. The obtained SMRT Bell

DNA template was sent off for quality detection, and an Agilent 2100 bioanalyzer was used

to evaluate the insert size. Sequencing was performed using PacBio platform.

III. Illumina sequencing: Genomic DNA fragments were prepared using dsDNA fragmentase,

followed by end repair, phosphorylation, addition of polyA tails, and sequencing adapters.

DNA fragments were purified using AMPure XP magnetic beads, and target fragments of

300–400 bp were subjected to PCR to establish the sequence library. PCR products were

further purified using AMPure XP magnetic beads and examined using an Agilent 2100

bioanalyzer. Qualified products were sequenced using the Illumina Noveseq 6000

platform.

IV. Bioinformatic analyses: Low-quality data in the raw data (reads) of PacBio and Illumina

sequencing were filtered out of the dataset to ensure the accuracy and reliability of the bio-

informatic analyses. Clean data were assembled to analyze genomes containing target

strains, including genomic components of strains, tandem repeat prediction, tRNA pre-

diction, rRNA prediction, sRNA prediction, genomic island prediction, transposons pre-

diction, and prephage prediction using TRF (version 4.09) [25], tRNAscan (version 1.3.1)

[26], rRNAmmer (version 1.2) [27], cmscan (version 1.1.2) [28], IslandPath-DIMOB (ver-

sion 1.0.0) [29], TransposonPSI (version: 20100822) [30], and PHAST (version 2.0) [31],

respectively. Gene function annotation was performed using the following online data-

bases: COG database (https://www.ncbi.nlm.nih.gov/COG/), KEGG database (https://

www.genome.jp/kegg/), NR database (ftp://ftp.ncbi.nih.gov:21/blast/db/FASTA/), Swis-

sProt database (https://www.uniprot.org/), and GO database (http://geneontology.org/).

Results

Isolation of protease-producing bacteria

I. Isolation: Through gradient dilution and plate coating, 296 strains of protease-producing

bacteria were screened out from Daqu of ZhangGong Laojiu.

II. Initial screening: A total of 296 strains of protease-producing bacteria were inoculated on

casein medium and cultured at 37˚C for 24 h in inverted position. The calculated D/d val-

ues are listed in Table 1.

Table 1. Diameter of transparent ring and strain diameter ratio.

No. d/cm D/cm D/d

DW-2 0.60±0.06 2.30±0.10 3.84±0.25

DW-7 0.57±0.15 2.50±0.06 4.39±0.98

DW-8 0.50±0.06 1.90±0.06 3.80±0.34

DW-22 0.60±0.06 2.20±0.12 3.69±0.62

DW-32 0.60±0.06 2.40±0.10 4.00±0.25

DW-40 0.50±0.00 1.80±0.06 3.60±0.12

https://doi.org/10.1371/journal.pone.0264677.t001

PLOS ONE Isolation, identification and whole genome sequencing of high-yield protease bacteria from daqu

PLOS ONE | https://doi.org/10.1371/journal.pone.0264677 April 26, 2022 5 / 18

https://www.ncbi.nlm.nih.gov/COG/
https://www.genome.jp/kegg/
https://www.genome.jp/kegg/
ftp://ftp.ncbi.nih.gov:21/blast/db/FASTA/
https://www.uniprot.org/
http://geneontology.org/
https://doi.org/10.1371/journal.pone.0264677.t001
https://doi.org/10.1371/journal.pone.0264677


The D/d ratio of DW-7 was 4.39 and the highest among all of the isolated strains, which is

likely attributed to the strong protease activity and degradation ability of casein. Protease activ-

ity in the subsequent highest six strains was measured to detect high-yield protease-producing

bacteria.

Screening of high-yield protease-producing bacteria

As shown in Fig 1, the regression equation of the L-tyrosine standard curve was y = 0.0102x -

0.0057, and the correlation coefficient (R) was 0.9977, indicating a significant linear relation-

ship between protease activity and L-tyrsoine production.

I. Measurement of protease activity using the Folin-Ciocalteu method
As shown in Table 2, the protease activity of DW-7 was the highest among the six strains

tested at 99.54 U/mL. We subsequently examined the morphology, molecular biology, and

physiological and biochemical properties of DW-7.

II. Identification of high-yield protease-producing bacteria
Cell colonies were milky white with a moist and viscous surface and wrinkles. They were

round with smooth edges but lackED flagella (Fig 2A). Gram staining was performed to

Fig 1. L-tyrosine standard curve.

https://doi.org/10.1371/journal.pone.0264677.g001

Table 2. Determination of protease activity.

No. OD-value protease activity (U/mL)

DW-2 0.555±0.01 87.56±1.79

DW-7 0.631±0.01 99.54±2.23

DW-8 0.540±0.00 85.19±0.11

DW-22 0.525±0.00 82.82±0.00

DW-32 0.574±0.01 90.55±1.90

DW-40 0.497±0.03 78.41±4.24

https://doi.org/10.1371/journal.pone.0264677.t002
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observe the cell morphology under a microscope. The bacteria were stained red, suggesting the

presence of Gram-negative bacteria. The individual bacterial cells were rod-shaped (Fig 2B).

Molecular characterization

The DNA fragment of DW-7 was amplified by PCR and visualized by agarose gel electropho-

resis. A phylogenetic tree was constructed using the MEGA 6.0. As shown in Fig 3, the size of

the amplified product was approximately 1,500 bp, which is consistent with that of the target

product.

Comparative analysis using the NCBI database showed that DW-7 shared the closest rela-

tionship with Bacillus velezensis, at 97.81% similarity (Fig 4).

Fig 2. (a) Colony morphology of DW-7; (b) Morphology of DW-7 cells (magnification 1000X).

https://doi.org/10.1371/journal.pone.0264677.g002

Fig 3. Electrophoresis results of DW-7.

https://doi.org/10.1371/journal.pone.0264677.g003
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Physiological and biochemical test results

DW-7 presented a positive catalase test, meaning it was able to use D-mannitol to produce

acid and survive on a medium containing 10% NaCl or at pH 5.0. Citrate was not used, but

propionate was available (Table 3). Based on the physiological and biochemical test results, as

well as 16S rDNA sequence analysis, DW-7 was confirmed to be Bacillus velezensis.

Genome assembly of DW-7

WGS of DW-7 was performed using the PacBio sequencing platform, and the results showed

that there were 193,753 effective reads after filtration, with a mean sequence length of 8380.3

bp (Table 4).

The DW-7 was comprised of a circular genome of 3,942,829 bp length. Protein-encoding

genes were predicted using the NCBI database. A total of 3,662 genes were identified, with a

combined length of 3,402,822 bp. The longest gene length was 16,299 bp, and the shortest was

75 bp. The GC content accounted for 46.46%. There were 64 transposons in the full genome of

DW-7, with a total length of 4,515 bp. Additionally, there were 24 long interspersed repeats

Fig 4. Phylogenetic tree of the DW-7 bacteria.

https://doi.org/10.1371/journal.pone.0264677.g004

Table 3. Physiological and biochemical analysis of the DW-7 bacterial strain.

Experiment Result

Tolerance to 10% NaCl +

Tolerance to pH 5.0 +

D-mannitol acid production +

Catalase test +

Propionate +

Citrate -

+ indicates a positive result, and − indicates a negative result.

https://doi.org/10.1371/journal.pone.0264677.t003
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(LINEs) with a total length of 1,869 bp accounting for 0.05% of the genome, and 22 short inter-

spersed repeats (SINEs) with a total length of 1,474 bp accounting for 0.04% of the genome.

There were also three long terminal repeats (LTRs) with a combined length of 185 bp and 147

tandem repeats with a combined length of 10,068 bp, that together accounted for 0.26% of the

genome. There were 86 tRNAs detected in the genome of DW-7, with a combined length of

6,639 bp and a mean length of 77 bp, as well as nine 5S rRNAs with a total length of 1,044 bp

and a mean length of 116 bp. Nine 16S rRNAs with a combined length of 13,948 bp and a

mean length of 1,549 bp were detected and nine 23S rRNAs with a combined length of 26,375

bp and a mean length of 2,930 bp were also detected. A total of 17 sRNAs with a combined

length of 2,227 bp and a mean length of 131 bp were also detected. Finally, one genomic island

was detected in the DW-7 with a total length of 28,970 bp as well as one prephage with a length

of 90,882 bp.

Bacterial genome components

Circular genome maps were depicted based on assembled genome sequences and prediction

results of protein-encoding genes, which provided a visual of the genomic characteristics

(Fig 5).

The outermost circle of the circular genome map of DW-7 is 3,402,822 bp in length. The

second and third circles are positive and negative-strand coding regions, respectively. Differ-

ent colors represent different functions annotated by the COG database. A total of 3,662 pro-

tein-encoding genes were identified, of which 2,796 (76.35%) genes were annotated by COG.

Metabolism, information storage and processing, cell function and signal transmission, and

atypical features were the four main functional categories. A total of 25 types were annotated,

including general function prediction only, amino acid transport and metabolism, unknown

function, transcription, carbohydrate transport, metabolism, and several other functions The

fourth circle iscomprised of ncRNAs, in which tRNAs and rRNAs are colored in black and

red, respectively. The fifth circle is the GC content, in which orange and blue indicate that the

GC content was higher or lower than the mean value of the full genome, respectively. The

sixth circle represents the GC-Skew value. Collectively, the circular genome maps of DW-7

directly showed the distribution of the DW-7 genome.

Table 4. Genome statistics of the DW-7 strain.

Type Length Amount

Sequence 3942829 bp 1

Gene 3402822 bp 3662

GC content 46.46%

Total transposon length 4515 bp 64

Long scattered sequence 1869 bp 24

Short scattered sequence 1474 bp 22

Long terminal repeat sequence 185 bp 3

tandem repeat sequences 10086 bp 147

tRNA 6639 bp 86

rRNA 41367 bp 37

sRNA 2227 bp 17

Gene Islands 28970 bp 1

prophage 90882 bp 1

https://doi.org/10.1371/journal.pone.0264677.t004
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Gene annotation using COG

After comparison of the function annotations between the DIAMOND and COG databases,

annotations were classified and depicted in Fig 6.

Function annotation of identified protein-encoding genes in DW-7 was performed using

COG, and a total of 2,796 protein-coding genes involving 25 categories were annotated.

Among them, 445 (15.92%) protein-encoding genes were enriched in the general function pre-

diction only, which was the most enriched category, followed by 336 (12.02%) protein-encod-

ing genes enriched in amino acid transport and metabolism category. Furthermore, 274

(9.80%), 245 (8.76%), and 205 (7.33%) protein-encoding genes were enriched in the transcrip-

tion, carbohydrate transport and metabolism, and inorganic ion transport and metabolism

categories, respectively. A combined total of 302 (10.80%) protein-encoding genes were

enriched in all functional positions, which necessitates further exploration.

Gene annotation using KEGG

The amino acid sequence of DW-7 was compared with data obtained from the KEGG data-

base, and annotation results were obtained by matching the genes of target species and their

corresponding function annotation information. A total of 2,249 genes in DW-7 were

enriched in 23 pathways and five major functions of metabolism, including genetic informa-

tion processing, environmental information processing, cell process, and biological system

(Fig 7).

In the category of metabolic processes, 12 pathways were annotated, and 242 and 206 genes

were enriched in the carbohydrate metabolism and amino acid metabolism pathways, respec-

tively. Four pathways in the of genetic information processing category were annotated, with

Fig 5. Complete map of the genome of DW-7 bacteria.

https://doi.org/10.1371/journal.pone.0264677.g005

PLOS ONE Isolation, identification and whole genome sequencing of high-yield protease bacteria from daqu

PLOS ONE | https://doi.org/10.1371/journal.pone.0264677 April 26, 2022 10 / 18

https://doi.org/10.1371/journal.pone.0264677.g005
https://doi.org/10.1371/journal.pone.0264677


the translation pathway having the most annotations, in one of which 85 genes were enriched.

There were 147 and 124 genes enriched in the membrane transport and signal transduction

pathways, respectively, both of which are subcategories of the environmental information pro-

cessing category. In addition, three pathways were annotated in the cell process category, in

which the prokaryotic cell community was the most frequently annotated, in one of which 85

genes were enriched. In the biological systems category, four and three protein-encoding

genes were enriched in the environmental adaptation and immune system subcategories,

respectively.

According to the KEGG annotation information, 196 protein-encoding genes in DW-7

were enriched in the following pathways, all of which were correlated with presence of prote-

ases involved in the metabolism of alanine, aspartic acid, glutamate, glycine, serine, threonine,

ABC transporter, and transporter pathways. These protein-encoding genes included the

KSG66-11125 (serine dehydratase), KSG66-13075 (aspartate kinase), KSG66-14990 (serine

kinase), KSG66–10425 (aspartate aminotransferase), and several others.

Gene annotation using nr and Swiss-Prot

The gene sequence of DW-7 was translated into the corresponding amino acid sequence, then

compared with data from the nr database within the NCBI database (Fig 8).

A total of 3,662 genes in DW-7 were annotated using the nr database. Among them, 2,709;

389; 198; 107; 70; 53; and 41 genes were enriched in the primary seven identified species B.

velezensis, B. amyloliquefaciens, B. subtilis, B. abscessus, and Bacillus sp.5B6, and Streptococcus
pneumoniae, respectively.

A total of 3,399 genes in DW-7 were functionally annotated in the Swiss Prot database,

which is a selected protein sequence database that describes protein function, structure, post-

translational modification, mutations, and other characteristics.

Fig 6. Functional classification of COG.

https://doi.org/10.1371/journal.pone.0264677.g006
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Fig 7. Bacterial gene functional annotation KEGG metabolic pathway.

https://doi.org/10.1371/journal.pone.0264677.g007
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Gene annotation using GO

According to the annotation information in the nr database, GO function annotations were iden-

tified to comprehensively describe the attributes of genes and gene products in DW-7 (Fig 9).

Fig 8. Annotated species statistics of Nr database (top 20 species).

https://doi.org/10.1371/journal.pone.0264677.g008

Fig 9. GO classification of bacterial gene function annotation.

https://doi.org/10.1371/journal.pone.0264677.g009
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A total of 2,127 genes from DW-7 were annotated in the GO database. GO terms including

biological process (BP), cellular component (CC), and molecular function (MF), comprising

18, 10, and 10 elements, respectively. The top three annotated BPs were the metabolic pro-

cesses, biological processes, and single-cell tissue processes, in which 1,287, 1,189, and 944

genes were enriched, respectively. There were 647, 528, 527, and 527 genes enriched in the top

four CCs, including the cell membranes, cell membrane compositions, cells, and genes related

to cell components, respectively. A total of 1,152, 888, and 133 genes were enriched in the

most annotated MFs of catalytic activity term: gene and binding, and transport activity,

respectively.

Discussion

In this study, 296 strains of protease-producing bacteria were isolated from Daqu from Zhang-

Gong Laojiu Wine Co., Ltd. Additionally, one strain of high protease-producing bacteria,

DW-7, with an enzyme activity of 99.54 U/mL was isolated by combining the transparent cir-

cle screening method and the forinol screening method. Morphological observations, 16S

rDNA molecular biology identification, as well as physiological and biochemical tests, were

performed on the isolated DW-7 which was identified as Bacillus velezensis. Few studies have

examined high protease-producing strains using baijiu Daqu as samples. Yuan Xianling et al.

[14] isolated and purified five strains of protease-producing bacteria from strong baijiu Daqu,

including Bacillus thuringiensis, Bacillus subtilis, Bacillus cereus, Bacillus multilocularis and

Bacillus subtilis with enzyme activities of 41.75 U/mL, 31.90 U/mL, 53.40 U/mL, 46.10 U/mL

and 44.55 U/mL, respectively; Zhao Qunli [32] et al. used Moutai-flavored baijiu Daqu as the

raw material, from which they screened a strain 3 J-1 with high enzyme activity and a protease

activity of 70.15 U/mL; Huang et al. [33] also screened a strain from Moutai-flavored baijiu

Daqu, identified as A. hennebergii, with a maximum enzyme activity of 71.13 U/mL after opti-

mization of pH, carbon source, nitrogen source and metal ions; and a high enzyme activity

level of 99.54 U/mL. Protease-producing bacteria are widely found in marine [34], animal

intestine [35], soil [36], and other environments, and screening for these high protease-pro-

ducing strains can be useful for industrial production and food processing.

Proteases are a class of enzymes that catalyze the hydrolysis of proteins into peptides and

amino acids and degrade proteins into raw materials to form small peptides or amino acids

used in yeast and lactic acid bacteria fermentation as a nitrogen source to promote the growth

of brewing microorganisms [37]. Some of the amino acids in the protein degradation products

are flavoring substances themselves, while others are precursors of aroma components that

ultimately affect the formation and quality of the flavor of white wine [38]; and thus are indis-

pensable enzymes for white wine production. Studies have shown that the hydrolytic enzyme

system in soybean currants is mainly protease [39]. When the protease content is normal, it

can significantly inhibit the production of hetero-ethanol oil [40], and the protease activity of

superior grade barley is higher than that of normal grade barley [41]. Deng et al. compared dif-

ferent colors of high-temperature barley and found that QW protease activity was higher than

QR, QY, and QB, while the windiness of bacterial enzyme-encoding genes was higher in QW

[42]. Numerous studies have shown that bacteria of the genus Bacillus have a strong protease

production capacity [2, 43].

To further investigate the protease metabolism mechanism and metabolic pathway, we per-

formed WGS of DW-7, and determined that the genome length of this strain was 3,942,829

bp, with a GC content of 46.45%. The combined length of DW-7’s coding genes was 3,402,822

bp, and by gene function annotation, there were 2,796 genes annotated in the COG database,

with the main focus on general function prediction, amino acid transport and metabolism,
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transcription, carbohydrate transport and metabolism, and inorganic ion transport and

metabolism. In the KEGG database, 2,283 genes were annotated, mainly in carbohydrate

metabolism, amino acid metabolic pathway, translation pathway, membrane transport, and

signal transduction pathway. 2,127 genes were annotated in the GO database, mainly in meta-

bolic function, cellular process, cell membrane, cell membrane components, catalytic activity,

gene, and binding. Protease genes do not have biological functions after transcription and

translation to form proteins, rather only after modification by a series of chemical reactions,

such as ubiquitination, phosphorylation, acetylation, glycosylation, methylation, or lipidyla-

tion, can there be more protein types with complex structures, precise regulation, specific

action, and perfect function [44]. In this study, COG function prediction, KEGG metabolic

pathway annotation, and GO annotation of the genes encoded by this strain showed normal

gene transcription and translation and a relatively high number of annotated genes, which

indicated that the enzyme metabolism of this bacterium is active. Protease gene expression

metabolic pathways were mainly focused on alanine, aspartate, glutamate, glycine, serine, and

threonine, as well as ABC transporter proteins; and transporter protein. The main proteases

involved in these pathways were serine dehydratase, aspartate kinase, serine kinase, and aspar-

tate aminotransferase. Prajapati et al. [45] resolved the protease gene of Bacillus amyloliquefa-
ciens strain KCP2 by WGS, while Li et al. [46] sequenced the genome of Laceyella sacchari
FBKL4 and found that the genome contains genes encoding key enzymes, such as proteases

and peptidases, along the tetramethylpyrazine metabolic pathway. Proteases are classified into

four categories based on their catalytic role in a variety of physiological pathways, including

serine proteases, aspartate proteases, cysteine proteases, and metalloproteases [47]. Among the

proteases, serine proteases are the most common, accounting for nearly one-third of known

proteases [48, 49]. The 196 protease-related gene annotations in this study were significantly

enriched for serine dehydratase, aspartate kinase, serine kinase, and aspartate aminotransfer-

ase, which laterally reflected that the bacterium was active in serine protease and aspartate pro-

tease synthesis. This result also indicated that this high protease-producing Bacillus sp.

metabolized mainly these two types of catalytic proteases.

Conclusion

In this experiment, a strain of high-yield protease bacteria DW-7 with 99.54 U/mL protease

activity was isolated from medium-temperature Daqu provided by ZhangGong LaoJiu Wine

Co., Ltd. Through morphological observation, 16S rDNA sequence analysis, and physiological

and biochemical tests, DW-7 was determined to be Bacillus velezensis. WGS analysis of DW-7

revealed 196 genes that were highly related to proteases predominantly enriched in the metab-

olism of alanine, aspartic acid, glutamate, glycine, serine, threonine, ABC transporter proteins,

and transporter pathways.

Overall, our study preliminarily explored the biological characteristics and metabolic func-

tions of the high-yield protease-producing strain DW-7 by WGS analysis. Abundant genomic

information was obtained that provided useful references for identifying the functional charac-

teristics of the strain, as well as the foundation for elucidating the background of the high-yield

protease-producing feature. Our results are of great significance for the development of novel

high-yield proteases from Daqu.
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