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A major stumbling block to cracking the real-time neural code is neuronal variability -

neurons discharge spikes with enormous variability not only across trials within the

same experiments but also in resting states. Such variability is widely regarded as a

noise which is often deliberately averaged out during data analyses. In contrast to

such a dogma, we put forth the Neural Self-Information Theory that neural coding

is operated based on the self-information principle under which variability in the time

durations of inter-spike-intervals (ISI), or neuronal silence durations, is self-tagged with

discrete information. As the self-information processor, each ISI carries a certain amount

of information based on its variability-probability distribution; higher-probability ISIs

which reflect the balanced excitation-inhibition ground state convey minimal information,

whereas lower-probability ISIs which signify rare-occurrence surprisals in the form

of extremely transient or prolonged silence carry most information. These variable

silence durations are naturally coupled with intracellular biochemical cascades, energy

equilibrium and dynamic regulation of protein and gene expression levels. As such,

this silence variability-based self-information code is completely intrinsic to the neurons

themselves, with no need for outside observers to set any reference point as typically

used in the rate code, population code and temporal codemodels. Moreover, temporally

coordinated ISI surprisals across cell population can inherently give rise to robust real-

time cell-assembly codes which can be readily sensed by the downstream neural clique

assemblies. One immediate utility of this self-information code is a general decoding

strategy to uncover a variety of cell-assembly patterns underlying external and internal

categorical or continuous variables in an unbiased manner.

Keywords: neural code, self-information, neural computing, neural spike variability, variability-surprisal, surprisal

code, cell assembly, code of silence

Two hard problems lie at the heart of brain decoding research; namely, what is the basic

wiring logic of the brain? And what is the basic operational rule for representing real-time

information? With 86 billion neurons and 100 trillion synaptic connections in the human brain,
it is conceivable that the understanding of the brain’s basic wiring logic is the foundation
upon which dynamic coding of cognitive information can be meaningfully executed (Hebb,
1949; Brenner and Sejnowski, 2011; Tsien, 2015a,b). In the absence of such overarching
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framework under which neurons connect or organize themselves,
merely reading out neural signals corresponding to external
stimulus identity is very much like a fictional biologist who may
discern a foreign message from a radio yet has no idea about
how radios work. We refer to this Connectivity Logic problem
as “The Dead Brain’s problem,” because the wiring logic in a
live brain would remain the same even if the brain suddenly
died (or were dropped into a liquid nitrogen tank). Emerging
studies have revealed that neural clique assemblies—the brain’s
basic computational motif—are organized via the power-of-two-
based permutation logic to generate not only specific perceptions
and memories, but also generalized knowledge and adaptive
behaviors (Tsien, 2015a,b; Xie et al., 2016). Along this line of
investigation, there are many fascinating questions as to how
development and evolution might use various components to
construct complex neural circuits and the brains across a wide
range of animal species to give rise to both specific and general
functions (Rakic, 2009; Grillner et al., 2013; Tsien et al., 2013;
Defelipe, 2015; Kiehn, 2016; Tsien, 2016).

The second hard problem relates to cracking neural code—
the rule under which information is signaled inside the brain
in real time. We refer it as “The Live Brain’s problem,” that is,
how information is dynamically represented by patterns of action
potential, or spike, generated by neurons in relevant brain regions
corresponding to moment-to-moment perceptions, memories,
creative thoughts and behaviors (Tulving, 1972; Squire and
Zola, 1998; Brown et al., 2004; Tsien, 2007; Zhang et al., 2013;
Kiehn, 2016). This effort in examining how spike patterns signal
stimulus identity has often been dubbed as “to crack neural code.”

The search for neural code has its long history due to Edgar
Adrian and Yngve Zotterman’s original observation in the
1920s that sensory nerves innervating muscle emitted more
spikes in response to increased amounts of weight hung from a
muscle (Adrian and Zotterman, 1926). This landmark work has
established the central dogma that neurons encode information
by changing firing rates. Yet, the stumbling block in cracking the
real-time neural code is neuronal variability. Over the decades,
researchers have realized that neurons in every type of neural
circuit—whether they are engaged in processing information
such as touch, smell, vision, hearing, motor action or spatial
navigation, or associative memories, etc.—discharge spikes all
the time with tremendous variability in both the “control” resting
states (including awake or sleep) and across trials within the
same experiments (Figure 1A; Werner and Mountcastle, 1963;
Poggio and Viernstein, 1964; Ratliff et al., 1968; Georgopoulos
et al., 1986; Shadlen and Newsome, 1994; Fenton and Muller,
1998; Stein et al., 2005; Churchland et al., 2010). This notorious
spike variability has made the rate code and temporal codemodels
ill-suited to reliably predict stimulus identity on a moment-to-
moment basis (Eggermont, 1998; Fenton andMuller, 1998; Faisal
et al., 2008). The current dogma is that firing variability reflects
noise or is a nuisance to outside observers. This view is reflected
in popular practice by averaging spike trains over multiple trials,
such as peri-stimulus time histogram (PSTH). Although, such an
averaging approach is useful to characterize the tuning properties
of the recorded neurons, it is generally agreed that it bears no
resemblance to how neurons would signal information in real
time.

DOES NEURONAL VARIABILITY REFLECT
NOISE OR SOMETHING ELSE?

Currently, two schools of thoughts come to describe what
neuronal variability stands for. The first one is the widely held
view that firing fluctuations in neurons reflect noise derived
from molecular, synaptic, and circuitry levels (Eggermont, 1998;
Ermentrout et al., 2008; Faisal et al., 2008;Masquelier, 2013). This
view has led to intense studies of the source and degree of noise in
experiments and simulations (Shadlen and Newsome, 1994; Stein
et al., 2005; Faisal et al., 2008; Rolls and Deco, 2010; Boerlin and
Deneve, 2011; Hartmann et al., 2015).

The second view is that neuronal variability is not entirely
noise, rather it may also contain uncontrolled internal variables
influenced by attention or intent, because the observed noise
seems to be correlated within the recorded population (measured
as noise correlation; Lee et al., 1998; Churchland et al., 2010;
Marcos et al., 2013; Lin et al., 2015). A series of studies also
suggested that neuronal variability can be beneficial for boosting
weak signals (Stacey and Durand, 2001) or serving as modulatory
signals (Lee et al., 1998; Boerlin and Deneve, 2011; Kohn et al.,
2016; Saberi-Moghadam et al., 2016).

While the question of whether neuronal variability reflects
noise or unidentified modulatory signals is still under debate,
it is known that neurons are capable of generating precisely-
timed spikes in response to fluctuating currents injected at
the soma (Mainen and Sejnowski, 1995; Abbott and Sejnowski,
1999; Toups et al., 2012). Thus, spike variability is not due
to imprecision in spike generation at the soma per se. At
the structural and conceptual levels, it is not very difficult to
appreciate why such variability should be fully expected. Neurons
in the mammalian brain contain many thousands of synaptic
connections, ranging from ∼30,000 synapses per pyramidal cell
in the neocortex up to 200,000 synapses per Purkinje cell in
the cerebellum (Andersen, 1990; Megias et al., 2001; Guillery,
2005; Herculano-Houzel, 2009; Defelipe, 2015). Summation of
these postsynaptic currents triggers action potentials in the
postsynaptic cell soma (Figure 1B). With ongoing synaptic
inputs coming from tens of thousands of excitatory synapses,
as well as hundreds or thousands of highly localized inhibitory
synapses (Klausberger and Somogyi, 2008), spike emission
in any given neuron would be stochastic with enormous
variability. In addition, other mechanisms and factors (i.e., slow
neurotransmitters, hormonal peptides, and activity-dependent
modulation of non-receptor ion channels) can also exert great
influence on synaptic and membrane properties (Hille, 2001;
Brenner et al., 2005; Gu et al., 2007) leading to the variability in
spike train.

WHY DOES A NEURON NEED TENS OF
THOUSANDS OF SYNAPSES? BINDING VS.
APPROXIMATION?

Theoretically, an increased number of synapses would permit
neurons to possess greater information binding capacity. This
seems to make perfect sense when synapse numbers were at a
smaller scale, say, with several dozen synapses each processing
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FIGURE 1 | Neuronal variability, underlying logic at synaptic and cell-assembly levels, and the traditional neural coding models. (A) Neurons discharge spikes all the

time with enormous variability. Spike trains shown here are simultaneously recorded seven units from mice prefrontal cortex during animal’s quiet-awake period using

tetrodes. (B) A cortical neuron may contain tens of thousands of synapses which can contribute to changes in excitatory postsynaptic potential (EPSP), leading to the

generation of action potential or spike at the soma. Stochastic nature of synaptic patterns leads to highly variable spike trains in both the resting “control” condition

and stimulus-presentation experiments. (C) Power-of-two-based Cell-Assembly Wiring Logic as the brain’s basic functional computational motif (FCM). A schematic

(Continued)
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FIGURE 1 | Continued

illustration of a power-of-two connectivity motif consisted of 15 distinct neural cliques (N1-15) based on all the possible connectivity patterns for processing 4 distinct

inputs (i = 4). (D) This motif gives rise to a specific-to-general feature extraction assembly. (E) The rate code model emphasizes the number of spikes within a defined

time window, while ignoring the temporal structures in spike patterns. Five examples of the same firing rate (5 Hz) with completely different spike patterns were used

for illustration. (F) The time-to-first-spike model of the temporal code emphasizes that key information is encoded in the relative arrival time of the first spike after

stimulus onset. (G) The phase-coupling model focused on the temporal relationship between spike changes and local field potential (LFP) oscillation phases. (H) The

synchrony code proposed that information coding and binding were achieved by some “uniquely meaningful” spikes which were transiently synchronized among

different cells. In all cases, the rate code, population code, and temporal code models require a reference point (i.e., time zeros of stimulation, or oscillation phase,

etc.) for data analyses. As such, these approaches are generally known as the biased methods. Panels (E–H) are artistic illustrations for better visualizing the four

popular coding models.

distinct features so that binding can be performed (to form
complex “grandmother cells” encoding a face, famous people or
a nest; Gross et al., 2002; Quiroga et al., 2005; Lin et al., 2007).
A recent analysis of face patches in the monkey brain suggests
that face cells may only utilize 50 or less dimensional facial
features (Chang and Tsao, 2017). Therefore, we would argue
that with 30,000 or more synapses per pyramidal neuron, the
underlying logic may go beyond the mere feature integration and
information-binding.

What good are tens of thousands of synapses? We would like
to suggest that the major purpose of such an elaborate structural
arrangement is to achieve maximal feature approximation and
efficient utilization of the evolutionarily selected neural clique
assemblies. This maximal approximation strategy is necessary
for the brain to best utilize the developmentally pre-configured
functional computational motifs (FCM) described by the Theory
of Connectivity (Tsien, 2015a,b). The theory posits that as
the basic computational unit of the brain, FCM organizes its
principal cell assemblies via the power-of-two-based permutation
logic to form a comprehensive set of specific-to-general neural-
clique assemblies (N = 2i-1; N is neural clique numbers, whereas
i is distinct information; Figure 1C; Tsien, 2015a,b; Li et al.,
2016). The proposed power-of-two-based computational logic
has been observed in at least seven different brain regions,
ranging from the amygdala to the hippocampus to the cortex
in mice and hamsters in the form of cell-assembly activation
patterns (Xie et al., 2016; Figure 1D). In contrast to Hebb’s
postulate that cell assembly is formed by learning, this basic
logic is pre-configured by development since the logic remains
largely intact in the NMDA receptor knockout mice (Xie et al.,
2016). Due to the power-of-two-based logic, as the number of
distinct-information inputs increase, the number of principal
cells required to construct FCMs can grow dramatically. For
example, at least 1,023 principal-projection cells would be
required if the functional connectivity motif were set to process
10 distinct features or events (assuming one neuron per clique,
according to the N = 2i -1 equation). As categorically distinct
inputs increase to 15, the minimal cell numbers would be 32,383.

If one neuron were to have only several dozen synapses
merely for information integration and binding, such a narrow
bandwidth would mean that this entire FCM would unlikely be
used in a lifetime of animals unless information from peripheral
sensors could match exactly with these cells’ tuning properties.
On the other hand, the utility of the power-of-two-based FCM
logic can be best realized via dramatically increasing the number
of synapses per neuron so that the approximation capacity—or

degree in detecting similar features or categorical variables—can
be dramatically expanded (Tsien, 2016). At the structural level,
synapses processing similar variables can be localized on the same
dendritic branches (Lai et al., 2012) or different branches (Basu
et al., 2016). In any case, with tens of thousands of synapses per
neuron, the FCM can be best structured not only for information-
binding (which can be largely taken care of by the FCM’s specific-
to-general neural cliques), but also for maximal approximation
and utilization. It would be of considerable interest to examine
how synapse numbers and spike variability may correlate.

HOW DO RATE CODE, TEMPORAL CODE
AND POPULATION CODE DEAL WITH
NEURONAL VARIABILITY?

The rate code refers to the notion that information about the
stimulus is encoded by the firing rate of the neuron (Figure 1E).
In practice, the rate is measured by averaging the number of
spikes per second or a defined (often smaller) time bin before and
after stimulus presentation and typically over multiple stimulus
trials. This averaging procedure inherently assumes that spike
variability reflects noise—and most, if not all, information is
conveyed by spike numbers. Any information possibly encoded
in the temporal structure of the spike train is purposely
ignored (Figure 1E). While the rate code model is convenient
for researchers to define the tuning properties of the neurons
by averaging spike responses over multiple trials, the brain is
unlikely to generate perception, memory or action in real time
using this procedure.

To potentially overcome such neuronal variability of
individual neurons, researchers have applied a population vector
or dimensionality-reduction classification methods to analyze
the rate code information using the population activity of many
neurons (Georgopoulos et al., 1986; Wilson and Mcnaughton,
1993; Lin et al., 2005; Chen et al., 2009; Luczak et al., 2015).
Conceptually, neurons with similar tuning properties, termed
neural cliques, can be temporally averaged to reduce individual
variability (Lin et al., 2005, 2006; Zhang et al., 2013; Luczak
et al., 2015). It should be noted that the population-code
approach has allowed researchers to sidestep the problem of
neuronal variability as observed at the single neuron level, yet
the underlying assumption that neuronal variability is noise still
remains the same.

The second major type of the proposed neural coding
model is referred to as the temporal code, which utilizes
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timing information of spike discharges to signal the stimulus
identity [for a classic review, see (Perkel and Bullock, 1968;
Theunissen and Miller, 1995; Singer, 1999)]. There are at
least three models in the literature that offer different ideas
about how to use time information (Figures 1F–H). The first
classic temporal-code model is the “time-to-first-spike” model
(Figure 1F). In sensory neurons, several laboratories reported
that most of the information about a stimulus is conveyed
during the first 20∼50 ms after the onset of the cell response
(Optican and Richmond, 1987; Tovee et al., 1993; Kjaer et al.,
1994; Tovee and Rolls, 1995). This time-to-first-spiking model
requires the experimental observers to set the time reference
points (i.e., time zeros of stimulation) for data analysis. Because
spike discharge is a continuous process, a neuron sitting inside
the brain would not have the leverage to know which spike is
the first spike and who should be doing the counting of these
special spikes.

The second temporal coding model is the “spike-phase code”
which uses a periodic signal, such as the specific phase of
local field potential (LFP) oscillations, as the reference signal
(Figure 1G). For example, decoding reliability of odor identity
or an animal’s spatial location can be increased if one combines
changes in spike rates with a selectively filtered LFP oscillation
phase (O’keefe and Recce, 1993; Hopfield, 1995; Jensen and
Lisman, 1996; Wehr and Laurent, 1996). In practice, the
spike phase-coupling code often involved the data averaging
of stimulus-triggered spikes over the trials, like the rate-code
model, and then aligning them with phases of LFP oscillation.
Thus, this temporal coding model still treats spike variability as
noise that degrades decoding accuracy. Behaviorally, oscillations
seem to reflect ongoing motor activity such as respiration (used
for analyzing odor cell-phase coupling) or running (used for
analyzing CA1 place cell-phase coupling). In addition,membrane
oscillations are well known to be highly variable over the
spatial domain (i.e., dendrites vs. soma), as well as the temporal
domain. To reduce variability that corrupts tuning properties
of cells, several artificial manipulations were often employed.
For instance, place-cell analyses were usually limited to the
locomotion state during which animals need to reach a certain
running speed; any spike data occurring during a momentary
pause, grooming, eating, or below the defined running speedwere
artificially excluded, artificially excluded, a procedure which the
brain is unlikely to do. Another unresolved issue is that LFPs
are intermixed voltage signals that do not separate themselves
neatly into different frequency bands. As such, it is unclear how
neurons would filter out specific oscillations (i.e., theta or gamma
frequencies) and then perform spike phase coupling analysis as
experimenters did via Matlab software.

The third type of temporal coding models is the
spike-synchrony code (Figure 1H). It refers to the hypothesis
that neurons encode information about the stimulus identity
by modulating not only the firing rate of individual neurons,
but also by temporally synchronized spiking across different
neurons. Studies from the primary auditory cortex, retina
and primary visual cortex found precise firing responses
to auditory or visual stimuli, respectively, with millisecond
precision from trial to trial [see a comprehensive review,

(Singer, 1999)]. Highly synchronous oscillatory discharges
of retinal responses that reach oscillation frequencies of
up to 100 Hz are also transmitted reliably from the retina
to the primary visual cortex (Neuenschwander and Singer,
1996; Castelo-Branco et al., 1998; Herculano-Houzel et al.,
1999; Neuenschwander et al., 1999). In addition, spike
synchrony has been proposed for binding or grouping to
achieve dynamic and flexibility of coding. Still, analysis of
these binding operations requires measurements of temporal
relations among distributed cell responses that will need more
sophisticated statistical procedures than pairwise correlations.
While correlation analysis can be useful in measuring degrees
of spike synchrony, fluctuating spike-discharge patterns can
easily overwhelm and corrupt synchrony-based code (Softky and
Koch, 1993; Stevens and Zador, 1998; Shadlen and Movshon,
1999).

SELF-INFORMATION CODE: VARIABILITY
IS THE SELF-INFORMATION EXPRESSOR

Here we present the Neural Self-Information Theory that neural
coding is a self-information process based on inter-spike-interval
(neuronal silence duration) variability and its variability history.
Contrary to the prevalent view that spike variability reflects
noise or is merely correlated with some unknown modulatory
variables, we postulate that neuronal variability is what carries
information by itself. Specifically, information is encoded by
utilizing real-time inter-spike-interval (ISI) variability under
the probability-based statistical self-information principles.
According to this neural self-information theory, neuronal
variability operates as the self-information generator and
expressor; higher-probability ISIs, which reflect the balanced
excitation-inhibition ground-state, convey less information,
whereas lower-probability ISIs (the rare-occurrence of
silence durations, such as unusually brief or prolonged ISIs),
which signify statistical surprisals, convey more information
(Figure 2A).

In other words, under this Self-Information Code, any
given ISI is self-tagged with a discrete amount of information
based on its silence duration in a relationship with the
silence-duration probability-distribution history (Figure 2). This
probability distribution of ISI fluctuations or neuronal silence
time-duration is intrinsically sensed by and coupled with ongoing
biochemical reactions and energy equilibrium. For example,
a prolonged neuronal silence requires less ATP consumption,
whereas the production of multiple extremely short ISIs which
reflect strong spike bursting requires more ATP. Thus, this
silence-based self-information process is naturally unified with
intracellular biochemical reaction cascades, including receptor
turnover, protein endocytosis, and new protein synthesis and
gene expression.

At the physiological level, these self-information ISI surprisals
can be either positive surprisals (when a neuron’s ISI becomes
much shorter than is typical, reflecting strong excitation) or
negative surprisals (when ISI becomes much longer than is
typical, reflecting strong inhibition; Figure 2, see Step 3). In

Frontiers in Cellular Neuroscience | www.frontiersin.org 5 August 2017 | Volume 11 | Article 236

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Li and Tsien Self-Information Based Neural Code

FIGURE 2 | An illustration to describe how the proposed Neural

Self-Information Theory can be used to decode cell-assembly patterns from

neuronal spike trains. The Self-Information Code is proposed to explain how

real-time neural code is generated via spike-timing variability, and how

cell-assembly patterns can be identified in an unbiased manner. A general

strategy to apply the neural self-information theory to uncover cell assemblies

from spike-train datasets. Cell-assembly code is identified in four steps based

on the conversion of an individual neuron’s spike train into variability

distribution of ISIs, followed by its conversion to a real-time self-information

value. The temporally coordinated self-information surprisal patterns across

cell population can be detected in an unbiased manner by pattern

classification methods such as blind-source analyses. The unique feature of

this self-information code is that this neural coding principle is completely

intrinsic to the neurons themselves, with no need for any reference point to be

set by outside observers.

practice, the measurement of ISI probability distribution can
be determined easily. In contrast to the prevalent notion that
spike variability is a Poisson distribution, emerging studies have
suggested that ISI variability in many neural circuits conform
to the gamma distribution (Li et al., 2017). As such, instead
of measuring the mean value of the information contained
in a spike train (namely, the information entropy), each ISI
can be precisely calculated for its information content (I)
based on a simple self-information equation [I = − log(P),
where P is the probability of each ISI (the time period
between two successful spikes)]. In statistical term, those
events with low-occurrence probability is called surprisals.
Subsequently, these dynamic, transient surprisal ISI patterns
would act as the critical real-time information packets at a
single neuron level. When these surprisal ISIs are emitted
across a cell population in a temporally coordinated manner,
they can seamlessly give rise to robust real-time cell-assembly
code.

The variability-surprisal-based neural self-information theory
makes several testable predictions: if neuronal variability
acts as a self-information generator, this variability should
remain similar across various brain regions. On the other
hand, if neuronal variability reflects system noise, one would
expect that variability would grow larger as information is
transmitted from low subcortical structures to the high-cognition
cortices.

To differentiate these two scenarios, one can record large
numbers of neurons from various cortical and sub-cortical
regions in freely behaving animals. To facilitate systematic
comparisons, one can initially focus on putatively classified
principal cells after these units have been separated from fast-
spiking putative interneurons and their variability distributions
analyzed across these different regions. In addition, to examine
the potential state-dependent influence on neuronal variability,
one can assess the spike datasets collected from the quiet-
awake state as animals rested in their home-cage environments,
and compare them with those patterns obtained during various
cognitive tasks.

One can characterize neuronal variability by using three well-
defined statistics to describe quantitatively neuronal variability
of a neuron’s ISI—namely, a coefficient of variation (CV),
skewness and kurtosis. In probability theory and statistics,
CV is a standardized measure of dispersion of a probability
distribution, and skewness is a measure of the asymmetry of
a probability distribution, whereas kurtosis is a measure of the
“tailedness” of a probability distribution. We would predict that
principal cells in various brain regions should exhibit similar
neuronal-variability distributions. To further test the idea that
neuronal variability serves as a self-information carrier, we also
predicted that variability would diminish under the condition
that both external and internal neural computations were
artificially shut down (i.e., upon anesthesia). Pharmacological
intervention experiments can be used to demonstrate that the
shutting down of external and internal coding processes would
indeed greatly reduce neuronal variability. If so, it would be
consistent with the notion that spike variability reflects the
ongoing cognitive processing of both external and internal
information.
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A GENERAL DECODING STRATEGY TO
UNCOVER VARIOUS CELL ASSEMBLIES

One immediate application of this “self-information code”
concept is that it should enable researchers to identify a variety
of cell assemblies from large-scale recording datasets. Overall,
this variability-surprisal-based, cell-assembly decoding (VCAD)
strategy can consist of the following four major steps (Figure 2):

The first step is to convert each neuron’s spike train into
the probability distribution of ISI variability. Since ISI patterns
in various neural circuits seem to conform to the gamma
distribution model (Li et al., 2017), one can be achieved by fitting
a single neuron’s ISI with a gamma distribution model which can
assign each neuron’s ISI with a probability.

The second step is to convert the probability distribution of ISI
variability into real-time self-information distribution for each
ISI. These frequent ISI variations with high probability represent
the low self-information or ground state (Figure 2, subtitle #3,
the gray zone in the mid-section of the Self-information plot).
As a neuron increased its firing, it generates positive surprisals
(the red curve inside the Self-information plot) as ISIs entered
the left tail zone of the distribution probability (a low-probability
state). On the other hand, if the neuron’s firing is dramatically
suppressed, negative surprisals are generated (the blue curve
inside the Self-information plot) when ISIs shifted to the right
tail zone (also a low-probability state).

In the third step, a spike train emitted by a neuron is
transformed into a surprisal-based self-information code using
the dynamic evolution of ISI patterns (silence time patterns).
The time-window for practical estimation of the instantaneous
ISI distribution for each neuron may depend on the averaged
firing rate, with low firing neuron requiring longer time duration
(i.e., 15 min) and high-firing neuron requiring shorter time
duration. Biologically speaking, the time durations for defining
the probability distribution patterns may be best examined by
measuring the molecular and synaptic turnover rates or other
key biochemical processes which reflect the intracellular memory
time-scale of neuronal equilibrium.

The fourth step is to uncover joint surprisal-spike
patterns across simultaneously-recorded cells on a
moment-to-moment basis. Blind-source-separation (BSS)
methods, such as independent component analysis (ICA),
can identify a set of independent information sources from
simultaneously observed signals such as structured patterns or
relationships. Each independent signal source decoded by BSS
would correspond to a distinct real-time activation pattern given
by a cell assembly.

To discover its functional meaning, one can compare
each real-time activation temporal pattern with various other
experimental parameters [such as the dynamic evolution
of local field potential (LFP), the time points of stimulus
presentations, videotapes of an animal’s behavioral state, actions,
and corresponding locations, etc.].

Moreover, the top-ranking membership with the highest
contribution weights in the cell assembly can be directly
identified from demixing matrix W. This will allow researchers
to assess quantitative membership information that other

dimensionality-reduction-based, pattern-classification methods
(i.e., principal component analysis or multiple discriminant
analysis) could not provide. By further mapping cell-assembly
activity patterns onto specific cell types and network states
(Klausberger and Somogyi, 2008; Colgin, 2016; Van De Ven et al.,
2016), we expect that researchers can gain greater insights into
how neural code is generated within and across the evolutionarily
conserved computational motifs (Grillner, 2006; Brenner and
Sejnowski, 2011; Marcus et al., 2014; Tsien, 2015a,b; Kiehn, 2016;
Xie et al., 2016).

In summary, we present a new hypothesis on how to
crack the real-time neural code. Specifically, we put forth
the Neural Self-Information Theory that neuronal variability
operates as the self-information generator and expressor to
convey a variable amount of information in the form of silence
variability-surprisals. Coordination of these surprisal ISIs
in space (across cells) and time can seamlessly give rise to
robust real-time cell-assembly code. It should be noted that
while the ground state corresponds to the most probable ISI
which carry less self-information (and yet may consume a lot
of energy during non-coding state), they can be extremely
important in terms of providing both the rapid responses to
changes and ternary coding structure once combined with
positive and negative surprisals, which leads to enormous
information capacity and flexibility at the cell-assembly level.
The generality of this silence-based self-information code can be
demonstrated by identifying real-time cell assemblies processing
internal states, external experiences—including continuous
variables—and categorical variables. Most importantly, this
Self-Information Code is completely intrinsic to neurons
themselves, with no need for outside observers to set any
reference point such as time zeros of stimulation or filtered local
field potential oscillation phases. Because the self-information
code is operated in the form of the ISI variability-based
probability distribution, the downstream neurons can naturally
sense these surprisal shift in ISI variability as manifested
by sudden deviations from the equilibrium (a form of
intracellular memory or variability distribution) of post-
synaptic neurons’ biochemical states (i.e., energy production,
receptor activation, ion channel open/close state distribution
patterns, protein phosphorylation/dephosphorylation rate,
receptor insertion/removal, etc.).

In light of the theoretical and practical implications, the
proposed Neural Self-Information Theory can be examined via
large-scale in vivo recording experiments. Moreover, this silence-
duration varibility-based surprisal coding concept can also be
exploited for the design of a novel neuromorphic chip for brain-
inspired computing with robust resilience to interference. As
Wolf Singer once noted, “We nonetheless shall have made a great
step forward, because it is the unexpected result that contains
maximal information.”
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