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Abstract: Subacute ruminal acidosis (SARA) is a common metabolic disease in ruminants. In the early
stage of SARA, ruminants do not exhibit obvious clinical symptoms. However, SARA often leads to
local inflammatory diseases such as laminitis, mastitis, endometritis and hepatitis. The mechanism
by which SARA leads to inflammatory diseases is largely unknown. The gut microbiota is the totality
of bacteria, viruses and fungi inhabiting the gastrointestinal tract. Studies have found that the gut
microbiota is not only crucial to gastrointestinal health but also involved in a variety of disease
processes, including metabolic diseases, autoimmune diseases, tumors and inflammatory diseases.
Studies have shown that intestinal bacteria and their metabolites can migrate to extraintestinal
distal organs, such as the lung, liver and brain, through endogenous pathways, leading to related
diseases. Combined with the literature, we believe that the dysbiosis of the rumen microbiota, the
destruction of the rumen barrier and the dysbiosis of liver function in the pathogenesis of SARA
lead to the entry of rumen bacteria and/or metabolites into the body through blood or lymphatic
circulation and place the body in the “chronic low-grade” inflammatory state. Meanwhile, rumen
bacteria and/or their metabolites can also migrate to the mammary gland, uterus and other organs,
leading to the occurrence of related inflammatory diseases. The aim of this review is to describe
the mechanism by which SARA causes inflammatory diseases to obtain a more comprehensive and
profound understanding of SARA and its related inflammatory diseases. Meanwhile, it is also of
great significance for the joint prevention and control of diseases.

Keywords: subacute ruminal acidosis; inflammatory diseases; low-grade inflammation; rumen
microbiota; metabolites

1. The Pathogenesis of Subacute Ruminal Acidosis

Subacute ruminal acidosis (SARA) is a common nutritional metabolic disease in
ruminants, especially in high-yield dairy cows. In recent years, to improve the milk
production performance of dairy cows, farmers have used a large number of high-grain
diets as feed, which has induced a series of metabolic diseases, especially SARA. SARA will
reduce milk yield and decrease the fat content of the milk of dairy cows [1]. Meanwhile,
it causes a series of diseases, such as diarrhea, mastitis and laminitis, and causes huge
economic losses to dairy farming [1,2].

Current definitions of SARA are based on the pH of rumen fluid. Due to the different
methods of rumen fluid collection, the pH of rumen fluid that defines SARA is usually
between 5.5 and 6.0. Garrett et al. suggested that a pH of 5.5 be used as the threshold of
SARA when rumen fluid samples were collected by rumenocentesis [3]. Moreover, Plaizier
suggested that a pH of 6.0 be used as the threshold of SARA when rumen fluid samples
were collected with a stomach tube [4]. Furthermore, as rumen pH varies considerably
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throughout the day, the timing after feeding of rumen fluid sampling plays an important
role in rumen pH. Therefore, a diagnosis of SARA usually uses a threshold of a rumen pH
depression from 5.2–5.8 for at least 3 h/day [5,6].

Ruminal pH is mainly affected by the concentration of organic acids, such as volatile
fatty acids (VFAs) and lactic acids, in the rumen. Under a normal fermentation condition,
the concentration of VFA in the rumen increases gradually with the utilization of carbo-
hydrates by the microbiota, and the rumen pH gradually decreases. The acidic rumen
environment promotes the removal of VFA absorption through the rumen epithelium [7].
In addition, rumination will increase the amount of saliva secretion, which contains many
alkaline substances [8]. Thus, the rumen pH is rapidly increased to normal physiological
levels by absorption and neutralization of VFA in the rumen, and rumen pH is maintained
at normal physiological levels before and after each feeding (Figure 1).
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Figure 1. Physiology of the fermentation process in the rumen of dairy cows.

After feeding, rumen microbes ferment the carbohydrate intake of dairy cows to
produce VFA and lactate, which reduces the rumen pH. Part of the temporarily increased
VFA is absorbed by the rumen wall and part is neutralized by secreted saliva to keep the
rumen pH within a certain range.

When dairy cows eat a large amount of concentrate feed for a long time, on the one
hand, excessive carbohydrates will produce excessive VFA under the fermentation of
rumen microbiota; on the other hand, a low proportion of neutral detergent fiber (NDF)
cannot stimulate ruminants and does not produce enough saliva to neutralize the large
accumulation of VFA in the rumen, resulting in rumen pH drops below the physiological
threshold [9,10] (Figure 2). In addition, a large number of studies showed that rumen
microbiota and metabolites were significantly changed when SARA occurred in dairy
cows [7,11,12]. Recently, research also indicated that responsive changes in the rumen
microbiota and metabolome were associated with susceptibility to SARA in dairy cows [13].
These results suggest that the rumen microbiota plays a crucial role in the occurrence of
SARA in dairy cows.

Once dairy cows ingest too many carbohydrates, the VFA generated in the rumen
and lactic acid energy substances cannot be timely absorbed by the rumen wall, and the
amount of saliva secretion is reduced, resulting in a pH lower than 5.6–5.8 in the rumen,
and SARA occurs.
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2. Relationship between SARA and Its Related Inflammatory Diseases in Ruminants

The peripartum period refers to the period from 3 weeks prepartum to 3 weeks post-
partum and is an important period affecting the health of the cow, milk production and
the occurrence of many diseases [14]. In recent years, along with the huge demand for
milk production and economic efficiency of dairy cows, a higher level of nutrition and
feeding management has been necessary in the cow feeding process. At the same time, the
incidence of dairy diseases has increased, especially in the periparturient period, when
cows experience stress from parturition, lactation, feed conversion and environmental
changes. In the periparturient period, metabolic diseases (SARA, ketosis, etc.) and in-
flammatory diseases (mastitis, endometritis, etc.) have the risk of high incidence, clusters
and complications [15–17]. SARA is associated with inflammation of different organs and
tissues in dairy cows. Studies have shown that SARA can cause diarrhea, rumen mucosal
damage, laminitis, mastitis and liver abscesses in dairy cows [18]. Thus, clarifying whether
SARA is associated with these diseases and elucidating the mechanisms of the association
are essential for the prevention and control of peripartum dairy diseases.

2.1. SARA and Liver Disorders

The liver is the final barrier preventing gastrointestinal bacteria and their products,
such as Lipopolysaccharide (LPS) and histamine, from entering systemic circulation [19].
Systemic clearance and detoxification of LPS occurs in Kupffer cells in the liver [20]. High
concentrations of LPS in the portal and hepatic veins of cows with SARA can be observed.
Nutrient metabolism in the liver is inhibited and the immune function of the liver is
reduced in the presence of strong endotoxins [20]. Both exogenous and endogenous LPS
can induce inflammatory liver injury [21]. Subsequently, excess LPS beyond the metabolic
capacity of the liver causes oxidative stress and cellular damage in the liver and leads to
the development of inflammation [22,23]. Activation of TLR4 signaling pathways may play
an important role in the inflammatory process [24]. Meanwhile, the levels of acute phase
proteins (APPs), including haptoglobin (HP) and serum amyloid A (SAA), in plasma and
their mRNA expression in the liver were significantly increased, suggesting that animals
suffering from SARA experienced a certain stress status [25]. SARA is also capable of
causing epithelial damage to the rumen, where pathogenic bacteria enter the liver tissue
through the circulating bloodstream and colonize and cause liver abscesses [9]. In addition,
the expression levels of genes related to lipid formation were downregulated during SARA,
whereas those of catabolic genes and some inflammatory genes were upregulated [26].
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These results indicated that SARA could induce inflammation of the liver, liver injury and
liver abscesses.

2.2. SARA and Mastitis

Mastitis, the inflammation of the mammary gland, is the most frequent disease of
dairy cows. The occurrence of the disease causes a decline in the milk yield and milk
quality of dairy cows and brings huge economic losses to dairy farming. A large number of
studies have shown a link between SARA and mastitis [2,27]. A recent study we conducted
showed that somatic cell count (a well-established direct indicator of mastitis) increased in
milk in a high-grain diet-induced SARA model of dairy cows [2,28]. The results suggested
that SARA could induce the occurrence of mastitis. Mastitis induced by SARA is caused
by endogenous pathogenic microorganisms and/or by endogenous bacterial metabolites
from the rumen. Ours and other studies also showed that LPS concentrations in the rumen
fluid and lacteal artery and vein increased in dairy cows with SARA induced by high-grain
feeding [2,28]. Increased LPS could induce an inflammatory response in the mammary
gland [2,28]. Wang et al. also showed that increased rumen iE-DAP was observed in
long-term, high concentrate feeding-induced SARA, and increased iE-DAP could activate
NOD1-NF-κB signaling pathway-dependent inflammation in the mammary gland of mid-
lactating cows [17]. Meanwhile, studies have shown that the blood–milk barrier plays a
critical role in the development of mastitis [29]. A recent study we conducted showed
that the permeability of the blood–milk barrier increased in SARA [2]. These results
indicated that SARA could increase susceptibility to pathogen-induced mastitis. However,
the relevant mechanism still needs to be further clarified.

2.3. SARA and Endometritis

Endometritis, inflammation in the inner lining of the uterus, is the major uterine
disease of dairy cattle. Under normal conditions, the uterus is exposed to bacteria during
calving. A healthy immune system can resist pathogenic colonization. Recent studies have
shown that the gut microbiota plays a critical role in the regulation of the host’s immune
system [30]. It plays an important role in the regulation of the inflammatory response and
in the protection against infections [31]. Studies have demonstrated that gut microbiota
dysbiosis can decrease the host’s immunity, increasing inflammation and intestinal and
parenteral infections (endometritis and mastitis) as occurs with metabolic diseases. Recent
studies showed that SARA could lead to inflammation of the uterus, decrease immunity
and increase susceptibility to endometritis [32,33]. Muhammad Shahid Bilal et al. [32]
reported that rumen-derived LPS could induce inflammation of the uterus during SARA.
In our study, we also showed that gut microbiota dysbiosis could increase inflammation
of the uterus [34]. Furthermore, Jeon et al. [35] showed that pathogenic bacteria could
migrate from the gut to the uterus through the blood, causing metritis in dairy cows. In
our study, we found that gut microbiota dysbiosis could increase the susceptibility to
Staphylococcus aureus-induced endometritis [34]. These results indicated that SARA could
result in inflammation of the uterus and increase susceptibility to endometritis. However,
the relevant mechanism still needs to be further clarified.

2.4. SARA and Laminitis

Chronic laminitis is the most important clinical sign in dairy herds suffering from
SARA, and once the prevalence of chronic laminitis is above 10%, it indicates the occurrence
of SARA in the dairy herd [36]. Acidosis induced by high-grain or high-sugar diets plays
an important role in the development of laminitis. It is widely believed that laminitis is
a local manifestation of metabolic disorders, with lactic acid, endotoxins and histamine
being the main factors that induce laminitis [37,38]. SARA causes the pH of the system
to decrease and subsequently activates vascular activity, increasing blood pressure in the
vascular system of the hoof. Meanwhile, rumen endotoxins and histamine are released
into the bloodstream, increasing vasoconstriction and dilation [39]. Subsequent vascular
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damage with oedema, dermal congestion and even thrombus formation eventually leads
to dilation of the dermis and increasing severity of laminitis [40]. The study found a
reduced probability of laminitis in cows after oral administration of a vaccine against LPS,
further demonstrating the important role of LPS in the development of laminitis [41]. The
critical link between lactic acidosis and laminitis appears to be associated with persistent
hypoperfusion, which results in ischemia in the digit [42]. In addition, our recent study
found that laminitis in dairy cows was not only associated with elevated levels of lactate
and LPS but also closely related to the bacterial community of the rumen, characterized by
elevated abundance of bacteria that enrich acid-enhancing metabolites [39].

3. Low-Grade Inflammation in SARA

Low-grade inflammation (LGI), also known as subclinical inflammation or low-grade
chronic inflammation, is a chronic and low-grade inflammatory pathological state. LGI
refers to inflammation below the level of infectious and autoimmune inflammation, without
local and systemic symptoms such as redness, swelling, heat and pain, and exhibits a
subclinical pathological state that is easily ignored [43]. LGI is associated with an increased
risk of ill health, poor well-being and mortality. Additionally, it is associated with an
increased risk of several diseases, such as diabetes, Alzheimer’s disease and cancer [44–46].
By collecting data from reported SARA cases or high-grain diet-induced SARA models,
we found that various inflammatory indices in blood, rumen, feces, tissues and organs
were increased (Table 1). This suggests that the body is in a systemic inflammatory state
during the pathogenesis of SARA. Because most cases do not exhibit obvious external
manifestations or clinical symptoms, they are more in line with the judgement standard of
LGI. Therefore, we believe that the animal body is in a low-grade inflammatory state, or
“subhealth” state, during the pathogenesis of SARA. The duration of this LGI state often
depends on the degree of gastrointestinal mucosal injury, individual differences and the
intervention measures taken in the pathogenesis of SARA.

Table 1. The changes of inflammatory markers in animals with SARA.

Inflammatory Biomarkers Animal Species/Test Samples Disease Group Animals Control Group Animals

LPS

Goat/Cecal contents 19,889.47 a ± 2917.37 EU/mL 7257.01 ± 1020.43 EU/mL [47]
Cattle/Rumen fluid 51,481 a EU/mL 13,331 EU/mL [48]

Dairy cows/Rumen fluid 151,985 a EU mL 29,492 EU/mL [49]
Dairy cows/Peripheral blood 0.81 a EU/mL <0.05 EU/mL [49]

Dairy cows/Rumen fluid 89.3 a kEU/mL 34.2 kEU/mL [50]
Dairy cows/Peripheral blood 0.37 a EU/mL 0.16 EU/mL [50]

Dairy cows/Rumen fluid 78.43 a kEU/mL 47.47 kEU/mL [51]
Dairy cows/lacteal artery plasma 0.85 a EU/mL 0.45 EU/mL [51]
Dairy cows/lacteal vein plasma 0.25 a EU/mL 0.15 EU/mL [51]

Dairy cows/Feces 252,345 a EU/g 3514 EU/g [51]

Histamine

Dairy cows/Rumen fluid 64 a µmol/L 0.5 µmol/L [52]
Dairy cows/Peripheral blood 0.2 a µmol/L <0.009 µmol/L [52]

Dairy cows/Rumen fluid 161.2 ** µmol/L 46.4 µmol/L [53]
Dairy cows/Peripheral blood 7.92 ** µmol/L 2.03 µmol/L [53]

TNF-α Dairy cows/Peripheral blood 18.56 a fmol/mL 9.83 fmol/mL [50]

IL-1β Dairy cows/Peripheral blood 1.07 a ng/mL 0.32 ng/mL [50]

IL-6 Dairy cows/Peripheral blood 532.18 a pg/mL 98.36 pg/mL [50]

SAA
Dairy cows/Peripheral blood 446.7 a µg/mL 164.4 µg/mL [49]
Dairy cows/Peripheral blood 498.8 a µg/mL 286.8 µg/mL [54]
Dairy cows/Peripheral blood 170.7 a ± 36.53µg/mL 33.6 ± 36.53 µg/mL [5]

Hp
Dairy cows/Peripheral blood 484 a µg/mL <50 µg/mL [49]
Dairy cows/Peripheral blood 265 a µg/mL 244 µg/mL [54]
Beef cattle/Peripheral blood 0.79 a ± 0.14 mg/mL 0.43 ± 0.14 mg/mL [5]

LBP
Dairy cows/Peripheral blood 53.1 a µg/mL 18.2 µg/mL [49]

Dairy cows/Milk 6.94 a µg/mL 3.02 µg/mL [49]

WBC Dairy cows/Peripheral blood 5.69 × 109/L 5.23 × 109/L [54]

Note: a represents significant difference compared with the control group; ** represents extremely significant
difference compared with the control group.
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4. The Mechanism of SARA-Mediated IGL and Related Inflammatory Diseases

Inflammation acts as both a friend and foe. Inflammation is beneficial as an acute,
transient reaction to harmful conditions, facilitating the defense, repair, turnover and
adaptation of many tissues. However, IGL is likely to be detrimental for many tissues and
for normal functions. A large body of studies has demonstrated a significant link between
a mild proinflammatory state and many diseases. IGL contributes to the development
of many diseases, such as metabolic syndrome (MetS), nonalcoholic fatty liver disease
(NAFLD), type 2 diabetes mellitus (T2DM) and osteoarthritis [55–58]. Meanwhile, studies
have shown that these diseases are accompanied by gut microbiota disorder [59–62].

In recent years, many possible triggers of LGI have been proposed. Among these
factors, the gut microbiota has been reported to play a central role in IGL. The role of
gut-microbiota-mediated intestinal inflammation has long been appreciated [57]. However,
there are an increasing number of studies highlighting that gut bacteria and/or their
metabolites may drive the IGL in the host and extraintestinal distal organs. Therefore,
combined with the literature, we believe that the dysbiosis of the rumen microbiota, the
destruction of the rumen barrier and the dysbiosis of liver function in the pathogenesis of
SARA will lead to the entry of rumen bacteria and/or metabolites into the body through
blood or lymphatic circulation and keep the body in a chronic low-grade inflammatory state.
Meanwhile, rumen bacteria and/or their metabolites can also migrate to the mammary
gland, uterus and other organs, affect immune function and increase susceptibility to
infectious diseases (Figure 3).
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Rumen microbiota disorder causes the rumen bacteria and their harmful metabolites
to be released into the blood, damages liver function and induces a systemic chronic inflam-
matory response. Then, these harmful substances enter the body through the circulation
of the blood and lymph circulation, enter various tissues and organs, increase the risk of
metabolic diseases, reduce the defensive capabilities of the tissues and organs and increase
the risk of infectious diseases.

4.1. Ruminal Microbiota Dysbiosis in SARA

The rumen is the largest and most important digestive organ of ruminants. The rumen
is similar to an anaerobic biological fermentation tank, which contains a large number of
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microorganisms, including bacteria, fungi, protozoa, archaea and viruses. These microbio-
tas have been functionally connected to digestion and absorption, metabolism, immune
homeostasis and the neuroendocrine regulation of the host. An increasing number of
studies have demonstrated that the rumen microbiota is closely related to the production
performance of dairy cows [63,64]. Disturbance in the rumen microbiota is associated with
the development of various diseases. Recent studies showed that alterations in rumen mi-
crobiota and metabolite activity were observed in dairy cattle and goats with SARA [65,66].
The richness and diversity of the rumen and fecal microbiota were reduced in grain-based
SARA of Danish Holstein cows [67]. At the phylum level, Bacteroidetes and Firmicutes
were the most abundant phyla in the rumen. Meanwhile, the abundances of Firmicutes
and Actinobacteria increased, and the abundances of Cyanobacteria and Verrucomicrobia in
the rumen decreased in SARA cows. At the genus level, the abundances of Rickettsiales,
Acholeplasmatales, Victivallaceae, Sutterella and Shuttleworthia decreased, and the abundance
of Succinivibrio in the rumen increased in SARA cows [68]. Chen et al. [11] identified
527 bacterial genera in the rumen of dairy goats; the relative abundances of Ruminococcus,
Candidatus, Saccharimonas, Lachnospiraceae, Eubacterium coprostanoligenes, Pseudobutyrivibrio
and Saccharofermentans increased, and those of Prevotella, Rikenellaceae, Prevotellaceae, Succini-
clasticum and Bacteroidales decreased during a grain-based SARA challenge. Mao et al. [69]
identified 155 different genera in the rumen of dairy cows, of which the relative abun-
dances of Prevotella, Treponema, Anaeroplasma, Papillibacter and Acinetobacter decreased, and
those of Ruminococcus, Atopobium, unclassified Clostridiales and Bifidobacterium increased in
SARA cows.

Ruminal metabolism is closely related to alterations in the rumen microbiota. Previous
studies showed that alterations in rumen metabolite activity were observed in dairy cattle
and goats with SARA. Mao et al. [70] reported that bacterial degradation products (xanthine,
uracil, hypoxanthine, etc.), inflammatory compounds (LPS, ethanolamine, glutaric acid,
lactate, biogenic amines including putrescine, histamine, tryptamine, tyramine, etc.) and
amino acids (alanine, glycine, isoleucine, etc.) increased in the rumen of dairy cows during
a grain-based SARA challenge. The levels of cinnamic acid, benzoic acid, lactose, dihydrox-
yacetone, etc., decreased in the rumen of dairy goats during a grain-based SARA challenge.
Yang et al. [71] identified that 144 differential metabolites of these 73 metabolites, such as di-
hydroxyacetone, L-fucose, D-mannose, sucrose, isomaltose, D-lyxose, D-maltose, galactinol,
DL-lactate, propionic acid, hypoxanthine, indole3-carboxylic acid, 5-hydroxyindoleacetate,
5-methoxydimethyltryptamine, 3-methylxanthine, acetylmannosamine, picolinic acid and
thymine, increased in the rumen fluid when animals were fed a high-corn diet. Burim N.
Ametaj et al. [72] reported that N-nitrosodimethylamine, dimethylamine, lysine, leucine,
phenylacetylglycine, nicotinate, glycerol, fumarate, butyrate, valine, lactate, LPS, etc.,
increased in the rumen of dairy cows fed grain-based diets.

4.2. The Destruction of the Rumen Barrier in SARA

A large body of studies have confirmed that gut microbiota dysbiosis can cause intesti-
nal tissue damage and enhanced permeability, resulting in a “leaky gut” [73,74]. Meanwhile,
the bacteria and/or their metabolites in the intestinal tract can migrate to extraintestinal
distal organs such as the lung, liver and brain through endogenous pathways, leading
to related diseases [74,75]. Therefore, maintaining intestinal barrier integrity is essential
for the health of humans and animals. Similarly, rumen barrier integrity is important for
the health of ruminants. The rumen barriers, constituted by the microbial, physical and
immune barrier, prevent the transmission of pathogens and toxins to the host tissue in the
maintenance of host-microbe homeostasis. Studies have shown that the ruminal epithelial
barrier is important for a healthy and productive cow [76]. However, the destruction of the
rumen barrier has been observed in many diseases of ruminants. Previous studies showed
that high-grain, diet-induced SARA could lead to the destruction of the rumen barrier,
resulting in an increase in ruminal epithelial permeability [2]. Zhang et al. [77] reported that
high-concentrate feeding could induce ruminal epithelial inflammation by upregulating
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inflammation-related gene expression. Zhang et al. [50] reported that high-grain diets could
result in SARA and LPS release. Ruminal-derived LPS could decrease the expression of
tight junction proteins and impair rumen epithelial function. Another study demonstrated
that increased histamine in ruminal fluid during SARA could disrupt ruminal epithelial
barrier function [78,79].

4.3. Liver Dysfunction in SARA

The liver is an important organ for human health and is required for metabolic ac-
tivities, nutrient storage, detoxification and immunological activities. Harmful intestinal
bacteria and metabolites pass through the intestine and need to be detoxified and filtered by
the liver before they can reach other tissues or organs. Under normal circumstances, intesti-
nal bacteria, bacterial metabolites and other harmful substances enter the liver through the
blood and can be taken up and cleared by Kupffer cells in the liver [80]. Meanwhile, the liver
can also chemically modify toxins, a variety of chemicals and even human metabolic waste
through biotransformation reactions, turn these components into highly water-soluble
components and then excrete them through the kidney. However, when the gut microbiota
is dysbiotic, gut permeability increases, and bacteria and metabolites enter the liver through
the blood, exceeding the detoxification and filtration capacity of the liver and then entering
the blood and distant tissues, resulting in related diseases [81]. At the same time, these
bacteria and metabolites will also cause a liver inflammatory response and damage, affect-
ing the detoxification ability of the liver and resulting in more toxins entering the blood.
Therefore, does liver dysfunction occur in the pathogenesis of SARA? After detoxification
and filtration into the liver, which substances can enter the body or other organs through
the blood or other ways, causing the occurrence of related diseases?

Combined with the literature, we found that liver dysfunction occurred in the patho-
genesis of SARA [2]. Tsuchiya et al. [14] reported that increased aspartate transaminase
(AST) and non-esterified fatty acid (NEFA) in the blood were observed in Holstein cows
with SARA. Recent studies showed that a high-concentrate diet could result in liver patho-
logical injury, such as inflammatory cell infiltration and hepatocyte swelling and degenera-
tion, suggesting that SARA could lead to liver injury [24]. Furthermore, Chang et al. [82]
reported that high-concentrate, diet-induced SARA caused hepatocyte apoptosis by activat-
ing the extrinsic apoptosis pathway. Dong et al. [83] showed that increased expression of
IL-1β, serum amyloid A, C-reactive protein and haptoglobin in liver tissues was observed
in lactating goats with high-concentrate, diet-induced SARA. In addition, studies have
shown that rumen-derived LPS and d-glutamyl-meso-diaminopimelic acid (iE-DAP) can
induce liver inflammatory injury [84]. These results indicated that liver dysfunction and
liver injury occurred in the pathogenesis of SARA.

4.4. Ruminal Microbiota Dysbiosis Leads to the Release of Metabolites into the Blood and Tissues,
Causing Inflammation and Related Diseases
4.4.1. LPS

Under normal physiological conditions, the rumen and blood contain a small amount
of LPS, which is not harmful to animal health. However, the occurrence of SARA will lead
to a decrease in the pH value in the rumen, which results in the death of a large number of
Gram-negative bacteria and the release of a large amount of LPS. Plaizier et al. [85] reported
that the concentration of LPS in the blood, rumen, ileum, caecum and feces of SARA animals
increased by 20-, 35-, 27.5-, 7- and 7-fold, respectively. Studies have shown that high-grain,
diet-induced SARA could lead to the shift of LPS to the peripheral circulation and trigger a
systemic inflammatory response [49]. When LPS is released into the blood, it can induce
the production of haptoglobin (HP), serum amyloid A (SAA), LBP and the inflammatory
cytokines TNF-α and IL-1β [5,49]. Furthermore, a large body of research has demonstrated
that LPS can enter other tissues or organs through the blood and lead to related diseases [86].
Zhao et al. [87] showed that SARA resulted in high concentrations of rumen LPS, which
activated the NF-κB and MAPK signaling pathways and led to the release of inflammatory
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cytokines in the rumen epithelium, causing rumenitis. Guo et al. [23] found that in a high-
grain, diet-induced SARA model, rumen-derived LPS was transported from the digestive
tract to the liver through the portal vein, causing hepatocyte injury, liver dysfunction
and a liver inflammatory response. Bilal et al. [32] reported that LPS derived from the
digestive tract could enter into the uterus and activate the TLR4 signaling pathway, causing
endometritis. In our study, we also found that increased LPS in SARA could increase the
number of milk somatic cells, causing mastitis. Zhang et al. [37] reported that increased
LPS in SARA could activate the inflammatory response in lamellar tissues, which may
progress to the level of laminar damage.

4.4.2. Histamine

Histamine is an important mediator of type I allergies, which can cause vasodilation
and increase vascular permeability. Meanwhile, it is also an important inflammatory me-
diator and has the ability to cause immune injury to humans and animals. Histamine is
synthesized by decarboxylation of histidine via L-histidine decarboxylase [88]. Allisonella
histaminiformans is the major producer of histamine in the rumen, and histidine is the
only energy source for this bacterium [89]. It is generally believed that bacteria produc-
ing decarboxylase in the rumen can tolerate acidic environments. In SARA, the pH in
the rumen decreases, which leads to dysbiosis of the rumen microbiota and increases in
histamine-producing bacteria, finally resulting in an increased histamine concentration
in the rumen [90,91]. Under normal physiological conditions, histamine is present in all
tissues in trace amounts. The histamine entering the body is generally rapidly transformed
into inactive substances through methylation or oxidation in the liver and excreted from the
urine. When the histamine content increases beyond the body’s metabolic capacity, it enters
the blood and tissues, causing systemic inflammation. Sun et al. [79] found that histamine
could activate the NF-κB signaling pathway and inflammatory cytokine production, which
subsequently led to the injury of bovine rumen epithelial cells. Previous studies showed
that the increase in histamine was also closely related to mammary inflammation and
lactation function [90]. They found that histamine could activate the NF-κB and mTOR sig-
naling pathways, resulting in mammary inflammation and casein synthesis reduction [90].
Furthermore, studies have shown that histamine plays a critical role in the pathogenesis of
laminitis [92]. When cattle are fed large amounts of grain, histamine can accumulate in the
rumen and cause acute inflammation of the hooves (laminitis) [93].

4.4.3. Other Metabolites

In addition to LPS and histamine, other metabolites in the rumen can also enter
the blood and cause or promote the occurrence of some diseases. γ-D-Glutamyl-meso-
diaminopimelic acid (iE-DAP), which constitutes the peptidoglycan (PGN) layer of bacteria,
increased significantly in the rumen fluid and blood of dairy cows suffering from SARA [94].
Studies have shown that iE-DAP can activate the NOD1-NF-κB signaling pathway and
induce inflammation and injury in bovine hepatocytes and mammary epithelial cells [95].
Lactate, particularly D-lactate, increased significantly in the rumen in cases of SARA and
high-grain, diet-induced SARA. Previous studies have shown that the increase in D-lactate
is closely related to the occurrence of laminitis [96]. A previous study demonstrated that
D-lactate could induce inflammation in bovine fibroblast-like synoviocytes by activating
the MAPK and NF-κB signaling pathways [97]. Furthermore, the intraruminal injection
of lactic acid could induce the occurrence of laminitis in lambs [98]. In addition to the
above metabolites, there are many metabolites that increase in the pathogenesis of SARA.
The role of these metabolites needs to be further investigated. Meanwhile, some metabo-
lites were decreased in the pathogenesis of SARA, such as cholic acid, L-ascorbic acid,
adenine, 2-hydroxyvaleric acid, 3-hydroxysebacic acid, 5′-methythioadenosine, deoxyri-
bose, hippuric acid, phosphorycholine, L-isoleucine, 3-hydroxytetradecanedipnic acid and
propenoycarnitine and so on [99]. These metabolites may have anti-inflammatory, tissue
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barrier protective effects or other effects. These metabolites may have potential for the
treatment of SARA and its related diseases.

4.5. Ruminal Microbiota Dysbiosis Leads to Bacterial Translocation, Causing Inflammation and
Related Diseases

Bacterial translocation is the process by which gut bacteria cross the intestinal mucosal
barrier into the mesenteric lymph nodes and portal system and then into systemic circu-
lation and organs [100]. Just as the translocation of endotoxins into the blood causes an
inflammatory response in the body, bacterial translocation can also cause systemic inflam-
mation or damage to distant organs. Previous studies have shown that the intestines were
the main source of endogenous bacteria causing infections in a variety of diseases [101,102].
Previous studies have shown that the course of acute pancreatitis may be accompanied
by pancreatic infection caused by bacterial migration, mainly due to the loss of intestinal
barrier function during the disease process [103]. In addition, breast milk was once thought
to be sterile, but more recent studies have shown that breast milk not only contains various
types of bacteria but also originates from the mother’s gut [104]. Furthermore, bacterial
translocation due to impaired intestinal epithelial barrier integrity also exists in end-stage
renal disease, which plays an important role in disease progression [105]. Similar to the
above diseases, bacterial translocation is also present in SARA. This is mainly because
SARA is accompanied by dysbiosis of the rumen microbiota, which induces impairment of
the intestinal barrier, resulting in bacterial translocation.

As mentioned above, the occurrence of SARA is also accompanied by bacterial translo-
cation. Jeon et al. [106] showed that pathogenic bacteria could migrate from the gut to
the uterus through the blood, causing metritis in dairy cows. In high-grain, diet-induced
SARA, we found that Stenotrophomonas was enriched in the rumen and appeared in the
mammary gland. Meanwhile, we found that Stenotrophomonas could cause mastitis in mice
by gavage. The results indicate that the massively proliferating Stenotrophomonas in the
rumen may translocate to the mammary gland through a certain pathway, leading to the
occurrence of mastitis [2]. Whether the bacteria in the rumen can migrate to other tissues
or organs and through which mechanisms still need to be further studied.

4.6. Ruminal Microbiota Dysbiosis Facilitates Susceptibility to Pathogens

Rumen microorganisms are necessary “organs” for normal physiological homeostasis
and affect the immune system’s response to pathogens. Studies have shown that disruption
of the homogeneous gastrointestinal microbiota may thus facilitate the development of
pathogen-induced diseases. Accumulating studies have demonstrated that the gut micro-
biota is involved in the maturation of the immune system. It stimulates innate immunity
in the early years of life, leading to the maturation of gut-associated lymphoid tissue and
acquired immunity through the stimulation of local and systemic immune responses [107].
The commensal gastrointestinal microbiome competitively restricts pathogen survival and
proliferation, by metabolizing and consuming nutrients on one side and by producing
inhibitory molecules on the other [101]. The gastrointestinal microbiota coevolved with
the host’s immune system and established a delicate balance to maintain homeostasis in
the gut [108]. These microorganisms have a fundamental effect on regulating immune
cell development, differentiation and defense against pathogen invasion [109]. In recent
years, germ-free animals have been used to study the importance of the gut microbiota
for the development of the innate immune system. Relative to conventionally reared mice,
germ-free mice have thinner gut tissue, a smaller mucus layer, sparse immune cells in the
lamina propria and smaller Peyer’s patches [110,111]. These changes in germ-free mice
undoubtedly lead to weakened intestinal immunity and increased pathogen susceptibility.
In addition, germ-free mice have severely immune-deficient immune systems, such as
lower levels of immunoglobulin A (IgA) and IL-17-producing T helper 17 cells in their
gut, but these phenomena can be reversed by microbiota supplementation [112]. At the
systemic level, they show decreased antibody production, lower plasma levels and smaller
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mesenteric lymph nodes, suggesting that the absence of the microbiota affects the sys-
temic immune response [110,113]. Overall, alterations in the composition of the microbial
community rearrange the structure of the immune system and impair the resistance of
the host’s immune system to pathogens. In ruminants, studies have shown that rumen
microbiota dysbiosis can affect metabolites and decrease the immune responses of sheep
under cold stimulation. Increased rumen microbiota dysbiosis, especially SARA, is associ-
ated with pathogen-induced diseases [114]. Our previous results showed that cows with
SARA caused by high-grain-diet consumption had increased susceptibility to S. aureus-
induced mastitis (data have not been published). In addition, SARA cows treated with
LPS through intramammary infusion had higher acute phase proteins and modulated the
blood metabolome differently than LPS-treated cows without SARA [115]. These studies
suggested that rumen microbiota dysbiosis could facilitate susceptibility to pathogens. The
mechanism still needs to be further studied.

5. Regulating the Rumen Microbiota to Prevent SARA and Related Diseases in
Dairy Cows

Disturbances of the rumen microbiota and metabolites are closely related to the
occurrence of SARA and related diseases. Therefore, targeted regulation of the rumen
microbiota may be an important approach to prevent and treat SARA and related diseases.
Evidence showed that thiamine supplementation inhibited gut injury, increased the relative
abundance of beneficial bacteria and reduced intestinal dysbacteriosis in SARA cows
induced by a high-concentrate diet [116]. Others also indicated that plant-derived extracts,
including alkaloids, terpenoids and essential oils, could maintain ruminal pH and improve
ruminal fermentation [117]. The release of LPS from the gastrointestinal microbiota into the
blood is one of the important factors for SARA to increase other metabolic and infectious
diseases. Evidence showed that treatment with an anti-LPS antibody reduced the release of
LPS and inhibited pH in the rumen in cows suffering from SARA [118,119]. These results
indicate that anti-LPS antibodies may be used for the prevention and treatment of metabolic
and infectious diseases related to rumen flora disturbance in dairy cows.

In addition, rumen transplantation is commonly used in the treatment of digestive
disorders, including left-sided abomasal displacement [120]. Recently, evidence also sug-
gested that rumen content transplantation (RCT) can return to normal levels with rumen
fermentation parameters, including the levels of bacterial community diversity and the con-
centrations of acetate, valerate and VFA, in SARA cows induced by a high-grain diet [65].
Furthermore, rumen fluid transplantation (RT) also changed the gastrointestinal microbiota
and then influenced the feed intake, feed digestibility and growth performance of weaned
lambs [121]. Others also demonstrated that RT restored ruminal bacterial homeostasis,
increased the concentrations of VFA, acetate, propionate and butyrate and decreased the
concentrations of lactate and LPS in the rumen [122]. Although there is still a lack of studies
on the effect of rumen flora transplantation on inflammatory diseases of the distal extra-gut
organs in dairy cows, ours and other studies found that rumen flora and metabolites
disturbance can induce mastitis, endometritis and laminitis in dairy cows [2,32]. RCT can
effectively relieve SARA. Therefore, we speculate that rumen flora transplantation may
be used for the prevention and treatment of inflammatory diseases associated with SARA
in ruminants.

6. Conclusions

SARA is an important metabolic disorder in dairy cows that affects animal welfare
and the economy of milk production. It often leads to local inflammatory diseases such
as laminitis, mastitis, endometritis and hepatitis. Clarifying the mechanism of SARA-
mediated inflammatory diseases is of great significance for the joint prevention and control
of these diseases. This review concludes that the rumen microbiota and its metabolites
play a critical role in SARA-mediated inflammatory diseases. It is a bridge of SARA and
its related inflammatory diseases. Dysbiosis of the rumen microbiota, destruction of the
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rumen barrier and dysbiosis of liver function in the pathogenesis of SARA will lead to the
entry of rumen bacteria and/or metabolites into the body and place the body in the chronic
low-grade inflammatory state. Meanwhile, rumen bacteria and/or their metabolites can
also migrate to the mammary gland, uterus and other organs, leading to the occurrence
of related inflammatory diseases. The rumen microbiota can be used as a target for the
treatment of SARA and its related diseases.
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