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Abstract

Current treatment of paediatric hepatocellular carcinoma (HCC) is often inefficient due to advanced disease at diagnosis and
resistance to common drugs. The aim of this study was to generate a cell line derived from a paediatric HCC in order to
expand research in this field. We established the HC-AFW1 cell line from a liver neoplasm of a 4-year-old boy through
culturing of primary tumor specimens. The cell line has been stable for over one year of culturing and has a doubling time of
40 h. The tumour cells have an epithelial histology and express HCC-associated proteins such as Alpha-fetoprotein (AFP),
Glypican 3, E-cadherin, CD10, CD326, HepPar1 and Vimentin. Forty-nine amino acids in exon 3 of b-Catenin that involve the
phosphorylation sites of GSK3 were absent and b-Catenin is detectable in the cell nuclei. Cytogenetic analysis revealed large
anomalies in the chromosomal map. Several alterations of gene copy numbers were detected by genome-wide SNP array.
Among the different drugs tested, cisplatin and irinotecan showed effective inhibition of tumour cell growth in a
proliferation assay at concentrations below 5 mg/ml. Subcutaneous xenotransplantation of HC-AFW1 cells into NOD/SCID
mice resulted in fast growing dedifferentiated tumours with high levels of serum AFP. Histological analyses of the primary
tumour and xenografts included national and international expert pathological review. Consensus reading characterised the
primary tumour and the HC-AFW1-derived tumours as HCC. HC-AFW1 is the first cell line derived from a paediatric HCC
without a background of viral hepatitis or cirrhosis and represents a valuable tool for investigating the biology of and
therapeutic strategies for childhood HCC.
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Introduction

Epithelial liver tumours, hepatoblastoma (HB) and hepatocel-

lular carcinoma (HCC), are the most common primary hepatic

malignancies in infants and children. HCC in children is less

common than HB, accounting for approximately 1% of all

paediatric cancers in the western hemisphere. In contrast to adults,

most paediatric HCCs arise without liver abnormalities, although

hepatitis, cholestasis, biliary athresia, glycogen storage disease, and

low birth weight are risk factors for HCC development [1]. Several

issues regarding paediatric HCC remain unresolved. Certain

unique characteristics of paediatric HCC suggest a different

biological origin and behaviour compared with adult HCC [2,3].

Therapeutic results for children with HCC are generally poor

despite a general increase in survival rates for most solid tumours

among this age group. At present, the role of chemotherapy and

the indication for liver transplantation in the treatment of

paediatric HCC are critically debated [4]. In order to further

address these issues preclinical models are essential. However, the

establishment of cell lines and animal models for paediatric

epithelial liver tumours is challenging and only a few HB cell lines

have been successfully established during recent years [5–7].

There is currently no stable in vitro or in vivo model available for

paediatric HCC. In this study, we describe the successful

establishment of a continuous cell line derived from a child with

HCC. The in vitro and in vivo model presented here might serve as

tool for acquiring additional information and knowledge on this

rare but important tumour entity.

Methods

Ethical statement
The study was done according to the ethical guidelines of the

1975 Declaration of Helsinki and written informed consent was

obtained from the parents of the patient before operation. Ethics

approval was obtained for this study from the ethic committee of

the Medical Faculty of Tübingen. All animal studies were done

according to the criteria outlined in the ‘‘Guide for the Care and

Use of Laboratory Animals’’ (Animal Care and Use: Policy Issues

in the 1990’s, National Institutes of Health/Office for the

Protection from Research Risks (NIH/OPRR). 1989. Proceedings

of NIH/OPRR Conference, Bethesda, Md.), and were approved
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by the local Government’s ethical authority for animal experi-

ments (Regierungspräsidium Tübingen, Number CK1/09).

Patient
The patient was a boy, 4 years and 6 months old, who presented

with a large intra abdominal mass. No risk factors such as

prematurity, viral infection, or developmental disorders were

present at the time of diagnosis. Radiological assessment suggested

a multifocal epithelial tumor in both sides of the liver. Multiple

bilateral lung metastases were also identified, classifying the tumor

as stage Pretext IV. Serum a-fetoprotein (AFP) at diagnosis was

400.000 mg/l. Treatment was initiated at this stage following the

guidelines of the collaborative international center trial SIOPEL3.

The high risk protocol consisted of 46Cisplatin (CDDP, 80 mg/

m2/24 h), 36 Carboplatin (CARBO, 500 mg/m2//1 h), and 36
Doxorubicin (DOXO, 60 mg/m2/48 h). After these courses, the

tumor showed stable disease with slightly decreased AFP levels and

tumor volume. However, lung metastases had completely disap-

peared. After completing chemotherapy, a local progress (tumor

volume) occurred. Consecutively, the patient received high dose

chemotherapy (CARBO/VP16 according to the GPOH protocol

HB99) together with autologous stem cell transplantation and a

transarterial chemoembolisation. This led to a partial response of

tumor volume and AFP (50.000 mg/l). With lung metastases still

absent and the primary tumor being regarded as unresectable, the

decision was taken to perform a living related liver transplantation

(segments II and III) from the child’s father. Immediately before

operation, AFP rose again to a level of 153.000 mg/l, still there

were no lung metastases detectable. Hepatectomy and liver

transplantation were carried out 6 months after initial diagnosis.

Tissue samples
Immediately after resection, primary tumor samples were shock

frozen and stored in liquid nitrogen until use. Some tumor

specimen were minced in PBS and cultured as described below.

Cell lines and culture conditions
Primary tissue samples were minced into pieces of 363 mm and

cultured on 6 well plates (Becton Dickenson, Frankfurt, Germany)

in DMEM (GIBCO BRL, Carlsbad, CA) supplemented with 10%

FCS (growth medium). Cell cultures were maintained in a

humidified atmosphere containing 5% CO2 at 37uC. For sub-

culturing cells were detached from the culture surface using

accutase in Dulbecco’s PBS containing 0.5 mM EDTA (PAA

Laboratories GmbH, Cölbe, Germany) for 2–3 minutes at 37uC.

A sub-cultivation ratio of 1:4 and 1:6 was performed twice per

week. Cells were stored in liquid nitrogen as a suspension in

complete growth medium with 10% DMSO.

Viability assay
HC-AFW1 cells (10.000 cells/100 ml) were cultured in 96-well

plates. At day two, the commercially available cytotoxic agents

cisplatin (CDDP, Neocorp AG, Weilheim, Germany), doxorubicin

(DOXO, cell pharm GmbH, Hannover, Germany), etoposide

(Bristol-Myers Squibb GmbH & Co. KGaG, Munich, Germany),

vincristin (Gry Pharma Kirchzarten, Germany), irinotecan

(Fresenius Kabi AG, Bad Homburg, Germany), and carboplatin

(Hexal, Holzkirchen, Germany) were added to the cells at different

concentrations around IC50 (DOXO: 0.01, 0.03, 0.1, 0.3, 1.0, 3.0,

10.0 mg/ml; Carboplatin: 2, 4, 8, 16, 32, 64, 128 mg/ml;

etoposide: 0.3, 1, 3, 10, 30, 100, 200 mg/ml; CDDP: 0.3, 0.63,

1.25, 2.5, 5.0, 7.5, 10 mg/ml; vincristin: 1, 10, 100, 1000, 10,000

100,000 ng/ml; irinotecan 0.78, 1.56, 3.12, 6.25, 12.5, 25, 50 mg/

ml). Drugs were prepared immediately before administration,

incubation lasted for 72 h. All assays were performed 3 times in

quadruplicates. Cell viability was assessed using the MTT [3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide]-assay. Per-

centages of viability were calculated through normalization

between background of cultures without cells and untreated

cultures as control experiments. Dose dependent viability curves

were computed by sigmoidal curves with variable slope to

determine IC50.

Senescence
HC-AFW1 cells in the passage P5 and P20 were seeded at

densities up to 56104 cells/cm2. The next day senescence was

detected in cultures using the acid beta galactosidase staining (Cell

signalling, Danvers, MA). Blue cells and unstained cells were

counted in 6 different regions of triplicate cultures and percentages

of senescent cells were calculated.

Telomere length analysis
HC-AFW1 cells stored at passage P2 and P16 were processed

for telomere length analysis using the flow FISH method [8]. As a

reference, bovine leukocytes were used to calculate telomere

length.

Animal experiments
NOD.Cg-Prkdcscid IL2rgtmWjl/Sz (abbreviated NSG) mice

were purchased from Charles River (Sulzfeld, Germany) and bred

in our facility. Tumor cells were injected into the flank of 4- to 6-

week-old mice (24–30 g), kept in filter-top cages at 22uC, 60%

humidity. Sterilized food and water were accessible ad lib. HC-

AFW1 cells (106/200 ml/injection site) were injected subcutane-

ously. Tumor length (l) width (w) and height (h) were measured

every 5 days. The tumour volumes (V = 4/3p6l/26w/26h/2)

and mean diameter (V1/3) were calculated. Sigmoidal curves with

variable slopes of the mean diameter were used to describe each

tumor growth over 25 days. Blood samples were taken weekly

from the retro-bulbar plexus of CO2/O2 – anaesthetized mice.

Serum AFP levels were determined using a solid phase enzyme-

linked immunosorbent assay (AFP ELISA assay; DRG Instru-

ments GmbH, Marburg/Lahn, Germany), which was carried out

according to manufacturer’s protocol. Tumors were explanted on

day 25 and prepared for further analyses.

Histology and Immunostaining
Tumor specimen were fixed in formalin (3.7%) and processed

for histological analysis. Tissue processing was continued in a

vacuum tissue processor (Leica TP 1050, Leica Wiesloch,

Germany). Sections of 5 mm were stained with hematoxylin and

eosin. Immunhistochemistry in paraffin sections was performed

using the ABC method as described previously [9]. For

cryosections, tumor specimen were embedded in Tissue Tec

O.C.T. TM (Sakura Finetek, Alphen aan den Rijn, The Nether-

lands) and frozen in liquid nitrogen. Frozen specimens were sliced

into 10 mm sections using a Leica Cryotom. Before staining,

sections were fixed with methanol/acetone 1:1 at 220uC for

10 minutes and then dried at room temperature. Slides were

incubated in goat-serum (1%, DAKO, Hamburg, Germany) for

45 min to block unspecific binding areas. The used antibodies and

the specific conditions are described in Table S1. Nuclei were

counterstained with DAPI (49.6-Diamidino-2-phenylindole dihy-

drochloride, 0.1 ng/ml, Sigma, Munich, Germany). Immunoflu-

orescence microscopy was carried out on a Zeiss Axio Scope

epifluorescence microscope (Carl Zeiss, Oberkochen, Germany)
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with a MRC5 camera. Images were processed using AxioVision

4.8.1 software. Staining of cultured cells was performed identical,

except cells were grown overnight on cover gales coated with poly-

D-lysine. Flow cytometry analysis was performed with trypsinized

cells in FACS-buffer (PBS with 2% FBS, 2 mM EDTA, 0.005%

NaN3; all Sigma-Aldrich, Munich, Germany) and the same

antibodies as used in immunohistology. Data was acquired with

FACSCalibur (Becton Dickinson, Heidelberg, Germany) and

analyzed by FCS Express (De Novo Software, Los Angeles, CA,

USA). Dead cells were excluded by 7-Aminoactinomycin D (7-

AAD, BD PharmingenTM) staining.

Detection of b-Catenin
Western blotting was carried out as recently described [10]

using antibodies against b-Catenin (1:1000; Zytomed (CAT-

5H10), Berlin, Germany) and a stringent washing buffer (0.1%

Tween20 in PBS). For mutation analysis genomic total RNA and

DNA were prepared from cells, tumor tissue and EDTA-blood

from the patient using RNease ans DNA extraction kit,

respectively (Qiagen, Hilden, Germany). A 1688 bp fragment

overlapping the exon 2 to 6 from CTNNB1 was amplified,

sequenced and aligned to AY081165 [11]. Same primers were

used in the RT-PCR to amplify a 831 bp gene fragment [12].

CGH and cytogenetic analysis
Chromosome preparations from cultured cells and GTG-

banding were performed using standard techniques. Fluorescence-

in situ-hybridization was performed with subtelomeric probes

(Vysis, Abbott GmbH, Wiesbaden Germany) for the chromosomes

1, 2, 3, 4, 5, 7, 9, 19, 20, 21, and 22 as well as a centromeric probe

for chromosome 11 in order to verify some of the structural

abnormalities. DNA from the patient’s blood and tumor samples

was isolated with the QiaAmp DNA mini Kit according to

manufacturer’s instructions (Qiagen, Hilden, Germany). Single

nucleotide polymorphism (SNP) and copy number polymorphism

(CNP) genotyping were performed at the Microarray facility of the

University of Tübingen using the Genome-Wide Human SNP

Array 6.0 and Genotyping ConsoleTM (GTC) software (Affyme-

trix, Santa Clara, CA). Data were deposited on GEO (http://

www.ncbi.nlm.nih.gov/gds?term = GSE29283, GSM723814).

Statistical analyses
Data analysis was carried out using GraphPad Prism 4.00

(GraphPad Software, San Diego, Califonia, USA) and sigmoid

dose response curves with variable slopes. All numeric data are

expressed as means. Data plotted on graphs are means and SD.

Significance was assumed for p,0.05.

Results

Primary tumour characteristics
Macroscopically, the tumour was characterized by multinodu-

lar, heterogenous areas with necroses. A cross section through the

tumour and adjacent liver parenchyma revealed well circum-

scribed tumour nodules scattered throughout the non-cirrhotic

liver with minimal macrovesicular steatosis (2%) and without

fibrosis or cholestasis (Figure 1A). At the cut surface of the tumour

was grey-yellow with large necrotic areas (40% of the tumour

volume). Histological analysis revealed epithelial cells with

carcinoma cell-type morphology (Figure 1B,C,D). Tumour nod-

ules showed a solid macrotrabecular and focally pseudoglandular

composition with polymorphic, polygonal, large eosinophilic

tumour cells. The tumour cells had vacuolated polymorphic

nuclei containing single large eosinophilic nucleoli. A large

number of typical and atypical mitotic figures were seen. Typical

features of fetal hepatoblastoma, heterologous elements, haema-

topoiesis, and mesenchymal components were not present.

Routine histological staining revealed membrane-bound b-catenin

in cells with nuclear localization in only a few distinct regions. P53

was not prominently expressed (data not shown). Glypican 3 and

HepParI expression was strong and easily detected (Figure S1).

The histological diagnosis at the time of surgery was HCC, which

was confirmed by local and reference pathology (the latter

performed by the GPOH study group) as well as by international

expert review.

Isolation of HC-AFW1 from native tissue
Two tumour specimens were used for tissue culturing and

transplantation into NSG mice. Tumour cells were grown in

culture from primary tumor samples and referred to as HC-

AFW1. This cell line grows exponentially and has a doubling time

of 40 h. Stable cell growth was observed for more than 19 passages

over the last 12 months during which cytology, AFP secretion, and

doubling time of the line were evaluated. Mice were injected with

cultured cells after the 6th population doubling. In mice the

tumours grew within 4 weeks to a mean diameter of 15 mm. The

tumours were transplanted continuously into new mice. Tumour

xenografts displayed the same solid architecture as the primary

tumour but contained slightly more pseudoglandular and fewer

trabecular formations. The cells were polygonal with moderately

large eosinophilic cytoplasm. The morphology of the nuclei was

identical to that of the primary tumour cells, exhibiting

vacuolization and prominent single eosinophilic nucleoli. The

mitotic rate was high. No histological signs of further dedifferen-

tiation (e.g. sarcomatoid pattern, giant cells) or features of HB were

seen. Taken together, the histological analyses of the xenotrans-

plants revealed the same characteristics as were observed in some

regions of the primary tumour, which is consistent with a poorly

differentiated solid HCC. Immunohistology revealed a predomi-

nantly nuclear distribution of b-catenin with membrane localiza-

tion in only a few cells. The histological analysis of the

xenotransplants revealed an appearance identical to that of the

undifferentiated primary tumour (Figure 1E). HCC tumours grew

exponentially to a mean diameter of 15 mm within the first 3

weeks after subcutaneous implantation and the tumors reached a

plateau in the last observation week of monitoring (n = 6)

(Figure 1F). Serum AFP could be detected before the subcutaneous

tumour was apparent and the AFP level increased along with

tumour development (Figure S2). Explanted tumour cells could be

re-cultured on cell culture treated dishes.

Genetic and phenotypic characterization of HC-AFW1
cells

Chromosome analysis of HC-AFW1 cells revealed a mixture of

cells with diploid and tetraploid karyotypes with several abnor-

malities (Figure 2). The detected structural and numerical

aberrations seemed to be quite stable in different cells and there

was no hint of mosaicism or clonal growth. In order to verify some

of the structural abnormalities fluorescence-in situ-hybridization

(FISH) with subtelomeric probes for chromosomes 1, 2, 3, 4, 5, 7,

9, 19, 20, 21 and 22 as well as a centromeric probe for

chromosome 11 was performed. A tetraploid metaphase was

selected because of good banding quality. Clearly visible were the

interstitial deletion 1q, the isochromosome 1q, the derivative

chromosome 3, the interstitial deletion 5q, a derivative chromo-

some 11, a marker chromosome (maybe a complex derivative

chromosome 19), loss of 21, and duplication 22q. Additionally, a

shorter derivative chromosome 4 was present. FISH analysis
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revealed der(4)t(2;4). A signal of 2p was present at the p-arm of the

derivative chromosome 3, a 2q signal was detected at a C group-

like chromosome—most probably at the shorter chromosome 4.

There was also an additional signal of 5q at a D group

chromosome that could not be further characterized. Table 1

summarizes the aberrations identified by cytogenetic analysis.

These aberrations correlate with the results from the comparative

genomic hybridization analysis. Comparison with published data

on HB and HCC in the Atlas of Genetics and Cytogenetics

revealed HC-AFW1 to be a unique entity (http://

atlasgeneticsoncology.org/).

The primary tumour and the established HC-AFW1 cell line

were also screened for point mutations or deletions in exon 3 of the

CTNNB1 gene encoding b-Catenin. PCR and RT-PCR analysis

revealed 2 forms of b-catenin. Both PCR products were

sequenced: The large form had no mutations (Figure S3).

Sequencing data from the mutation analyses showed no mutations

in CTNNB1; however, an extended deletion of 147 bp in exon 3

was detected in exon3, which led to the deletion of 49 amino acids

(Figure 3). This deletion represents amino acids 22 to70

(AY081165.1 EMBL-Bank) and includes the phosphorylation sites

Ser 33, Ser 37, Ser 45 and Thr41. In concordance, a shorter form

of b-catenin was also detected in HC-AFW1 cells compared with

Figure 1. Histological appearance of the primary tumour and xenografts. Cross section of the explanted liver revealed multifocal lesions
with a heterogeneous encapsulated tumour (A). Three areas of the primary liver tumour show epithelial and carcinoma-like cell morphology (B, C, D).
Tumours generated in mice had a high cellular density (E). Tumour passages in mice led to tumour nodules growing exponentially in the second
week after xenotransplantation, reaching a mean diameter of 12 mm within 10 days (F). Bars represent 50 mm.
doi:10.1371/journal.pone.0038223.g001
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Figure 2. Cytogenetic of HC-AFW1 cell line. (A) Copy number analysis of the HC-AFW1 cell line is shown in the whole genome/chromosome
view. Red flags denote loss and blue flags denote gain of copy number. (B) Karyotype of HC-AFW1. Green circles were used to mark the FISH signal of
the short p-arm, red circles the long q-arm of the corresponding chromosome and blue circles the centromeric region of chromosome 11.
doi:10.1371/journal.pone.0038223.g002

Table 1. Cytogenetic and array analysis of HC-AFW1 cells.

Hepatoblastoma* Hepatocellular carcinoma* Cytogenetic analysis and FISH of HC-AFW1 Array of HC-AFW1

Gain of 1 Loss of 1p (33%)
Loss of 1q (22%)

Gain of complete 1q and loss of complete
1p by isochromosome 1q formation
Interstitial deletion of 1q32–43

Gain of complete 1q
Loss of complete 1p

Gain of 2q
Frequent breaks in 2q35-q37

Gain of subtelomeric 2p: terminal 2p at 3p
gain of subtelomeric 2q: der(4)t(2;4)(q36?;q31)

Gain of 2p25.3 (15 Mb)
Gain of 2q24.1-qter

Derivative chromosome 3 with terminal 2p at 3p
and gain of unclear chromosomal material in 3q

Gain of 3pter-p24.3 (20 Mb)
Gain of 3q29

Loss of 4q Loss of 4q (38%) deletion of 4q31-qter
der(4)t(4;2)(q31;q36?)

Loss of 4q21.22-qter

Interstitial deletion of 5q15–35.2
Gain of terminal 5q (signal at a D-chromosome)

Loss of 6q (29%) [IGF2R] No IGF2R deletion

Gain of 7

Gain of 8 Loss of 8p (48%)

Loss of 9p (20%) [p16] Gain of 9q33.1-qter
No p16 deletion

Derivative chromosome 11 with unclear
additional material in p and q

Loss of 11pter-p14.1
Gain of 11p13.3-q12.2
Loss of 11q13.4-qter

Loss of 13q (31%) [RB1] No RB1 deletion

Loss of 16q (30%)
Loss of 16p (24%) [Axin 1]

No Axin1 deletion

Gain of 17 Loss of 17p (45%) [p53] No p53 deletion

Gain of 19pter-p13.11

Gain of 20 Gain of complete 20

Monosomy 21

Gain of 22q Duplication of 22q11.2–13 Gain of 22q12.1

t(1;4)(q12;q34) resulting in
partial trisomy 1q and partial
monosomy 4q

Additional marker chromosome, maybe a complex
derivative of 19 with 20q at the short arm

*According to the Atlas of Genetics and Cytogenetics in Oncology and Haematology.
doi:10.1371/journal.pone.0038223.t001

Establishment of a Pediatric HCC Cell Line

PLoS ONE | www.plosone.org 5 May 2012 | Volume 7 | Issue 5 | e38223



liver cells by western blot. The deletion in b -catenin was present

within the primary tumour and the derived cell line (after

sequencing of exons 3–6). The western blot results confirmed

the previously observed overexpression of the shorter form and the

reduced expression of non-mutated b-catenin, as was expected

from the RT-PCR and sequencing results. b-Catenin was detected

in the cytoplasm but was predominant localized in the nuclei, as

was revealed by the homogenous intense fluorescence detected

during immunostaining of cultured cells and xenotransplants. In

the primary tissue, heterogenous intense staining for b-catenin was

also observed with areas of membrane and nuclear distribution.

The cell adhesion molecule E-cadherin, which interacts with b-

catenin to form cell adhesion sites, was detected on the cell

membranes.

AFP and Glypican 3 were detected in the original tissue, the

xenotransplants, and in the cell line by routine histological

staining. HC-AFW1 cells expressed AFP at a level of 34 IU/105

cells at 24 h. Cultured cells showed membrane distribution of

CD10, CD90, CD133 and CD326, as revealed by immunofluo-

rescence (Figure 4). The antigen recognized by HepPar1 was

present in the cytoplasm of all tumour cells. Vimentin was

expressed in distinct areas where cells grew as 3D clusters.

Cytokeratin 7 and cytokeratin type 1 (AE-1 clone) were expressed

homogenously in the cell cultures and in the tumour tissue

(Figure 4 and S1). Flow cytometry analysis of the HC-AFW1 cells

revealed strong expression of CD326 on all of these cells. The cell

culture was characterized by reduced expression of CD10 and by

heterogeneous distribution of CD44, CD90 and CD 133 (Figure 5).

Figure 3. Expression of b-catenin and E-Cadherin in HC-AFW1 cells. (A) b-Catenin in HC-AFW1 cells revealed a deletion of a polypeptide from
amino acids (aa) 22 to 70 coded on exon 3. In this region 3 serine residues and a threonine amino acid are depicted in red; as phosphorylation sites
for GSK3. (B) Western blot analysis revealed a main short form of b-catenin in cultured HC-AFW1 cells (1), in xenografts (2) and in the primary tumour
(3). A larger form was found in the native liver (4)(arrowheads). (C) E-cadherin in native and xenograft tissue and in cultured HC-AFW1 cells was
located at cell-cell contact (red fluorescence). All specimen tumour cells showed green fluorescence staining for b-catenin in the cell nucleus, and in
some cells a membrane localization. Cultured HC-AFW1 cells had notably stronger b-catenin staining in the nuclei. DAPI counterstaining indicates the
cell nuclei (blue fluorescence).
doi:10.1371/journal.pone.0038223.g003
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Histograms of CD133 and CD44 staining revealed a broad peak,

probably due to the presence of two distinct populations, as has

been observed in most established cell lines [13].

To address the stability of the cultured cells the telomere length

was estimated using the flow FISH technique. At passage 2, HC-

AFW1 cells had a mean telomere length of 5.9 kb. At passage 16,

the mean telomere length was 8.7 kb, which was also the length

identified at passage 24 (Figure S4). Cell culture aging was assessed

using acid beta galactosidase staining of senescent cells in cultures

at lower (P4) and higher passages (P20 and P24). When the cells

were plated at a high cell density of 56104 cells/cm2, less than

0.5% of the cells were senescent. At a lower plating density of 104

cells/cm2, 25% of the cells at P4 were senescent. Only 11% of the

cultured cells were senescent at the higher passages (Figure S4).

Effect of cytostatic drugs on HC-AFW1 cells
The HC-AFW1 cells were incubated with cytotoxic drugs at

seven different concentrations in a viability assay. All drugs led to a

marked decrease in the viability of the HC-AFW1 cells except for

Figure 4. Expression of tumour-related proteins in HC-AFW1. Images show immunofluorescence staining of cultured cells. Red fluorescence
denotes homogenous expression of CD90, CD326, cytokeratin type 1 (CK AE1) and HepPar1 as well as heterogeneous distribution of CD10, CD133,
Vimentin and Cytokeratin 7 (CK7) within the cells. Blue fluorescence indicates nuclei (DAPI staining). Bars represent 50 mm.
doi:10.1371/journal.pone.0038223.g004

Establishment of a Pediatric HCC Cell Line

PLoS ONE | www.plosone.org 7 May 2012 | Volume 7 | Issue 5 | e38223



vincristine (Figure 6). The IC50 was 3.9 mg/ml for cisplatin,

68.3 mg/ml for carboplatin, 4.0 mg/ml for doxorubicin, 4.3 mg/ml

for irinotecan and 190 mg/ml for etoposide. The response to

cisplatin and doxorubicin was not significantly different among

HC-AFW1 cells from different passages (P5 vs. P20). The AFP

level in the culture dropped when HC-AFW1 cells were incubated

with cisplatin and doxorubicin (Figure 6C). However, the AFP

level was proportional to the rate of viable tumour cells, which was

only 20% in treated compared to control cultures (determined by

counting the live cells with trypan blue staining).

Discussion

In this study, we describe the cell line HC-AFW1, as the first

paediatric HCC cell line, which was not generated on the

background of viral hepatitis or liver cirrhosis. This novel cell line

presents histological and biological characteristics of an epithelial

liver tumour. To date, continuous HCC cell lines have been

generated exclusively from donors with alcoholic liver cirrhosis or

hepatitis virus infection [14–16]. Based on the pathophysiology of

the disease, these cell lines cannot serve as tools for investigating the

biology of and therapeutic strategies for childhood HCC. Most

paediatric HCCs in Europe are ‘‘de novo’’ cases, and are usually not

related to hepatic cirrhosis [2]. The cell line HepG2 has been the

focus of most attention. Initially, it was reported as a HCC.

However, the authors later corrected their report and claimed that

HepG2 was derived from a HB. HepG2 has been used in a variety of

research studies focusing on metabolism, development, oncogenesis

and hepatotoxicity. HepG2 was also considered representative of

paediatric HCC since the donor was a 15-year-old boy. The

histopathological background together with the original histology

and recent molecular analyses have confirmed the HB characteristics

of HepG2 [17,18]. Hep3B cells were isolated from a young donor

with HCC. The background of a HBV infection in these patients is

obvious, as the Hep3B cells expressed constitutive HBsAg [12]. In

contrast to Hep3B, the primary tumour of the HC-AFW1 line

emerged from a background without any infections, which is the

clinical situation in most cases of paediatric HCC in Europe.

In the case presented here, an extensive histological analysis of

the original tumour, of the HC-AFW1 cell line, and of the derived

xenografts was performed. Consensus reading by several interna-

tional institutions classified the tumour as a HCC. Distinguishing

between HB and paediatric HCC can sometimes be challenging.

Occasionally, HCC-like foci have been postulated in HB post-

chemotherapy as a result of a morphological maturation

mimicking HCC [19]. Furthermore, the simultaneous presence

of both tumour entities (HB/HCC) within the same child has also

been reported and is referred to as transitional liver cell tumours

(TLCT) [20]. TLCT develops in an age group older than that

Figure 5. Expression of tumour markers on HC-AFW1 cells.
Histograms from the flow cytometric analyses results revealed strong
expression of CD326 and reduced expression of CD10 on HC-AFW1
cells. Staining for CD44 and CD133 showed a broad range of expression
in the cell cultures. The isotype control fluorescence is plotted as a black
line. Dead cells were excluded from the analysis by 7AAD staining.
doi:10.1371/journal.pone.0038223.g005

Figure 6. Sensitivity of HC-AFW1 cells to cytostatic drugs.
Viability of HC-AFW1 cells treated with cytotoxic drugs. HC-AFW1 cells
were incubated with cisplatin, carboplatin or etoposide (A) as well as
vincristine, doxorubicin or irinotecan (B) at different concentrations.
Relative cell viability was determined after 72 h by a cell viability assay.
Means and SD from triplicate experiments are shown. Viable cells and
AFP levels were determined in cultures treated with CDDP and
doxorubicin for 48 h (C).
doi:10.1371/journal.pone.0038223.g006
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associated with the typical HB manifestation period and shows an

aggressive behaviour. Neoadjuvant therapy may reduce the

burden of HB, which is more sensitive to cytostatic agents than

HCC. However, some HB characteristics, such as osteoid

deposition and neuromelanin accumulation, persist after chemo-

therapy and can support the diagnosis of HB. The morphological

appearance of the original tumour in our case was that of an HCC

throughout; there were no HB-like areas within the tumour.

Efforts to characterize the HC-AFW1 cell line revealed a unique

cytogenetic pattern including the isochromosome 1q, an interstitial

deletion 5q, loss of chromosome 21, and a derivative chromosome 11.

Whereas in HB gain of chromosome 1 and in HCC loss of 1p and 1q

occur, HC-AFW1 showed obvious isochromosome 1q formation,

leading to a loss of complete 1 p and a gain of 1q (confirmed by

array data). In the remaining chromosome 1, cytogenetic analysis

revealed an interstitial deletion of 1q32–43, which was not seen in

the array. Additionally, the HC-AFW1 line showed a gain of

terminal 2q and a gain of 22q, both typically seen in HB, but not in

HCC. Loss of 4q—seen in both HB and HCC—was also found in

HC-AFW1. Interestingly, an unbalanced translocation between

chromosome 4 and 2q resulted in this deletion. In adult HCC, loss

of 6q, 8p, 9p, 13q, 16p, 16q and 17p occur [21]. On the other hand,

gain of chromosomes 7, 8, 17 and 20 is frequently seen in HB [22].

None of the latter anomalies were detected in HC-AFW1. Based on

the cytogenetic analysis, HC-AFW1 appears to be biologically

different from HB and from adult HCC. Therefore, the morpho-

logical assignment of HC-AFW1 as paediatric HCC is emphasized

biologically. This again seems to underline the biological difference

between paediatric and adult HCC.

Markers of liver tumours, such as Glypican-3, AFP and HepPar1,

were present in HC-AFW1. The HC-AFW1 cell line also expressed

epithelial cell markers such as E-Cadherin, CD326 and cytokeratins

as well as Vimentin, CD44 and CD133, proteins that are often

found in epithelial and mesenchymal tumours. An exact and

definite assignment of paediatric liver tumours is not feasible based

on expression markers alone due to the lack of exclusively specific

markers for HB and HCC. HB may be distinguished from adult

HCC by the expression of a panel of 11 genes [23]. However, there

is no such panel to distinguish between paediatric HCC and HB.

The most important contribution to diagnosing paediatric epithelial

liver tumours thus remains the morphological analysis. Based on

tumour morphology and clinical data, the consensus of the

international pathological evaluation postulated paediatric HCC

as the origin of the HC-AFW1 cell line.

HC-AFW1 cells are similar to the parental HCC cells in terms

of the unique and conserved b-catenin deletion within the tumour.

This deletion involves the phosphorylation site of GSK3beta, a

region associated with preventing degradation and enhanced

accumulation of b-catenin in the cell, and thus leads to excessive

Wnt/b-catenin signalling. The CTNNB1 deletion is somatic and

appears to affect only 1 of the 2 CTNNB1 alleles; the

constitutional DNA showed no alterations. This denotes clonal

development of this multinodular HCC. Large deletions spanning

exon 3 in CTNNB1 are observed only sporadically in adult HCC

[24] but are more common in HB and in childhood HCC [25].

Instead of being localized along the cytoplasmic membrane, b-

catenin is strongly accumulated in the cytoplasm and nucleus;

however, it is not evenly distributed in the tumour tissue. This

accumulation of b-catenin provides a growth advantage to tumour

cells by promoting proliferation and suppressing differentiation

[26,27]. b-catenin accumulation alone, however, does not seem to

cause progression to HCC from a non-malignant state [28].

Overall, there was no hint of anaplastic differentiation however

a selection during the culture process was observed. The stability

of the cell line was supported by repeated cytogenetic analysis at

different passages and by cytology. The constant expression

pattern of selected tumour proteins as well as tumour uptake and

growth rates in mice rendered HC-AFW1 a consistent in vitro and

in vivo model of paediatric HCC.

In concordance with the clinically observed response to CDDP

therapy, HC-AFW1 cells also showed chemosensitivity to CDDP.

Other drugs targeting cell proliferation also affected the viability of

HC-AFW1 cells. The drug concentrations required for 50%

inhibition of cell culture viability were comparable with those

observed in the treatment of HB [29]. HC-AFW1 seems to be a

non-responder to inhibitors of microtubule assembly, such as

vincristine, which is comparable to adult HuH7 HCC cells and

occurs despite the high doubling time of the cells. Vincristine is a

potent inhibitor of cell proliferation in most HCC-derived cell lines

(IC50 at ca. 10 to 20 ng/ml) except for HuH7, which has an IC50 of

20 mg/ml [30]. Other cytotoxic drugs such as cisplatin, etoposide

and carboplatin, have a heterogeneous impact on adult-derived

HCC cell lines. However, HCC in vivo remains chemotherapy

refractive to a high degree [31,32]. This may result from the tumour

architecture in vivo and the presence of tumour stem cells, which

reduces responsiveness to drugs. A xenograft tumour model might

help to further assess these factors and facilitate the development of

treatment regimens. HC-AFW1 showed aggressive and robust

growth in immune incompetent mice. All mice developed tumours

within 4 weeks after transplantation of a relatively low number of

tumour cells. This may be due to the selection of more proliferating

cells with a nuclear distribution of b-catenin, of longer telomeres

and of the high number of CD133-positive cells, which are

considered to be tumour initiating [27]. The sustained proliferation

and selection of cultured cells with longer telomeres and reduced

senescence were also observed in conditions of active pathways like

STAT3 [33]. When tumour fragments were used instead of cultured

cells for xenotransplantation, growing tumours were observed

subcutaneously within 10 days. This tendency of tumour cell

adaptation to skin niches might be useful for further study of more

aggressive tumour growth.

The HC-AFW1 cell line resembled parts of the original

paediatric epithelial liver tumour and showed characteristics of

HCC. The stable culture of HC-AFW1 and its high tumour

incidence in immunodeficient mice are valuable for investigating

the biology of and therapeutic strategies for childhood HCC.

Supporting Information

Figure S1 Expression of tumour-related proteins in HC-
AFW1. Images show immunofluorescence staining in primary

tumour samples (upper rows) and subcutaneous xenografts (low

rows). Red fluorescence denotes homogenous expression of CD90,

CD326, cytokeratin type 1 (CK AE1) and HepPar1 as well as

heterogeneous distribution of CD10, CD133, Vimentin and

Cytokeratin 7 (CK7) within the tumour. Blue fluorescence

indicates nuclei (DAPI staining). Bars represent 50 mm.

(TIF)

Figure S2 Serum AFP level in mice bearing HC-AFW1
xenografts. Seven days post-subcutaneous injection, HC-AFW1

cells led to increased serum AFP levels in NSG mice (n = 4). Sera

were positive for AFP in all mice, although no tumours with a

mean diameter .3 mm were observed initially.

(TIF)

Figure S3 Deletion analysis of b-catenin gene in HC-
AFW1 cells. mRNA (A) and DNA (B) from liver (2) native tumor

tissue (3), xenograft HC-AFW1 tissue (4) and from HC-AFW1 cells
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(5) was amplified by RT-PCR using the ctnb1for and rev primer

for beta catenin (11). Expected RT-PCR products derived from b-

catenin (833 bp) and the smaller product were isolated from the

agarose gel and sequenced using the same primers. (1) Length

marker of 100 bp ladder. (C) Sequence alignment of the larger

PCR fragment (6975066) and of the smaller PCR fragment

(6975070) with the published sequence for beta catenin

(AY081165.1). The smaller product revealed a deletion of 147

nucleotides. Numbers denote the position in the sequence

AY081165.1, (,) represent gaps in alignment.

(TIF)

Figure S4 Telomere length and senescence in HC-AFW1
cells. HC-AFW1 cells at the indicated passages were analysed to

determine telomere length using flow FISH (A). Senescent cells

were detected by blue staining of acid beta galactosidase (B). Cells

at lower passages had shorter telomeres and more were senescent

compared with cells at higher passages.

(TIF)

Table S1 Antibodies for immunohistological staining.

(DOC)
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