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From ancient times to the modern day extending longevity or even finding the elixir for eternal life
has been a motivating quest for many civilizations. There are no shortage of Hollywood films and TV
series that feature long-lived creatures: some heroes and others villains. Many of the ancient Greeks
have what we would regard as a normal lifespan (Montagu, 1994; Batrinos, 2008). For example,
Socrates before his untimely demise was in his 70s. Physicians had been directed to concoct potions
to extend the life of emperors and the wealthy. In the Qin Dynasty, the emperor sent 500 young men
and 500 young women to find the elixir of life in the legendary Penglai, the miraculous place of the
immortals. Detailed descriptions of medicines for immortality were written in the book “Essential
Formulas of Danjing Classics”. Some of these concoctions we would regard as remarkably toxic as
they contain mercury or arsenic. Interestingly, this quest for longevity continues unabated and has
now become a central pillar for modern health care. However, the perils persist with the unverified
claims of a broad range of supplements or the off-target effects of therapeutics which maybe toxic or
otherwise decrease longevity. Clearly, then as now an understanding of the fundamental biology and
chemistry of aging is an essential goal for modern scientific research.

Despite the long history of the fascination of a long life, aging research as a systematic scientific
effort is a recent affair. In the United States, the Aging Related Unit in the National Institutes of
Health was formed in the 1940s, first in the NIHDivision of chemotherapy, thenmoved to Baltimore
City Hospital under the direction of Nathan Shock. In 1974 the National Institute of Aging (NIA)
became an independent institute with a focus on aging biology and age related diseases. PubMed
documents publications on aging as early as in 1925. In 1988, the first genetic locus age-1 that
modulates lifespan was identified in C. elegans (Friedman and Johnson, 1988), and 8 years later
cloned and found to encode a PI3 kinase (Morris et al., 1996). Now there are a total of ∼487,000
articles using the search term “Aging” in PubMed, with ∼20,000 articles since 2020.

There has also been a long-standing interest associating aging with metabolism. Searching
PubMed with “Aging and Metabolism” results in ∼188,685 articles, with 3,219 since 2020. Dietary
restriction has been shown to affect longevity and age related illnesses in several organisms and
model systems, with the effects on longevity dependent on genetic background (Mair et al., 2003;
Liao et al., 2010; Cava and Fontana, 2013). At the molecular level, extended lifespan has been
associated with insulin and IGF-1 receptor function, as well as age-1/PI3 kinase activity (Kenyon
et al., 1993; Kimura et al., 1997). Modulation of sirtuins, which are NAD+ (Nicotinamide adenine
dinucleotide) dependent enzymes, was reported to extend lifespan in yeast (Kennedy et al., 1995;
Kaeberlein et al., 1999). AMPK (AMP activated protein kinase), a key sensor of metabolism and
cellular energy, is required for lifespan extension in C. elegans in response to dietary restriction
(Greer et al., 2007). Targeting the nutrient sensing pathway, the mTOR (mechanistic target of
rapamycin) signaling pathway, using the inhibitor rapamycin, has been used to enhance longevity in
several organisms, and shows efficacy when administered to aged mice (Harrison et al., 2009; Miller
et al., 2011; Papadopoli et al., 2019). These studies suggest that the aging can be modified by changes
in lifestyle or pharmacological intervention.
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Observations that a deficit of mitochondrial function may
result in energy shortage and accumulation of reactive species
that are damaging to cellular structure and function inspired the
“Mitochondrial dysfunction theory of aging” (Lemasters, 2005;
Payne and Chinnery, 2015; Kauppila et al., 2017). Paradoxically,
there are also observations that inhibition of mitochondrial
respiration can extend lifespan. Reconciliation of these
observations leads to the concept that the plasticity of
metabolic pathways, which has a preprogrammed genetic
component, is central in adapting to the environment and in
turn impacts longevity (Kayser et al., 2004; Lapointe and Hekimi,
2008; Copeland et al., 2009; Yang and Hekimi, 2010). This is an
idea captured in the “Hormesis theory of aging” (Ristow and
Schmeisser, 2014; Yun and Finkel, 2014). Clearly, the term
“mitochondrial dysfunction” is inadequate to describe the
complexity of the adaptive capacity of the age regulated
metabolic pathways. Additionally, a judicious inhibition of
mitochondrial respiration may be required for activation of
survival pathways (Chouchani et al., 2013). A better
understanding of the role of metabolism in aging calls for
more insights into the specifics of regulation of bioenergetics
and metabolism which is now becoming feasible with the advent
of sensitive and high precision technologies in these areas of
research (Hill et al., 2019).

Although that “the Free Radical Theory of Aging” was
proposed in 1956 based on the idea that free radicals can
attack cellular constituents and thus may be a direct cause for
aging (Harman, 1956), research linking aging to redox
modulation is still evolving. With the realization that “free
radicals” have a signaling role, it is clear that this basic
hypothesis needs refinement to encompass new advances in
redox biology and the recognition that all “free radicals” are
not the same. Searching “Aging and Free Radical” has total of
13,754 articles, “Aging and oxidative stress” 19,044, “Aging and
Redox” 9,139 articles. Many studies have challenged the idea that
cellular oxidative damage due to “free radicals” or oxidative stress
is a cause of aging. First, reactive oxygen species (or ROS) may be
important in modulating aging, but the hypothesis lacks precision
since it fails to identify “which species” contribute to aging or the
mechanisms involved. This point is sometimes over-looked but
similarly if we say “Genes” and “Proteins” are important in
modulating aging, most of us will ask which gene(s) and
which protein(s). Fortunately, technical advances are over-
coming these barriers and allow specific hypotheses to be
tested. Over the last 10 years the genetic regulation of redox
related networks has also turned out to be remarkably complex.
For example, one of the key regulators of redox modulatory
proteins is Nrf2, which is a transcription factor that regulates
genes encoding a subset of redox regulatory proteins, and is also a
downstream target of insulin receptor and involved in lifespan
regulation in C. elegans (Tullet et al., 2008). What is not predicted
from the “Free radical theory of aging” is that increased
expression of Nrf2 and its target antioxidant enzymes is
detrimental for health and disease (Rajasekaran et al., 2011;
Levonen et al., 2014; Dodson et al., 2015; Schmidlin et al.,
2019). This key finding indicates that both “oxidative” and
“reductive” stress, depending on their specificity, levels and

cellular context, may have contrasting effects on aging-
dependent processes.

In many aging related phenomena, including cellular
senescence and perturbation circadian control, inadequacy in
the autophagy and mitophagy pathways, also have strong
connection to redox and metabolic regulation (Lopez-Otin
et al., 2013). Autophagy is an intracellular degradation process
that is highly regulated by a variety of signals including
availability of metabolic substrates, cellular and the
environmental redox landscape (Zhang, 2015; Klionsky et al.,
2016). It is now clear that autophagy is a pathway that may
remove and reverse cellular damage caused by oxidative stress
and as such it is important to understand whether it is sufficiently
active at the right place and at the right time (Lee et al., 2012;
Giordano et al., 2014). Because of its central importance in health,
disease and aging, the specific autophagic degradation of the
mitochondria was identified as a specific process known as
mitophagy (Lemasters, 2005; Redmann et al., 2014; Ma et al.,
2020). Autophagy and mitophagy then play a key role in the
quality control and turnover of lipids, proteins, and organelles,
and their regulation modulates the metabolic and redox
landscape (Dodson et al., 2013; Redmann et al., 2016). In
aging tissues and age related diseases, these processes are
unable to clear excess or dysfunctional proteins and organelles
(Wong et al., 2020). Damaged organelles including mitochondria
together with the accumulation of toxic proteins may further
propagate cellular damage and contribute to the progression of
age related diseases (Chen et al., 2020).

Aging research has been gainingmomentum as better tools are
developed and systems biology approaches are adopted. CRISPR/
Cas techniques provide enhanced means of determining
experimentally the functional consequence of gene disruption
or mutation (Ran et al., 2013; Charpentier et al., 2019). These
approaches can give insights into the networks that sense
environmental signals that change cellular functions and
thereby contributing to healthy aging or age related
pathologies. Genomics, transcriptomics, proteomics, and
metabolomics, some even at the single cell level, will aid in the
understanding of the aging process in complex organs including
the brain and the immune system (Aon et al., 2020; Zhang et al.,
2020). High throughput bioenergetics analyses are now available
which use small quantities of materials and even frozen samples
and thus greatly extend the current studies of metabolism and its
connection to aging (Dranka et al., 2011; Hill et al., 2012; Chacko
et al., 2014; Redmann et al., 2018; Acin-Perez et al., 2020). For
example, recent studies substantiated the connection of
mitochondrial function, metabolism inflammation, and aging,
and revealed the potential for a better understanding of this
integrated regulatory network in attenuating age related diseases
and promoting healthy aging (Bernard et al., 2018; Dunham-
Snary et al., 2018; Rangarajan et al., 2018). In addition, a better
understanding of the fundamentals of redox biology, and the
improvement of techniques detecting and scavenging different
reactive species are resulting in a rapid evolution of redox biology
research (Kalyanaraman et al., 2012; Kalyanaraman, 2013;
Afonso and Spickett, 2019). Advanced informatics methods
have been developed, including GWAS, NetWAS, the
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transcriptome-metabolome-wide association study (TMWAS)
and xMWAS platforms. These methods facilitate data
integration, network visualization, clustering and differential
network analyses of data from two or more omics dataset of
genetic phenotypic, biochemical, or cell biological assays, which
can reveal the whole organism changes that underlie the biology
of aging (Beekman et al., 2013; Go et al., 2018; Uppal et al., 2018;
Chacko et al., 2019; Roussarie et al., 2020; Smith et al., 2020).
Integration of metabolism, redox biology with aging phenotypes
will likely reveal novel nodes of regulation which can then identify
new targets for healthspan extension interventions.

It is important to recognize that aging is not a single organ
disease, and is highly dependent on the fact that tissues
functionally interact and cross modulate. The blood and
lymph circulate through the body and transport hormones,
nutrients, cytokines, myokines, cell-free mitochondrial DNA,
and other cellular metabolic products to other parts of the body
(Barron and Pike, 2012; Coelho et al., 2019; Cunnane et al.,
2020; Iske et al., 2020). Aging associated accumulation of the
propionate metabolism product methylmalonic acid in the
serum, may reprogram cancer cells to become more
aggressive (Gomes et al., 2020). The microbiome contributes
to a large portion of the total DNA/RNA in mammals and
controls metabolism through its interaction with the diet and
other environmental factors (Bernard et al., 2018; Bana and
Cabreiro, 2019; Buford, 2020). Bacterial and viral infection,
also alters the biology of the body and impact aging and age
related diseases (Szaniawski and Spivak, 2020). Thus
understanding the crosstalk between the gut, brain, liver,
heart and muscle via the circulation is of critical importance
to the understanding of aging biology (Lehallier et al., 2019).
Since we cannot view age related pathologies only in isolated
cells or tissue, we can also learn by observing nature. The
existence of long-lived and short-lived species, for example, the
naked mole-rat, different varieties of fish, clams, turtles,
rodents, and centenarian humans, surely hold important
clues to understanding how longevity and healthy living
have been achieved (Austad, 2018).

An important contemporary research goal is to convert what
we understand about metabolism and redox regulation in the
context of aging into approaches to promote healthy aging. This
approach can be surprisingly straight forward. For example, it
has been shown that supplementation of mitochondrial TCA
cycle metabolites, malate, fumarate, alpha-ketoglutarate, and
oxaloacetate, supplementation of NAD+ precursor
nicotinamide riboside extended lifespan in Drosophila and C.
elegans (Belenky et al., 2007; Williams et al., 2009; Edwards
et al., 2013; Chin et al., 2014; Zhang et al., 2016).
Supplementation of alpha-ketoglutarate also decreases
inflammation and frailty in mice, even when started at
18 months of age (Asadi Shahmirzadi et al., 2020). Not
surprisingly, not all TCA cycle metabolites have the same
effects. For example, accumulation of succinate is detrimental
in the context of ischemia-reperfusion injuries (Chouchani
et al., 2014). Dietary restriction, exercise, and circadian
regulation have all been explored both in terms of metabolic
mechanisms and with regard to reactive species. The networks

involved in modifying lifespan are complex, and may be
dependent on genetic, environmental, age, and other as yet
unknown factors (Longo and Panda, 2016; Radak et al., 2019;
Kepp et al., 2020; Perez-Matos & Mair, 2020). Pharmacological
reagents that target autophagy and mitophagy can be tested and
optimized against age related diseases and promote healthy
aging (Galluzzi et al., 2017; Piskovatska et al., 2019).
Compounds targeting the mitochondria, for example, MitoQ,
and SS-31 have been explored for their potential for healthspan
enhancement (Tate et al., 2019; Young & Franklin, 2019;
Whitson et al., 2020). Senolytics have been shown to
attenuate cell-free mitochondrial DNA release, which then
decreases the detrimental immune responses associated with
aging (Iske et al., 2020). Mitochondria not only can be targeted
to improve metabolism and healthspan, but also can generate
the mitochondrial-derived peptides (MDPs) that can regulate
metabolism and health (Reynolds et al., 2020).

Advancement of hygiene, food and environmental safety,
health care, and a better understanding of aging biology and
aging interventions are at such a stage that it has been suggest
that the individuals who will reach the age of 150 are already living
(https://www.stevenaustad.com/). It is still not clear why age is the
single most important risk factor for many diseases including but
not limited to: cancer, cardiovascular and neurodegenerative
diseases. This is a new exciting era in which enabling
technologies can provide exciting new insights into the
mechanisms and biology of aging. It is likely that research
linking aging to metabolism and redox regulation will feature
prominently in the next decade. The grand challenge is then to
understand the networks linking metabolism, and redox biology to
cell aging and organismal aging and to target specificmetabolic and
redox networks for the promotion of a healthy lifespan.
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