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Abstract: In this work, the corrosion behavior of NiCr(Ti) protective coatings deposited on mild steel
substrates through laser cladding technology is studied as an alternative new material for metallic
bipolar plates used in PEMFC applications. For electrochemical testing, a solution consisting of
0.5 M H2SO4 + 2 ppm F− at room temperature is used as an electrolyte. The fluoride ions are added
to simulate the conditions in the PEM fuel cell due to degradation of the proton exchange membrane
and fluoride release. A saturated calomel electrode (SCE) is used as a reference electrode and a
platinum mesh as the counter electrode. Scanning electron microscopy (SEM) and optical microscopy
(OM) are used for studying the morphology of the protective coatings and the effect of Ti addition.
The electrochemical evaluation consisted of measuring the open circuit potential (OCP), followed
by electrochemical impedance spectroscopy measurements (EIS) and potentiodynamic polarization.
It is found that the coatings with 5% Ti, 7% Ti and 10% Ti addition comply with the conditions of
the US DOE regarding corrosion performance to be used as materials for the manufacture of the
bipolar plates.

Keywords: protective coatings; Ti addition; laser cladding; corrosion; PEMFC

1. Introduction

Every year we see an increasing energy demand in our society with a negative impact
on the environment and the generation of greenhouse gas emissions (essentially CO2). The
need for clean methods of electricity production has stimulated the search for new sources
of sustainable energy. Fuel cells (FCs) represent an attractive solution because of their ability
to convert chemical energy directly into electrical energy for as long as fuel and oxidants
are supplied [1]. In the transportation sector, internal combustion engines (ICEs) have
come to have a competitor in fuel cells due to the fact that FCs are electrochemical engines
with zero or very low emissions. Thus, they have been named zero-emission engines [2].
Among different types of fuel cells, polymer electrolyte membrane fuel cells (PEMFCs)
have acquired a lot of attention for transport applications due to their high efficiency,
relatively low temperature, high power density and eco-friendly performance [3,4]. The
bipolar plates (BPs) are one of the most important components of a PEMFCs that comprise
approximately up to 80% of the total volume and up to 45% of the cost of a fuel cell
stack. The BPs have important functions such as uniform distribution of fuel and oxidant
gases within the cell, collecting electrical current and transporting it through the fuel cell
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stack, separating the individual cells in the stack and removing exhaust water and heat
out of the stack [5]. According to the US Department of Energy (US DOE), the materials
from which the bipolar plates are manufactured must satisfy minimum specifications,
such as the following: high corrosion resistance, high electrical and thermal conductivity,
low cost, high mechanical strength, easy manufacturing, low gas permeability and low
resistivity [6]. The US DOE targets bipolar plates for transportation applications in 2020
regarding the corrosion behavior. It stipulates that the corrosion rate on both the anodic
and cathodic sides must not exceed 1 µA/cm2 and that the anodic side must not have active
peaks [6]. In the early stages of PEMFC development, impregnated graphite was used as
a bipolar plate material due to its low contact resistance and good corrosion resistance.
However, because of its poor mechanical properties, high porosity and gas permeability,
research has shifted to metallic bipolar plates (MBPs). Compared to graphite, metallic
bipolar plates satisfy the US DOE requirements in terms of manufacturing and mechanical
proprieties but are more susceptible to surface corrosion and dissolution of metallic ions in
the PEMFC environment [7].

Protective coatings have been investigated in order to improve the corrosion resistance
of metallic bipolar plate surfaces. In recent years, different manufacturing methods of
protective coatings have been studied, such as the following: chemical vapor deposition [8],
magnetron sputtering [9], cathodic arc deposition technique [10], electron beam evapo-
ration [11], arc ion plating [12], high-velocity oxygen fuel (HVOF) [13,14], pulsed laser
deposition [15,16], etc. Among the deposition techniques, laser cladding (LC) is a strong
candidate for the manufacturing of coatings with enhanced surface proprieties. It has the
advantage of applying a different material as a coating onto the surface of the selected
substrate [17,18]. Recent studies have shown that laser cladding can be an efficient tool
to produce high-density coatings on large surfaces with small heat-affected zones and im-
proved corrosion and wear resistance. The deposition of a wide range of materials has been
successfully performed using various materials for different applications. Considerable
attention is attributed to NiCr-based superalloys due to their ability to provide high-quality
coatings, anti-corrosive properties and their cost-effectiveness [19–21]. MetcoClad 625F is
a non-magnetic nickel-chromium-molybdenum-based superalloy, similar to Inconel 625.
The presence of nickel and chromium in the alloy provides good corrosion resistance in
oxidizing environments, while the presence of molybdenum provides good corrosion resis-
tance in non-oxidizing environments. The formation of Cr2O3 film through passivation on
the alloy surface has been reported to be the primary reason for the corrosion resistance
of the MetcoClad 625F superalloy. Moreover, the presence of 8–10 wt.% Mo in the alloy
enhances the resistance to pitting and crevice corrosion [22,23]. For further improvement,
the introduction of reinforcing particles into the metal matrix increases the mechanical
performance and deposition quality. In some publications [24–26], titanium (Ti) has been
added to the commercially available raw materials and protective coatings have been
successfully manufactured. It was observed that new phases were formed that improved
the properties of the coatings in terms of corrosion resistance. Jin et al. [27] have studied
CrTiN coatings with different Ti content deposited on stainless steel substrates by using
magnetron sputter ion planting as bipolar plates for proton exchange membrane fuel cells.
The study showed that the Ti addition provided increased corrosion resistance.

In the present study, mild steel plates were coated with NiCr(Ti) protective coatings
using laser cladding technology, in order to obtain new materials with potential application
for bipolar plates in PEM fuel cells. The newly developed materials are expected to have
increased corrosion resistance with the addition of Ti to the metal matrix. Thus, the effect of
Ti addition on the microstructure of the coatings was studied by using optical microscopy
(OM) and scanning electron microscopy (SEM). The phases developed within the coatings
were studied by X-ray diffraction (XRD) and the electrochemical behavior was studied
using open circuit potential (OCP), electrochemical impedance spectroscopy (EIS) and
potentiodynamic polarization techniques. To the best of our knowledge, laser-cladding
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NiCr-based alloys with Ti addition have not been studied in potential applications for
bipolar plates for PEM fuel cells.

2. Materials and Methods
2.1. Feedstock Powder and Powder Deposition

The powder used in this study was obtained by mixing the commercially avail-
able MetcoClad 625F powder (particle size distribution −53 . . . +20 µm) with different
wt.% Metco 4010A powder (Ti, 99% purity with particle size distribution in the range of
−90 . . . +22 µm), both of them supplied by Oerlikon Metco, Switzerland. The MetcoClad
625F powder has the following composition according to the manufacturer: 62–69% Ni,
20–23% Cr, 8–10% Mo, 3–5% Nb and traces of iron and other elements. For a homogenous
mixture, the powders were mechanically blended for 5 min at a speed of 150 rpm. Low
carbon mild steel plates (60 mm × 25 mm × 5 mm) were used as a substrate for the deposi-
tion of feedstock powders. The base MetcoClad 625F coating (labeled B from now on) was
reinforced by adding 1.5, 3, 5, 7 and 10 wt.% of Ti to the composition.

The experimental part was carried out using a COHERENT F1000 (Santa Clara, CA,
USA) diode laser (λ = 975 nm) equipped with a PRECITEC WC 50 (Gaggenau, Germany)
processing head (200 mm focal length). The cladding head was manipulated using a
CLOOS six-axes robot and an AT-1200 HPHV TERMACH (Haiger, Germany) feeding
system was used to transport the powder to the cladding head. Argon with 99% purity
was employed as shielding gas. The schematic representation of the laser cladding process
is presented in Figure 1.
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Figure 1. Schematic representation of the laser cladding process.

Prior to laser cladding deposition, the mild steel substrates were polished to remove
the oxides from their surfaces. On the prepared mild steel substrate, ten partially over-
lapped tracks with an overlap degree of 45% were deposited using the process parameters
presented in Table 1.
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Table 1. Parameters for laser cladding deposition of samples.

Samples Powder Preheating
[◦C] Type of Laser Power

[W]
Focal Distance

[mm]
Stand-Off Distance

[mm]
Deposition

Speed [cm/min]
Gas Flow
[L/min]

B
B + 1.5% Ti
B + 3% Ti
B + 5% Ti
B + 7%Ti

B + 10% Ti

70 continuous 859 200 11.7 40 15.1

2.2. Characterization of NiCr(Ti) Protective Coatings

The morphologies and microstructures of the laser-cladded coatings were analyzed
in cross-section by optical microscopy (Axio Vert.A1, Carl Zeiss, Germany) and scanning
electron microscopy (SEM, Quanta FEG 250, FEI, Hillsboro, OR, USA). Energy Dispersive
X-ray Spectrometer (EDS, EDAX Inc., Mahwah, NJ, USA) was used for elemental analysis
determination. Phase identification and quantification were determined using an X-ray
Diffractometer (PANalytical X’Pert Pro powder, Malvern Panalytical, Malvern, UK) with
CuKα radiation.

Corrosion resistance of the laser-cladded coatings was studied in a conventional three-
electrode configuration electrochemical cell connected to a BioLogic potentiostat/galvanostat
model SP-150 (BioLogic Science Instruments, Seyssinet-Pariset, France). An SCE electrode
was used as a reference electrode and platinum gauze was used as a counter electrode.
The working electrodes consisted of mild steel and laser-cladded samples with an exposed
surface area of 0.785 cm2. Before measurements, the surface of tested samples had been
polished with different grades of SiC abrasive papers (up to 2400 grit size). Afterward, they
were polished using 3 µm diamond suspension until a mirror-like surface was obtained.
Finally, the samples were cleaned with distilled water and ethanol. The electrolyte used in
all electrochemical tests was a solution of H2SO4 0.5 M (pH = 0.3) + 2 ppm F− at room tem-
perature. The fluoride ions were added to simulate the conditions in PEM fuel cell. During
the operation of PEM fuel cells fluoride ions are released due to the degradation of proton
exchange membrane and sometimes these ions can be adsorbed on organic materials [28].

Electrochemical evaluation of NiCr(Ti) coatings consisted of measuring the open
circuit potential (OCP) for 2 h. Afterward, electrochemical impedance spectroscopy (EIS)
studies were performed using the impedance module of Biologic SP-150 as described
in our previous papers [29,30]. The frequency range was 100 mHz–100 kHz with an
alternative voltage amplitude of 10 mV. In each test, 60 experimental data were recorded
and represented by a logarithmic arrangement of 10 data points per decade. The recorded
EIS data were fitted with an equivalent electrical circuit (EEC) by a complex non-linear least
squares Levenberg-Marquardt procedure using ZView 2 software (Scribner Associates, Inc.,
Southern Pines, NC, USA). Potentiodynamic polarization curves were recorded at a scan
rate of 1 mV/s in the potential range of −250 mV to +250 mV versus the OCP value.

3. Results and Discussion
3.1. Microstructure and Phase Analysis

In order to visualize the microstructure of NiCr(Ti) coatings, the prepared samples
were electrochemically etched with a 10 wt.% solution of oxalic acid at 3 V for 12 s. Rep-
resentative metallographic images of coatings collected in cross-sections without Ti and
with 3%, 5% and 10% Ti addition are presented in Figure 2. One can observe that the mi-
crographs of the deposited laser cladded samples showed a dense structure free of cracks,
porosity or other defects. Besides, the micrographs show a dendritic structure revealed by
the etchant. Furthermore, it was observed that the size of dendrites increased with the Ti
addition while the volume fraction of the NiCr-
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Representative SEM images taken in a cross-section of a NiCr-based coating with Ti
addition (B + 5% Ti) are presented in Figure 3. The microstructural examination reveals
dendritic structures (D) with inter-dendritic regions (ID) and secondary products (SP).
A semi-quantitative analysis was performed to reveal the chemical composition of the
NiCr(Ti) coating on the areas marked from A to E. According to the EDX analysis, it can
be noticed that the dendritic region, labeled A, is rich in Ni, Cr and Mo. Traces of Fe
and Ti were noticed as well. Besides, O can be noticed, which might be present due to
powder particle oxidation during in-flight. The inter-dendritic area, labeled C, is rich in
Ni, Cr, Mo and Nb, while trances of Ti and Fe were detected. During the cooling process,
secondary phases form as well. The formation of secondary phases is caused by the
segregation of the alloying elements that are added to the NiCr-based powder in smaller
amounts. Among them, laves (labeled B) rich in Nb and Mo were observed and precipitates
rich in Ti and Nb, which might be attributed to TiC (labeled D) and NbC, respectively
(labeled E). The results are in accordance with other research carried out on laser-cladded
NiCr-based coatings [22,31].

Phase identification was performed by XRD on NiCr-based coatings without Ti and
with 3%, 5% and 10% Ti additions. In Figure 4 it can be seen that the peaks have different
intensities due to the different orientations of grains caused by directional cooling. The
XRD pattern of the NiCr-based coating was taken as a reference and is in accordance with
data published in the literature [17,22]. The NiCr-
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phase diffraction peaks have been
identified in all samples as follows: the first peak is (111) at 44.28◦, the second one is (200) at
51.59◦, (220) at 44.28◦, (311) at 92.38◦ and (222) at 97.83◦ (PDF# 04-001-3422). In the coatings
manufactured with Ti addition, the presence of Ti within the coatings was confirmed by
the peak at the position of 51.59◦. Titanium is dissolved into the FCC Ni-Cr phase and the
new Ni-Cr-Ti phase can be attributed as well to the peak at the position of 51.59◦. Other
phases might have formed besides the ones identified, but due to their low intensity, they
were not detected by XRD analysis.
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3.2. Electrochemical Behavior

All metallic samples were electrochemically evaluated with the same protocol, which
consisted of measuring for 2 h the open circuit potential (OCP) in the test solution, followed
by electrochemical impedance spectroscopy measurements (EIS) and potentiodynamic
polarization curves (Tafel method) at a low scan rate of 1 mV/s. All electrochemical
determinations were performed at 25 ◦C.

First of all, the OCP variation in time was measured in order to obtain preliminary
information on the process that unfolds at the interface between the test electrode and
acid electrolyte. The recorded OCP evolution in time for all tested samples is presented in
Figure 5. The potential values after 2 h recorded in the absence of a current tend towards a
cvasi-steady-state value, which is approximately equal to the corrosion potential values
determined from the Tafel plots. For NiCr(Ti) coatings on mild steel, an OCP variation
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is observed towards more positive values with the increase in the titanium concentration
added in the coating deposited on the OLC substrate. This variation of the OCP values
is usually attributed to an increase in the corrosion resistance of the NiCr(Ti) deposited
coatings. This is most likely caused by the formation of a passivating film on the surface of
the laser-cladded coatings.
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The potentiodynamic polarization curves presented in Figure 6 obviously show a
significant decrease in the anodic current densities with the increase in titanium addition
in the NiCr(Ti) coatings, indicating an increase in corrosion resistance in the aggressive
environment used in the experimental tests.
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The same pronounced variation can be observed for the cathodic currents recorded for
carbon steel used as a basis for the deposition of different layers and samples with applied
NiCr(Ti) coating. The values of the cathodic current densities decrease proportionally with
the amount of titanium added to the coatings. Therefore, this means that in the acidic
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environment used to carry out the tests, titanium acts as an inhibitor of the cathodic process,
thus limiting the hydrogen evolution reaction.

Table 2 summarizes the values of polarization parameters such as the following:
corrosion current (icorr), corrosion potential (Ecorr) and slops of the anodic (ba) and cathodic
(bc), all these values being calculated using the Tafel extrapolation method with the BioLogic
SP150 software, EC-lab 10.38. Moreover, the polarization resistance (Rp) was calculated for
all the investigated samples using the Stern–Geary Equation as follows (1):

Rp =
ba·bc

icorr·2.303(ba + bc)
(1)

where: Rp is the polarization resistance, Ω·cm2; ba and bc are the anodic, respectively, the
cathodic Tafel slopes, V; icorr is the corrosion current density measured in A·cm−2.

Table 2. Polarization parameters for samples tested in H2SO4 0.5 M (pH = 0.3) + 2 ppm F− solution.

Samples icorr
[µA·cm−2]

Ecorr
[mV/SCE]

−bc
[mV·dec−1]

ba
[mV·dec−1]

Rp

[kΩ·cm2]

OLC 46.31 −575 75.2 50 0.28
OLC-B (B) 9.84 −395 72.1 451 2.74
B + 1.5% Ti 2.41 −325 29.1 422 4.91
B + 3% Ti 1.72 −292 27.7 410 6.55
B + 5% Ti 0.189 −239 25.4 394 54.82
B + 7% Ti 0.085 −216 23.2 385 111.77

B + 10% Ti 0.071 −206 21.3 373 123.22

Analyzing the presented data, it can be seen that the best results were obtained for the
coating with 5%, 7% and 10% Ti additions with a current density value below 1 µA·cm−2,
which is the target set by the U.S. Department of Energy (U.S. DOE) in 2020 [6]. Even
more, the corrosion current density values for the last two coatings are below 0.1 µA·cm−2.
Besides, the coatings have the lowest icorr and highest Rp values, indicating high anticorro-
sive proprieties.

The protective efficiency (PE) of the NiCr(Ti) coatings on mild steel in the test solution
was calculated from the equation shown below as follows:

PE(%) = 100·
(

1 − icorr

i0corr

)
(2)

where i0corr corresponds to the current density of the uncoated mild steel and icorr corre-
sponds to the current densities of NiCr(Ti) coatings obtained from the potentiodynamic
studies in the test solution. From Table 3, it can be seen that the protective efficiency in-
creases with the increase in Ti content. The reason for this is the formation of a stable oxide
film on the surface that enhances the corrosion resistance in an aggressive acidic medium.
The corrosion rate (CR) of uncoated mild steel and NiCr(Ti) coatings was calculated with
the following equation:

CR = K1·
icorr

ρ
·EW (3)

where CR represents the corrosion rate (mm per year), icorr the corrosion current density
(µA·cm−2) obtained from the potentiodynamic studies. EW and ρ are the equivalent
weight and densities of the samples (g·cm−3), respectively. K1 is a constant with a value
of 3.27 × 10−3 (mm·g·µA−1·cm−1·yr−1). From Table 3, it can be seen that the corrosion
rates decrease with the increase in Ti content due to the formation of the thin oxide film
developed on the coating’s surface. It is well known that Ti spontaneously forms oxides
when exposed to the environment.
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Table 3. Protection efficiency (PE) and corrosion rates (CR) for mild steel and NiCr(Ti) coatings on
mild steel in H2SO4 0.5 M (pH = 0.3) + 2 ppm F− at 25 ◦C.

Samples PE [%] CR [mm/yr]

OLC - 0.5423
OLC-B (B) 78.7 0.0980
B + 1.5%Ti 94.8 0.0235
B + 3%Ti 96.3 0.0163
B + 5%Ti 99.5 0.0017
B + 7%Ti 99.8 0.0007

B + 10%Ti 99.8 0.0006

The EIS measurements were conducted at open circuit value at room temperature. In
Figure 7 are presented the corresponding Nyquist and Bode plots of mild steel and NiCr(Ti)
coatings on a mild steel substrate. All Nyquist plots (see Figure 7a) are presented to show a
single capacitive loop with a low diameter for mild steel and base material (NiCr protective
coating). A higher spectra diameter for coated samples with 5%, 7% and 10% Ti addition
can be observed, which is in accordance with the obtained values of corrosion parameters
from the potentiodynamic polarization curves.
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As the titanium content increases, the materials are still very stable in H2SO4 0.5M
(pH = 0.3) + 2 ppm F− at 25 ◦C and the radius of the semicircle in the Nyquist plot exhibits
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a substantial increment, which means an improvement in the polarization resistance (Rp)
or, alternatively, an increment in the corrosion resistance.

In the Bode-|Z| diagrams (see Figure 7b), a strong shift of the impedance modulus to
higher values is noted as the titanium content increases, which clearly indicates an increase
in the corrosion resistance because of the development of the passive film on the surface of
the analyzed samples. The |Z| values in the curves corresponding to +5% Ti, +7% Ti and
+10% Ti are very close and slightly higher than those obtained at 1.5% and 3% Ti because
of the increased thickness of the passive film with the increment of the titanium content.
The slopes of the graphics follow the value −1 for all the samples, which indicates the
capacitive performance of the passive layer that is built up.

In the Bode phase plots (see Figure 7c), a characteristic pattern of the early nucleation
of a passive film on the surface of the sample can be seen. As the titanium content increases
by more than 3%, the film formed thickens and has capacitive behavior demonstrated by a
phase angle approaching 90◦ over a large band of frequencies, a process which is linked to
a decrease in capacitance.

After analyzing the impedance spectra profiles, the collected experimental results
will be fitted to an equivalent electrical circuit. An equivalent circuit consists of a group
of elements (resistors, capacitances, Warburg elements, inductors and other impedance
distribution components) that provide a similar response to corrosion in the analyzed
frequency interval.

When the laboratory impedance data are analyzed, they are compared with the
performance of an equivalent electrical circuit and the measurement of the values of the
individual electrical parameters is performed. When corrosion processes are involved,
these values serve to provide information on the corrosion resistance of the material as well
as on the corrosion process mechanism. When considering the application of equivalent
electrical circuits for the analysis of EIS data, it is important to realize that there is often
a great variety of circuit arrangements that can very accurately replicate the identical
behavior as that found experimentally in a real process.

In Figure 8, the equivalent circuit used to fit the impedance spectrum of samples
measured at OCP is presented. The circuit is composed of the following: Rs as the 0.5 M
H2SO4 + 2 ppm F− solution resistance, Rct as the charge-transfer resistance at the interface
electrolyte/coating, W as Warburg resistance and CPE as the constant phase element.
This constant phase element has been selected in place of an ideal capacitance in order to
consider the inhomogeneities of the passive layer [32].
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Table 4 shows the calculated values of the circuit elements for modeling the coated
samples. The higher Rct suggest an enhanced corrosion resistance.

Table 4. Calculated values of the circuit elements for modeling of metallic samples in test solution.

Samples Rs
[Ω·cm2]

Q
[S·cm−2·sn] n Rct

[Ω·cm2]
W

[S·cm−2·s0.5] Chi2

OLC 2.073 12.11 × 10−5 0.9251 168 7.958 × 10−9 1.84 × 10−3

OLC-B (B) 1.364 8.61 × 10−5 0.9005 385 5.946 × 10−3 1.26 × 10−3

B + 1.5% Ti 2.784 6.01 × 10−5 0.9251 4005 1.789 × 10−3 2.90 × 10−3

B + 3% Ti 1.807 5.13 × 10−5 0.9634 2.293 × 104 9.696 × 10−5 4.22 × 10−2

B + 5% Ti 1.661 4.61 × 10−5 0.9404 2.694 × 104 2.694 × 10−5 5.63 × 10−3

B + 7% Ti 1.589 4.54 × 10−5 0.9397 1.861 × 105 4.301 × 10−5 2.51 × 10−3

B + 10% Ti 1.972 4.87 × 10−5 0.9329 1.909 × 105 1.587 × 10−4 2.25 × 10−3
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The impedance of a CPE is given by the following [33]:

Q = ZCPE (ω) =
[
C(jω)n]−1 (4)

A parameter obtained by analyzing the process is the ideality factor “n”, which means
that the performance of the real process is more similar to the ideal, since the value of n is
nearer to the unit and, consequently, the surface area is more uniform.

The finite Warburg diffusional element has the impedance Zw given by the following [34]:

ZW = RD
tanh

√
jwτD√

jwτD
(5)

where: w is the frequency (Hz), j is the imaginary unit, τD is a time constant associated
with the mass transfer and RD is the resistance of the finite Warburg diffusional element.
The existence of the Warburg resistance is related to the corrosion process controlled by the
diffusion circulation.

4. Conclusions

A NiCr coating with different Ti additions was successfully deposited on mild steel
plates by laser cladding technology in order to be used as potential materials for bipolar
plates in polymer electrolyte membrane fuel cells. Optical microscopy, SEM, EDS, XRD,
OCP, LP and EIS were performed in order to compare the microstructure and behavior of
the coatings in a solution consisting of 0.5 M H2SO4 + 2 ppm F− at room temperature. The
results lead to the following conclusions:

• All the analyzed coatings show a dendritic microstructure; the size of dendrites in-
creased with the Ti addition while the volume fraction of the NiCr-
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phase diminished;
• The dendritic region is rich in Ni, Cr and Mo with traces of Fe and Ti, while the

inter-dendritic area is rich in Ni, Cr, Mo and Nb, also with traces of Ti and Fe;
• In the coatings manufactured with Ti addition, the presence of Ti within the coatings

was confirmed by XRD; titanium is dissolved into the FCC Ni-Cr phase and the new
Ni-Cr-Ti phase is formed;

• For all the coatings on mild steel, the OCP changes to more positive values in time,
which is typically attributed to the growth and stabilization of a passive film on the
surface of the samples;

• The decrease in the anodic current densities with the increase in titanium addition in
the NiCr(Ti) coatings indicates an increase in corrosion resistance in the aggressive
environment used in experimental tests; the values of the cathodic current densities
decrease proportionally with the amount of titanium added in coatings, which means
that in the acidic environment used to carry out the tests, titanium acts as an inhibitor
of the cathodic process, thus limiting the hydrogen evolution reaction;

• The protective efficiency increases with the increase in Ti content due to the formation
of a stable oxide film on the surface that enhances the corrosion resistance in an
aggressive acidic medium;

• The corrosion rates decrease with the increase in Ti content due to the formation of the
thin oxide film developed on the coating’s surface;

• As the titanium content increases more than 3%, the formed film thickens and has
capacitive behavior, a process which is linked to a decrease in capacitance;

• The coatings with 5% Ti, 7% Ti and 10%Ti addition comply with the conditions of the
US DOE regarding corrosion performance to be used as materials for the manufacture
of the bipolar plates.
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