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Abstract: Sigma-2 (σ2) is an endoplasmic receptor identified as the Endoplasmic Reticulum (ER)
transmembrane protein TMEM97. Despite its controversial identity, which was only recently solved,
this protein has gained scientific interest because of its role in the proliferative status of cells; many
tumor cells from different organs overexpress the σ2 receptor, and many σ2 ligands display cytotoxic
actions in (resistant) cancer cells. These properties have shed light on the σ2 receptor as a potential
druggable target to be bound/activated for the diagnosis or therapy of tumors. Additionally, diverse
groups have shown how the σ2 receptor can be exploited for the targeted delivery of the anticancer
drugs to tumors. As the cancer disease is a multifactorial pathology with multiple cell populations,
a polypharmacological approach is very often needed. Instead of the simultaneous administration
of different classes of drugs, the use of one molecule that interacts with diverse pharmacological
targets, namely MultiTarget Directed Ligand (MTDL), is a promising and currently pursued strategy,
that may overcome the pharmacokinetic problems associated with the administration of multiple
molecules. This review aims to point out the progress regarding the σ2 ligands in the oncology
field, with a focus on MTDLs directed towards σ2 receptors as promising weapons against (resistant)
cancer diseases.

Keywords: σ receptors; σ2 receptor; MultiTarget Directed Ligand (MTDL); resistant cancer; collat-
eral sensitivity

1. Introduction

Treatment of cancer, which is a major public health problem worldwide and the second
leading cause of death (in the USA) [1], has changed a great deal over the years. The first
modern therapeutic approach dates back to the end of 1800s with the discovery of X-rays.
From that moment, amazing scientific and medical progresses have furnished a plethora
of approaches that have led to increasingly specific and effective treatments. From the
birth of chemotherapy, based on cytotoxic antitumor drugs to genetic engineering studies,
which provided monoclonal antibodies, immune checkpoint inhibitors, and Chimeric
Antigen Receptor T cell therapies (CAR-T), treatment of cancer has drastically changed
over the years and life expectancy of people suffering from this pathology has considerably
improved [2,3].

Cancer is a complicated pathology because of the many mechanisms responsible for
the evasion from the regulatory circuits, which ensure a correct cell growth. Besides the
enhanced angiogenesis, the most important mechanisms that sustain the progression of the
pathology consist of the production of growth factors and the insensibility to anti-growth
factors (which allow a limitless replicative potential); the ability to evade apoptosis and to
escape from the primary tumor mass to create metastasis [4].

This plurality of mechanisms justifies the need of a polypharmacological approach to
treat the pathology working on two or more targets at the same time, in order to produce
synergic effects and increase the efficacy of the treatment. Multifunctional therapies can be
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based either on the well validated use of combinations of drugs administered together, or
on the use of a single multitarget directed ligand (MTDL), whose interaction with different
targets exerts more pharmacological effects. Despite the therapeutic success, the main
limitation of the former approach lies in the diverse pharmacokinetic and metabolic profiles
of the drugs that may lead to multiple toxic metabolites and side effects, compared to a
single drug administration. Thus, the MTDL approach is attracting interest as a strategy to
be exploited to treat cancer and the other pathologies based on different factors.

Both the Sigma (σ) receptor subtypes, σ1 and σ2, are involved in cancer disease and,
have been often exploited as targets for the development of MTDLs to synergize with the
antitumor action mediated by other targets. In this review, we only briefly discussed about
the σ receptor, while we focused more on the σ subtype and the structural insights of the
σ-directed MTLDs in the context of cancer.

2. σ Receptors

σ proteins, which were thought to belong to the opioid receptor family until 1976,
were later identified as an independent class of receptors divided into two different sub-
types [5]. The σ1 subtype was cloned in the early 1990s, and its crystal structure was
recently disclosed [6], while the σ2 receptor was only lately identified as the TMEM97 pro-
tein [7] and its crystal structure has been resolved during the preparation of this review [8].
Although the mechanisms of action of the two proteins need to be fully elucidated, they
both appear as intriguing targets for the development of therapies useful for a wide range
of pathologies [9,10].

2.1. σ1 Receptor

σ1 receptor is a 223-amino-acid protein characterized by a high level of similarity
with the ERG2p, a C8-C7 sterol isomerase expressed in yeast, even if no isomerase activity
has been attributed to σ1 receptors. The protein structure consists of five α-helices and
ten β-strands. The N-terminus crosses the Endoplasmic Reticulum (ER) membrane and
protrudes into the lumen forming a transmembrane domain (TMD), while the flat and
hydrophobic C-terminus is associated to the cytosolic surface of the ER. The σ1 protein is
mainly localized at the interface between mitochondria and ER, a space commonly named
mitochondrial associated endoplasmic reticulum membrane (MAM), where it interacts with
proteins to modulate Ca2+ fluxes between ER and mitochondria [11,12]. This receptor has
been lately defined as a ‘pluripotent chaperone’ that interacts with several client proteins
modulating their activity [10]. One of its most studied interactions is with the binding
immunoglobulin proteins (BiP), with which it is associated in rest conditions. Upon stress
(e.g., Ca2+ depletion from ER), the receptor dissociates from BiP and chaperones the Inositol
1,4,5-triphospate receptor type 3 (IP3R3) at MAM, increasing the Ca2+ flow from ER to
mitochondria to guarantee cell energy needs [11].

σ1 receptor’s role in neurodegenerative diseases has been extensively studied and re-
viewed, and its therapeutic exploitability as druggable target is witnessed by the ligands in
clinical trials for treating pathologies such as Alzheimer disease (AD), Huntington disease
(HD) etc [13,14]. Less explored, but still intriguing under the therapeutic perspective, is the
σ1 receptor role in cancer. The σ1 receptor exploitation as a target for the development of
MTDLs addressing the diverse pathologies in which this σ subtype is involved has been
recently reviewed [15].

2.1.1. σ1 Receptors Involvement in Cancer

High levels of σ1 receptors have been found in human cancer cell lines of breast, lung,
prostate, colon, melanoma, CNS, kidney and pancreas [16]. However, despite controversial
results in breast adenocarcinoma [17,18], Xu reported significant correlation between σ1
receptor expression and progression of esophageal squamous cell carcinoma [19] and hilar
cholangiocarcinoma [20].



Molecules 2021, 26, 3743 3 of 19

σ1 receptor density was also found to be increased in breast cancer cells with high
metastatic potential, supporting a direct correlation between the expression of the receptor
and the aggressiveness of the pathology [21].

Moreover, scintigraphy studies performed using (N-[2-(1′-piperidinyl)ethyl]-3-123I-
iodo-4-methoxybenzamide), a selective ligand for the σ1 receptor, on patients with primary
breast cancer revealed that the ligand was specifically retained in diseased tissues rather
than healthy ones [22].

Finally, as reviewed by Kim, both σ1 receptor claimed agonists (i.e., (+)-SKF10047,
PRE-084 and (+)-pentazocine) and antagonists (i.e., haloperidol, SR31747A, Rimcazole and
BD1047) demonstrated anticancer activities [23]. This data, that may raise doubts about the
σ1 receptor mediated cytotoxicity, also emphasizes the likely inconvenience of the word
‘agonist’ and ‘antagonist’ in the σ1 receptor context, as reported by Yano et al. [24].

2.1.2. σ1/σ2 Receptors MTDLs

The still-unclear involvement of the σ1 receptor in cancer justifies the small number
of studies performed for the synthesis of σ1 directed MTDLs with anticancer activity.
However, ligands with unintentional affinity for both receptors have been found to produce
interesting antiproliferative actions.

The anticancer effect produced by dual σ receptor ligands was explored by Marrazzo
and colleagues, who believed that agonist activity on σ1 receptor and antagonist activity on
σ2 receptor may synergize to produce an increased anticancer effect. This pharmacological
profile was found in haloperidol metabolite II (HP II) (Figure 1), which was also found
to be able to increment intracellular-free calcium [Ca2+]i levels and induce apoptosis [25].
Even if the antiproliferative activity produced by HP II is modest, this compound is the
first of a new class of compounds denominated ‘pan-SR ligands class’ [26,27].
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Figure 1. Haloperidol metabolite II with Ki values for σ receptors.

With the aim to extend the pharmacological profile, HP II was conjugated with the
Histone Deacetylase (HDAC) inhibitor 4-phenylbutyric acid to produce the ester derivative
(R,S)-MRJF4. Despite the higher Ki values for σ receptors (with a slight preference for
the σ2 subtype), the MTDL showed a more potent antiproliferative effect in LNCaP and
PC3 prostate cancer cells than HP II, administered alone or in co-administration with
4-phenylbutyric acid.

Subsequently, pure enantiomers were also tested and (R)-enantiomer displayed better
anticancer activity than racemic mixture, probably because of its lower Ki values for both σ
receptors [28] (Figure 2).

Another step in this direction was taken by Riganas and co-workers, who developed (1-
adamantyl)diarylalkylamines in which the adamantyl moiety was introduced with the aim
to produce activity at Na+ channels, whose involvement in cancer has been proven [29,30].

Compounds characterized by a butyl chain between the (1-adamantyl)diaryl portion
and the amine function, displayed the best profile because of a valuable σ1 receptor
antagonist activity, a weak σ2 receptor agonist activity and micromolar affinity for the site 2
of Na+ channels. Overall, piperazine derivative 1 (Figure 3) exerted the best cytotoxic effect
on ovarian cancer cells (IGROV-1) and a good in vitro antiangiogenic activity on normal
cell lines such as the Human Umbilical Vein Endothelial Cells (HUVEC).
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Figure 3. Compound 1 and its IC50 values for σ receptors and Na+ channels.

Taking into consideration the association of the cytotoxic effect together with the
analgesic effect against neuropathic pain obtained by the block of Na+ channels, compound
1 appeared to be endowed with a good therapeutic profile in the treatment of cancer. These
few examples show how the σ1 receptor-based development of MTLDs is also a promising
approach in the treatment of cancer.

2.2. σ2 Receptor

σ2 receptor was first identified by Hellewell and colleagues who discovered that
[3H]-DTG was able to specifically bind two proteins in rat liver: a 25 kDa and a 21.5 kDa
protein. Dextrallorphan (DXA) was able to block the binding of the radioligand with the
25 kDa protein (i.e., σ1 receptor), but was unable to block the binding with the 21.5 kD
protein, which was named σ2 receptor [5].

In 2006, upon an affinity chromatography purification performed on a lysate from the
σ2 overexpressing SK-N-SH neuroblastoma cells, Colabufo et al. advanced the hypothesis
of the σ2 receptor identification with histone proteins. Alternatively, the subnanomolar
affinity σ2 receptor ligand PB28, whose amino-derivative was used for the functionalization
of the chromatographic column, could bind the histones (i.e., H3.3A, H2B, H2A.5 and H2.1)
which were identified by MALDI-MS and LC-MS-MS [31].

To support this hypothesis, the interaction between PB28 and the histone proteins
was evaluated by computational approaches (homology model and docking) that high-
lighted two specific high-affinity binding sites for PB28 on the H2A/H2B histone dimer.
Experimental supports were provided by: (i) the verified nanomolar affinity binding of
[3H]PB28 [32] with the reconstituted human histone dimer H2A/H2B, and (ii) the higher
concentration of [3H]PB28 in the nuclei rather than in the cytosol of cancer cells. These data
suggested that the effect of PB28 may be exerted through the interaction with nuclear pro-
teins [33]. Nevertheless, studies with σ2 receptor fluorescent ligands did not show nuclear
localization [34–36], and a new hypothesis about the σ2 receptor identity emerged. Xu and
colleagues proposed that the σ2 receptor binding site belonged to the progesterone receptor
membrane component 1 (PGRMC1) complex. The study was based on two important
pieces of evidence: (i) the fluorescein-azido-derivative WC-21, a σ2 receptor fluorescent
ligand, was able to irreversibly bind PGRMC1 in rat liver; (ii) the nitrobenzofurazan-
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carbamate derivative SW120 colocalized with PGRMC1 and with molecular markers of ER
and mitochondria in HeLa cells. The hypothesis was also validated by radioligand binding
experiments performed on overexpressing and knockdown PGRMC1 cell lines [37]. On
this basis, subsequent studies treated the σ2 receptor and PGRMC1 as the same entity de-
spite some inconsistencies, and pharmacological tools useful to detect PGRMC1 mediated
activity were used to define the pharmacological action of σ2 receptor ligands.

The matter about the identity of the σ2 receptor was reopened few years later, when
two separate groups conducted independent experiments that led to the same conclusion.
Chu and colleagues knocked-out (KO) or overexpressed PGRMC1 in mouse motor neuron
cell lines (NSC34). Binding studies with [3H]-DTG and photolabeling studies with [125I]-
IAF provided similar results in all cells: wild type, PGRMC1-KO and overexpressing
PRGMC1. Moreover, affinities of DTG and haloperidol for PGRMC1, were found to be
three orders of magnitude lower than the values reported for the σ2 receptor [38].

At the same time, through a combination of Western blot and radioligand binding
assays, Pati et al. demonstrated that the overexpression or knock-down (KD) of PGRMC1 in
MCF7 cells (widely used as a model for σ2 receptor activity) did not change the density of
σ2 receptors. These results were corroborated by flow cytometry and confocal microscopy
experiments in the same cells [39]. The σ2 receptor fluorescent ligands (F412, NO1 and
PB385) [34,35,40] used to mark σ2 receptors were displaced by PB28 and DTG, but were
not displaced by the PGRMC1 inhibitor AG205 and did not colocalize with the fluorescent
anti-PGRMC1 antibody. Importantly, titration calorimetry assays demonstrated that PB28
has no affinity for PGRMC1 dimer or monomer, while DTG showed only modest affinity
for the dimer [39].

The last hypothesis about σ2 receptors identity has been proposed by Alon and
colleagues in 2017, when the σ2 receptor was identified as the TMEM97 (also known
as MAC-30), an ER resident protein involved in cholesterol homeostasis [41] and in the
Niemann–Pick type C disease as NPC1-interacting protein [42].

An affinity chromatography purification of calf liver homogenate was performed, and
the proteins interacting with the σ2 receptor piperazine ligand JVW-1625 were isolated.
Binding studies using [3H]DTG were performed on the detected membrane proteins upon
overexpression in HEK293 cells, and TMEM97 emerged as the most likely candidate. Re-
sults from several experiments led the authors to conclude that TMEM97 is synonymous of
the σ2 receptor. In particular, (i) in PC-12 cells, the KD of TMEM97 produced a decrease in
σ2 receptors expression; (ii) in Sf9 insect cells, modified to overexpress the human TMEM97,
binding affinity of [3H]DTG was comparable to the values reported in the literature for σ2
receptor; (iii) σ2 ligands belonging to diverse chemical classes, showed binding affinities
for TMEM97 consistent with their previously reported σ2 receptor-binding affinities; (iv)
the Ki values of two TMEM97 ligands, Elacridar and Ro 48-8071, to Sf9 membranes overex-
pressing TMEM97, were identical to those measured in MCF7 (that natively overexpress σ2
receptors); (v) site-directed mutagenesis performed on Glutamate (E) and Aspartate (D)
residues revealed that D29 and D56 are necessary for ligand binding, similarly to what
happens in the σ1 receptor binding site [7].

Moreover, during the drafting of this review, the same group that identified the
TMEM97 as the σ2 receptor, published the crystal structure of the protein in complex with
roluperidone and PB28, shedding light on the most intriguing mystery of the story of this
class of receptors [8].

2.2.1. σ2 Receptor Reference Ligands

Scientific literature reports a plethora of more or less selective ligands for the σ2
receptor. Most of them have been recently reviewed [9] and some interesting classes are
briefly described below and reported in Table 1:

• Morphans. They were developed in the 1990s, and emerged as the first class of
selective σ2 receptor ligands. These compounds were obtained by insertion of a



Molecules 2021, 26, 3743 6 of 19

benzylidene moiety in 8-position of the morphan system that is endowed with mixed
affinity for µ and σ2 receptors [43,44].

• Indoles (Siramesine-like compounds). They were developed starting from indole-
3-yl-alkyl-arylpiperazines as 5-HT1A agonists [45]. This class of compounds was
generated through replacement of the piperazine with constrained arylpiperidines
and introduction of a 4-florophenyl group at the indole N-atom leading to siramesine,
that despite its subsequently reported lack of selectivity [46], is still widely used as a
reference compound. Binding to phosphatidic acid [47], ROS formation [48], lysoso-
motropic properties [49], release of cytochrome C by mitochondria [50] were reported
as mechanisms of action of siramesine, that eventually lead to tumor cells death.

• Granatanes. This class of ligands was developed from BIMU-1, a 5-HT3/5-HT4
serotonin receptor ligands with nanomolar affinity for σ2 receptors. The bicyclo-
octane core of BIMU-1 was replaced by a 9-azabicyclo[3.3.1]nonane (granatane). In
addition, the cyclic urea group was opened and replaced by a phenylcarbamate
moiety [51,52]. Moreover, the nitrogen atom was functionalized with a benzyl group
(WC26 and WC59 [53]) or ω-aminoalkyl chains (SV119 and SW43 [54]) leading to
optimal σ2 ligands.

• Benzamides. Structural modifications on D3 receptor ligands led to σ2 receptor high
affinity flexible and selective benzamides. The most successful compounds, i.e., RHM-
1 [55] and ISO-1 [56], were also produced as radioligands [57] to perform σ2 receptor
binding assays or clinical PET studies for the imaging of tumors [58–61]. An in-
tramolecular H-bond, which forces the flexible benzamides in a bicyclic conformation,
was postulated for the interaction of these compounds with the σ2 binding site. There-
fore, compound 2 and analogues, in which such H-bond conformation was mimicked,
were produced. The nanomolar affinities shown by the rigid bicyclic benzamides
validated the hypothesis [62,63]. Importantly, high selectivity rates characterized
flexible and rigid benzamides. Corresponding reverse amides were produced (rigid
and flexible anilides) as well as the corresponding flexible and rigid anilines, with
agreeing results [64].

• Cyclohexyl piperazines. This class, which is based on its lead compound PB28,
was developed starting from serotoninergic arylpiperazines [65]. During the last
few decades, several analogues were developed and recently reviewed, mostly with
the aim of reducing the lipophilicity, as studies on [11C]-radiolabelled PB28 showed
high nonspecific binding in mouse brain in vivo [66,67]. However, within the more
polar series no ligand showed affinity values comparable to PB28 [68]. Nonetheless,
interesting biological profiles in terms of selectivity (compound 3, Table 1) or cytotoxic
activity in cancer cells were obtained. Intriguingly, PB28 showed promising anti-SARS-
CoV-2 activity in vitro [69], although the effect was later ascribed to the induction of
phospholipidosis as an off-target effect [70].
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Table 1. Affinities for σ1 and σ2 receptors (σ1 R and σ2 R) of reference σ2 R ligands.

Name Structure σ1 R Ki nM σ2 R Ki nM Reference

Morphans: -

(+)-CB-64D
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2.2.2. σ2 Receptor Involvement in Cancer

σ2 receptors are associated with a well-established involvement in cell proliferation,
although, recently, strong pieces of evidence have also demonstrated the involvement
of this receptor in neurodegenerative diseases such as the AD [71]. Indeed, a small σ2
receptor modulator, named CT1812 (ElaytaR), blocks, via the σ2 receptor, the binding of
different Aβ oligomers to neuronal receptors and displaces them reducing Aβ-induced
synaptic toxicity. Thus, Elayta has undergone clinical trials, and phase II clinical studies
are still recruiting [72], highlighting how the σ2 protein is a promising target for cancer
and CNS diseases. Many pieces of evidence demonstrate that σ2 receptors are able to
induce cell death through different mechanisms, and σ2 ligands inducing cytotoxicity are
identified as σ2 agonists. Among the effects induced by σ2 ligands, lysosomal dysfunction
and ROS production were proved as cytotoxic mechanisms [49,73]. Additionally, the σ2
receptor modulates ER stress [74], likely through control of Ca2+ release because of direct
and indirect interaction with IP3 receptor, ryanodine receptors and Sarco-Endoplasmic
Reticulum Calcium ATPase (SERCA) [75]. Additionally, store-operated Ca2+ Entry (SOCE)
downregulation [76], activation of caspase and mitochondrial superoxide production [77]
and activation of p53- and caspase-independent apoptotic pathways [78] have been as-
sociated with the cytotoxicity of σ2 receptor ligands. Nevertheless, Mach et al. showed
that the cytotoxicity of σ2 agonists such as PB28 and SW43, is independent from TMEM97
and PGRMC1. Indeed, KO of TMEM97, PGRMC1 or both proteins in HeLa cells, did not
alter the cytotoxic effect of these ligands, whose antiproliferative action does not seem to
be mediated neither by TMEM97 nor by PGRMC1 [79]. However, the effect of the two
proteins on the above described cytotoxic mechanisms, in the presence of the σ2 ligands
still needs to be investigated.

2.2.3. MTDLs Based on Granatane SV119 and SW43

Granatane derivatives are an optimal class of σ2 receptor ligands because of their
pharmacological profile in terms of affinity and selectivity. Among all the ligands belonging
to this class, analogues bearing anω-aminoalkyl chain represent ideal tools in the synthesis
of MTDLs. The easily conjugatable amino-group can be transformed into the corresponding
carbamate and amide derivatives. Among these ligands, Spitzer and colleagues chose
granatane derivative SV119 (Table 1), whose intrinsic cytotoxicity, affinity and selectivity
for the σ2 receptor prompted its exploitation for the targeted delivery of the MTDL to
pancreatic cancer cells. Indeed, SV119 was conjugated with cell-death inducing small
molecules such as 1) the pro-apoptotic peptide Bim, (a BH3-only peptide belonging to the
Bcl-2 family); 2) the carboxyl-terminal modulator protein (CTMP, a mitochondrial peptide
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released under apoptotic conditions that inhibits protein kinase B, Akt); 3) rapamycin—a
compound with activity on phosphoinositide 3-kinase (PI3K)/Akt system. Among the
three MTDLs synthesized, only the peptidomimetic chimera SV119-Bim, named S2-Bim
(Figure 4), produced promising effects in in vivo models of pancreatic cancer. Thus, the
intrinsic cytotoxic properties of SV119 were reinforced by activation of the Bcl-2 cell death
mechanism produced by Bim. However, once the treatment was discontinued, tumor
growth restarted and matched the control [80].
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In the following years, granatane SV119 was also linked to Erastin, a 4-quinazolinone
able to inhibit cysteine/glutamate antiporter, whose function is to keep the antioxidant
glutathione homeostasis. Besides the induction of ROS accumulation, Erastin can influence
the activity of mitochondrial voltage-dependent anion channels, although problems of cell
uptake limit its efficacy.

With the aim to obtain an Erastin based dual drug, Ohman and colleagues, demethy-
lated the carbon atom between the piperazine ring and the 4-quinazolinone portion in order
to get rid of the chirality. The obtained demethylated-Erastin was then connected to the
granatane SV119 to obtain the new MTDL named SW V-49 (Figure 4). This dual drug was
characterized by a better cell uptake compared to Erastin and encouraging cytotoxicity IC50
values in pancreatic cancer cells. In vivo studies performed on murine models of pancreatic
cancer demonstrated that SW V-49 reduces tumor size and improves survival, without
side-effects that are typical of gemcitabine, the reference therapeutic for pancreatic tumor
treatments [81]. Always with the aim to increase the drug delivery of peptidomimetics to
cancer cells, SW43 (Table 1), another granatane derivative with a longerω-aminoalkychain,
was linked to SW IV-52s, that is a mimetic compound (SMC) of the second mitochondria-
derived activator of caspase (Smac) (Figure 4). Thus, the peptidomimetic derivative SW
III-123 (Figure 4) was obtained and displayed a strong cytotoxicity in all ovarian cancer
cell lines studied (SKOV-3, CaOV-3 and BG-1), differently from SW IV-52s, that is active
only in SKOV-3. Studies performed in SKOV-3 (EC50 = 4.0 µM (24 h); EC50 = 1.40 µM
(48 h)) cells to better understand cell death mechanisms revealed that the peptidomimetic
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ligand SW III-123 can produce degradation of inhibitor of apoptosis proteins 1 and 2 (cIAP1
and cIAP2), accumulation of NF-κB-inducing kinase (NIK) and phosphorylation of NF-κB
p65. All together, these mechanisms suggest the activation of canonical and noncanonical
NF-κB pathways of death. In addition, cleavage of caspase-3, -8 and -9 was observed, and
the involvement of tumor necrosis factor alpha (TNFα) in the mechanisms of cell death
was demonstrated for the SMC-sensitive cells, but not for the SMC-insensitive ones [82].
While in SW III-123 the chiral centers in the proline and tetralin rings and the chirality
of the carbon atom bearing the t-butyl group were all defined, the oxopropan-2-yl group
was not, so that SW III-123 was a racemic mixture. The promising results obtained with
this couple of stereoisomers led to produce the pure stereoisomeric form of SW III-123 in
the L-configuration to obtain SW IV-134, which was tested in pancreatic tumor cells and
provided better results than the racemate, with a ten-fold higher affinity for σ2 receptors
(σ2 Ki = 22.6 nM) [83].

Thus, SW IV-134 was studied in different types of tumors, such as mouse xenograft mod-
els of ovarian cancer [84] and triple-negative breast cancer [85] providing promising results.

It is worth noticing that even if these peptidomimetics are characterized by features
that are usually detrimental in terms of pharmacokinetic properties, such as high molecu-
lar weight and steric hindrance, valuable affinity values and promising preclinical data
were obtained. Therefore, the granatane scaffold can be considered as an important
tumor-selective delivery system with the potential to reduce the side effects produced by
unselective therapies.

2.2.4. Collateral Sensitivity (CS) as Multitarget Strategy to Face Cancer

Collateral sensitivity (CS) was observed for the first time by Szybalaski and Bryson in
1952 during some studies on drug-resistant cultures of Escherichia coli [86]. According to
this phenomenon, cancer cells, that show resistance to classical chemotherapy, demonstrate
an unusual sensitivity to other drugs. One of the main mechanisms of the resistance to
drugs, also called MultiDrug Resistance (MDR), is due the overexpression of efflux pumps
that reduce intracellular drug concentrations to ineffective levels [87]. Among all the
efflux pumps, P-glycoprotein (P-gp), MultidrugResistance-associated Protein 1 (MRP1)
and Breast Cancer Resistance Protein (BCRP), which belong to the ATP-Binding Cassette
(ABC) transporters, are the main responsible of this phenomenon.

Although it may sound like a contradiction, the overexpression of the efflux pumps
that is responsible of the MDR, may also account for CS. Indeed, the over-working of these
transporters can: (i) activate a futile hydrolysis of ATP, increasing ROS levels; (ii) sensitize
cells to changes in energy levels; (iii) produce extrusion of essential substrates for cell
metabolism; (iv) perturb cell membranes [88]. Drugs able to engage these mechanisms, are
able to kill MDR cells more than the non-resistant counterparts, finally leading to select
the non-resistant cell population, which can ultimately be treated with the conventional
chemotherapeutic.

As some σ receptor ligands are P-gp modulators, Niso and colleagues, studied
the ability of some σ2 receptor ligands to exert CS, exploiting their interaction with P-
gp [46,62,63,89,90]. Ligands were chosen because of the presence of some basic moieties
(i.e., 4-(4-fluorophenyl) and 4-cyclohexyl -piperidines or -piperazines and 6,7-dimethoxy-
1,2,3,4-tetrahydroisoquinoline) and hydrophobic groups (i.e., carbazole, tetraline, indole
and N-(4-fluoro-phenyl)indole) with consolidated σ2 receptor affinities together with their
likely interaction with P-gp. Combination of these basic and hydrophobic moieties led to
several high affinity σ2 receptor ligands, and the indole-based compounds F397, Siramesine
and the carbazole derivative F408 (Figure 5) displayed the most promising dual-target
profile because of their affinity/activity at σ2 receptor and P-gp. However, CS was only
exerted by Siramesine and F408, with a more potent cytotoxicity in MCF7dx (MDR cells)
than in the parent MCF7 (non-MDR) cell line. ATP consumption in the same couple of cells
(MCF7 and MCF7dx) was evaluated, and while ATP content was lower in MCF7dx than in
MCF7 upon F408 and Siramesine administration, the same effect on ATP was not exerted
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by F397. These data together demonstrated that the CS properties of F408 and Siramesine
are due to their activity at P-gp as substrates, with the activation of the futile ATP cycle
(to sustain the active efflux of the drug) and increased ROS production. By contrast, F397
was devoid of such an effect because it is a P-gp inhibitor with no ATP consumption and
therefore devoid of CS properties mediated by P-gp.
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These compounds were investigated in other cell lines couples, such as HT29/HT29dx
(colorectal cancer) and A549/A549dx (lung cancer) providing results in accordance with
the CS exerted in MCF7 cell lines pairs. Again, F408 and Siramesine demonstrated their CS
properties, which were exceptionally important in the HT29 cell lines pair for F408. Indeed,
in HT29dx the carbazole derivative F408 produced a 60% cell death at 1 µM concentration.
Moreover, studies performed on the mitochondrial respiratory chain revealed that treat-
ment of resistant cells with F408 and Siramesine reduced electron flux and ATP supply, so
that these ligands are able to activate multiple cytotoxicity mechanisms [91] and appear as
MTDLs worthy to be explored to overcome MDR.

Subsequently, similar studies were performed on the lesser-studied MRP1, which
effluxes glutathione (GSH), the tripeptide essential for the correct redox state of cells.
Verapamil, the L-type calcium antagonist, can bind MRP1 and stimulate GSH massive
extrusion that leads to the activation of apoptotic mechanisms. These properties render
Verapamil a collateral sensitizer upon interaction with MRP1 [88].

Structure similarity between Verapamil and some σ2 receptor ligands prompted Riganti
et al. to screen a library of σ2 ligands for their MRP1 activity. Among the most active
compounds, the indole-based structures F397 [46] and F421 [90] and the tetralin based
amide F400 (Figure 5), [89] were valuable modulators of MRP1 and showed CS in different
cells. In particular, F397, F421 and F400 induced CS in MDCK/MDCK-MRP1, A549/A549dx
and HT29/HT29dx, and cytotoxicity in MCF7, SKBR3, T74D and MDA-MB-231.

All three compounds were found to deregulate GSH/GSSG ratio and increase ROS
production, producing cytotoxicity, especially in MRP1 overexpressing cells.

It is worth noting that F397 did not exert P-gp-mediated CS in MCF7/MCF7dx cells
(see above), but emerged as a MRP1-mediated collateral sensitizer in cells where MRP1
is overexpressed. Indeed, MCF7dx cells are devoid of MRP1, so that the data from F397
strongly support the involvement of the P-gp in the CS exerted by F408 and siramesine,
while MRP1 is involved in the CS induced by F397, F421 and F400.

These pieces of evidence prompted to further investigate the effect of these σ2 receptor
ligands in co-administration with cis-Pt, that is one of the clinical antitumor drugs that suf-
fers from MDR. In vitro and in vivo combinations of F397 or F421 with Cis-Pt re-sensitized
A549dx cells to cis-Pt and reduced tumor growth without signs of toxicity [92].

Another step forward on the development of MTDLs based on σ2 receptor for the treat-
ment of tumors was taken when novel isatin-β-thiosemicarbazones (IβTs) were produced.
IβTs, upon chelation of metals (such as iron and cupper ions) promote ROS production,
and have been previously reported as CS inducer [93]. Therefore, according to an MTLDs
approach, IβTs core was functionalized with σ2 targeting basic moieties with the aim to
improve the selectivity for cancer cells that overexpress σ2 receptors [94]. In Figure 6, the
MTDL strategy targeting σ2 receptors P-gp efflux pump and metal chelation is depicted.

The same basic moiety should also determine the interaction with the P-gp. Among
the diverse IβTs, the N,N-dimethylthiosemicarbazones bearing the 1-cyclohexylpiperazine,
or the 6,7-dimethoxytetrahydroisoquinoline as the basic moieties (compounds 4 and 5,
Figure 7), provided the best results in terms of cytotoxicity in MCF7/MCF7dx and A549/
A549dx, showing important activity also against MDR cells. Therefore, these two com-
pounds underwent a rational deconstruction approach in order to elucidate their structure–
activity relationships (SAR) and understand the impact of each target in the overall ef-
fect [95]. The activity of the novel compounds was evaluated in pancreatic tumors in vitro,
in a panel of human (MIAPaCa-2, BxPC3, AsPC1 and Panc-1) and mouse (Panc02, KP02
and KCKO) cancer cell lines, and in vivo in a murine KP02 tumor model (C57BL/6 mice).
This study revealed that the sole N,N-dimethylthiosemicarbazone portion is responsible of
the cytotoxicity also in the absence of the σ2 receptor targeting moiety. Nevertheless, the
IβTs devoid of the σ2 targeting basic moiety resulted in foci of pulmonary metastases in
mice, while the σ2 targeting IβTs were equally effective and devoid of side effects. The in-
vestigated mechanism of action of σ2 receptors targeting compounds showed ROS increase,
caspase-3 activation and mitochondria superoxide production [95].
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All these data together support the higher selectivity for cancer cells that the σ2
targeting exerts. Therefore, according to a multitarget perspective, both N,N-dimethyl-
thiosemicarbazone and σ2 receptors targeting basic moieties are advisable to produce a
strong and selective antitumor activity and poor side effects.

3. Conclusions

The present review summarizes the progress in the knowledge about σ receptors with
a focus on the σ2 subtype’s involvement in the oncology field. The role in the proliferative
status of cells has directed the σ2-related scientific interest towards cancer research. Overall,
we have described herein the most promising σ2 receptor ligands in the perspective of
anticancer therapies, with a focus on the development of σ2-based MTDLs ligands. The
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combination of the σ2 targeting moieties, with molecules that activate different apoptotic
pathways results in either a synergistic antitumor action or in a targeted delivery to
cancers that overexpress the σ2 protein. The increasing structural knowledge about this
receptor, that has culminated with the disclosure of the crystal structure, together with the
successful examples reported herein, may spark novel studies to exploit the σ2 subtype as
an innovative strategy for the development of MTDLs as anticancer polypharmacological
agents, with targeted delivery and improved activity against (resistant) cancers.
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