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Cell differentiation and acquisition of specialized functions are inherent steps in events that
lead to normal tissue development and function. These processes require accurate
temporal, tissue, and cell-specific activation or repression of gene transcription. This is
achieved by complex interactions between transcription factors that form a unique
combinatorial code in each specialized cell type and in response to different
physiological signals. Transcription factors typically act by binding to short, nucleotide-
specific DNA sequences located in the promoter region of target genes. In males, Leydig
cells play a crucial role in sex differentiation, health, and reproductive function from
embryonic life to adulthood. To better understand the molecular mechanisms regulating
Leydig cell differentiation and function, several transcription factors important to Leydig
cells have been identified, including some previously unknown to this specialized cell type.
This mini review summarizes the current knowledge on transcription factors in fetal and
adult Leydig cells, describing their roles and mechanisms of action.

Keywords: transcription factors, gene expression, regulatory element, DNA binding motif, steroidogenesis,
Leydig cells
1 INTRODUCTION

Localized in the testicular interstitium, Leydig cells are the principal source of testosterone and
insulin-like 3 (INSL3), two hormones that regulate male reproductive development and function. In
mammals, there are at least two distinct populations of Leydig cells, fetal Leydig cells (FLC) and
adult Leydig cells (ALC), which are responsible for the synthesis of steroid hormones in the prenatal
and postnatal testes, respectively [reviewed in (1, 2)]. Steroidogenesis is a multi-step process
requiring various transporters and enzymes to convert cholesterol into a steroid hormone [reviewed
in (3)]. The expression of the genes coding for these steroidogenic proteins is finely regulated to
avoid steroid hormone insufficiency or excess across the lifespan.

Transcription factors (TFs) are fundamental to the regulation of gene expression. They are
specialized proteins that recognize and bind to regulatory DNA sequences, modulating the rate of
gene transcription [reviewed in (4)]. TFs typically recruit or interact with other TFs forming a
unique molecular code that is key for specifying temporal- and tissue-specific gene expression as
well as hormone responsiveness in hormone-sensitive target tissues. Moreover, TFs exhibit a
dynamic behaviour that is characterized by their ability to interact with various partner proteins and
n.org April 2022 | Volume 13 | Article 8813091
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to regulate different target genes according to many determinants
such as cell type, development stage, and signal stimulus,
among others.

In recent years, the development of novel and powerful
methodological approaches in molecular genetics has led to the
emergence of new information regarding the role of TFs in the
regulation of Leydig cell differentiation and function, and by
extension, in male fertility and reproductive health. In this mini
review, we provide a brief overview of the roles and mechanisms
of action of some of the most characterized TFs in Leydig cells.
We have adopted the most recent classification of TFs, which is
based both on amino acid sequence homology and the tertiary
structure of their DNA-binding domains (5). Using this
classification, TFs that have been identified in Leydig cells are
presented in Table 1; Table 2 lists the target genes for these TFs
in Leydig cells.
2 SUPERCLASS OF BASIC DOMAINS

2.1 Class of Basic Leucine Zipper
Factors (BZIP)
2.1.1 AP-1 Factors
The activator protein 1 (AP-1) is a dimeric complex that includes
members of the JUN, FOS, activating transcription factor (ATF),
and musculoaponeurotic fibrosarcoma (MAF) families of TFs
(54). Among the AP-1 members, JUN and FOS are the best
characterized. The JUN subfamily comprises three members
(cJUN, JUNB, and JUND) while four members compose the FOS
subfamily [cFOS, FOSB, Fos-related antigens 1 (FRA-1, FOSL1),
and Fos-related antigens 2 (FRA-2, FOSL2)]. Members of the JUN
family can homodimerize or heterodimerize, whereas FOS family
members only form heterodimers. The DNA sequence recognized
by AP-1 members differs according to the dimer involved. JUN :
JUN and FOS : JUN dimers recognize the TPA-response element
(TRE; TGA(C/G)TCA) and the cAMP-responsive element (CRE;
TGACGTCA), whereas ATF dimers preferentially recognize the
CRE motif, and MAF dimers bind to MAF recognition elements
(MAREs), a long palindromic sequence that contains TRE or CRE
motifs (55) [reviewed in (56)].

AP-1 members were first described in Leydig cells in the late
1990s (57). AP-1 factors regulate several genes in Leydig cells
such as the steroidogenic acute regulatory protein (Star) gene,
which is activated by cJUN (6, 7, 12). In addition, cJUN
cooperates with other TFs, including GATA4, STAT5B,
and NUR77 leading to a stronger activation of the Star
promoter (7–9). Both cJUN and cFOS regulate Star promoter
activity by recruiting CREB and CBP (10). Transcription of the
gap junction protein alpha1 [Gja1, also known as connexin43
(Cx43)] gene, involved in the initiation and maintenance of
sperm production, is also controlled by cJUN, JUNB, and
FOSL2, and by a cJUN/cFOS cooperation (11, 58).
Furthermore, the ferredoxin 1 (Fdx1) promoter is activated by
a cJUN/SF1 cooperation (12). Fdx1 is a partner of Cyp11a1,
participating in the conversion of cholesterol into pregnenolone,
the first and rate-limiting step in steroidogenesis. It is important
to note that the nature of the cJUN dimerization partner
Frontiers in Endocrinology | www.frontiersin.org 2
influences its role in gene regulation. For example, the
combination of either FOSL2 or cFOS with cJUN inhibits the
stimulatory effect of cJUN on the Star promoter (6, 10, 59). AP-1
factors in Leydig cells have been reviewed elsewhere (56).

2.1.2 CREB-Related Factors
CREB-related factors include three members: CRE-binding
protein (CREB), cAMP response element modulator (CREM),
and CRE-activating transcription factor (ATF-1). CREB factors
homodimerize and heterodimerize with other CREB members
and with other bZIP TFs, such as AP-1 members (60). CREB
factors regulate transcription by binding to a CRE motif
(TGACGTCA) similar to that recognized by AP-1 members,
leading to overlap and redundancy in their activities (61).
Although CREM is the most abundant member in MA-10
Leydig cells, all CREB members activate Star transcription
through CRE elements located in the proximal promoter
region (13, 14). Moreover, CREB factors cooperate with SF1
(NR5A1, Ad4BP) to enhance Star transcription (15). CREB
also stimulates CKLFSF2B promoter activity in response to
LH/cAMP (16). Cklfsf2b codes for a protein that inhibits
steroidogenesis in Leydig cells (16). Therefore, CREB is
involved in both activation and repression of steroidogenesis in
Leydig cells depending on its target genes.

2.1.3 C/EBP-Related Factors
Members of the CCAAT/enhancer binding protein (C/EBP)
subfamily contain a bZIP DNA-binding domain and regulate
gene expression by binding to the sequence (A/G)TTGCG(C/T)
AA(C/T) as homo- or heterodimers (62). C/EBPb is the
predominant member in Leydig cells (17, 63) where it activates
Star transcription alone and in cooperation with SF1 and
GATA4 (17–19). C/EBPb also cooperates with NF-kb p50 to
stimulate Nur77 promoter activity in Leydig cells (20). The
Nur77 gene encodes the orphan nuclear receptor NUR77,
which regulates several genes involved in steroidogenesis in
Leydig cells (see Section 3.1.2, NGFI-B/NR4A Receptors, below).
3 SUPERCLASS OF ZINC-COORDINATING
DNA-BINDING DOMAINS

3.1 Class of Nuclear Receptors
With C4 Zinc Fingers
TFs belonging to the nuclear receptor class respond to extracellular
and intracellular signals to regulate gene expression. They also
regulate cellular functions within the cytoplasm (64). In this section
we present the nuclear receptors for which the roles and
mechanisms of action are, or have begun to be, characterized in
Leydig cells. Detailed information can be found in a review article
dedicated to nuclear receptors in Leydig cells (65).

3.1.1 COUP-Like/NR2F Receptors
The nuclear receptor subclass 2, group F (NR2F) subfamily
consists of three members: chicken ovalbumin upstream
promoter transcription factor I (COUP-TFI, NR2F1, EAR3),
April 2022 | Volume 13 | Article 881309
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COUP-TFII (NR2F2, ARP1) and COUP-TFIII (NR2F6, EAR2).
NR2Fs have been implicated in various physiological and
developmental processes by regulating the expression of
numerous genes [reviewed in (66, 67)]. Via their double zinc
Frontiers in Endocrinology | www.frontiersin.org 3
finger DNA-binding domain, NR2F factors bind as monomers to
the nuclear receptor element AGGTCA and its variants. They
also bind as dimers to direct (DR), inverted (IR), and everted
(ER) repeats separated by 1-12 nucleotides (68).
TABLE 1 | Classification of transcription factors identified in Leydig cells.

Superclass Class Family Subfamily Transcription factor

Basic Domains Basic leucine zipper factors
(bZIP)

Jun-related Jun cJUN
JUNB

NF-E2-like factors NFE2L2 (NRF2)
Fos-related Fos cFOS

FRA-2 (FOSL2)
CREB-related CREB-like CREB

CREM
C/EBP-related C/EBP C/EBPb

Basic helix-loop-helix factors
(bHLH)

PAS domain Arnt-like factors ARNTL (BMAL1)
bHLH-ZIP SREBP factors SREBP

USF USF1
USF2

n.a. SPZ1
Basic helix-span-helix factors
(bHSH)

AP-2 n.a. AP-2

Zinc-Coordinating DNA-Binding
Domains

Nuclear receptors with C4 zinc
fingers

Steroid Hormone Receptors
(NR3)

GR-like receptors (NR3C) NR3C1 (GR)
NR3C2 (MR)
NR3C3 (PR)
NR3C4 (AR)

ER-like (NR3A) Era; Erb
Thyroid hormone receptor-related
(NR1)

Retinoic acid receptors (RAR -
NR1B)

RARa, RARb, RARg

Thyroid hormone receptors (THR -
NR1A)

TRa, TRb

PPAR (NR1C) PPARa, PPARb/d,
PPARg

LXR (NR1H) LXRa, FXR
RXR-related receptors (NR2) Retinoid X receptors (NR2B) RXRa, RXRb, RXRb

Testicular receptors (NR2C) TR2 (NR2C1)
COUP-like receptors (NR2F) COUP-TFII (NR2F2)

NGFI-B-related receptors (NR4A) n.a. NR4A1 (NUR77,
NGFI-B)
NR4A2 (NURR1)

FTZ-F1-related receptors (NR5A) n.a. NR5A1 (SF-1, FTZ-
F1)
NR5A2 (LRH1)

DAX-related receptors (NR0B) n.a. NR0B1 (DAX1)
NR0B2 (SHP)

Others C4 zinc finger-type
factors

GATA-type zinc fingers Two zinc-finger GATA factors GATA4

C2H2 zinc finger factors Three-zinc finger Krüppel-related Sp1-like SP1
SP3

Kr-like KLF6
EGR EGR1 (NGFI-A)

More than 3 adjacent zinc fingers ZNF44-2-like ZNF44 (GIOT2)
(unclassified) ZNF461 (GIOT1)

Helix-Turn-Helix domains Homeodomain factors Paired-related HD ARX ARX
RHOX RHOX4

PBX1
HD-LIM LHX2-like LHX9

Fork head/winged helix factors Forkhead box (FOX) FOXA FOXA3 (HNF-3g)
Alpha-helices exposed by beta-
structures

MADS box factors Regulators of differentiation MEF2 MEF2A
MEF2C
MEF2D

Immunoglobulin fold Rel homology region (RHR)
factors

NF-kappab-related NF-kappab p50 subunit-like NF-kb p50
NF-kappab p65 subunit-like NF-kb p65 (RelA)

STAT domain factors STAT n.a. STAT5B
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Of the NR2F subfamily members, COUP-TFII is by far the
most abundant in Leydig cells. Although COUP-TFII is present
in mice interstitial cells from early fetal life throughout
adulthood, it is only associated with steroidogenically active
ALC in postnatal life (24). COUP-TFII is a marker of stem
cells giving rise to the ALC population (24, 69). In vivo studies
using mouse models have shown that COUP-TFII is crucial for
Leydig cell development and male reproductive function (70, 71).
In Leydig cells, COUP-TFII regulates the expression of several
Frontiers in Endocrinology | www.frontiersin.org 4
genes involved in lipid metabolism, male gonad development,
and steroidogenesis (28). COUP-TFII activates Star, Insl3, and
Amhr2 expression by binding to their respective promoter
sequences (24–26). It cooperates with SF1 on the Star and
Insl3 promoters (24, 25) and with SP1 on the Amhr2 promoter
(26). The Akr1c14 gene, which codes for the 3a-HSD enzyme
that catalyzes the interconversion of dihydrotestosterone (DHT)
into 5a-androstane-3a,17b-diol (3a-diol), is activated by
COUP-TFII in cooperation with MEF2 (27). COUP-TFII also
TABLE 2 | Transcription factors and their target genes in Leydig cells.

Transcription Factor Target Gene* Select References

AP-1 (cJUN/cFOS) h, mStar (6–10)
mGja1 (11)
mFdx1 (12)

CREB/CREM mStar (10, 13–15)
hCKLFSF2B (16)

C/EBPb mStar (17–19)
rNr4a1 (Nur77) (20)

BMAL1 mStar (21)
AP-2 m, rLhr (22, 23)
NR2F2 (COUP-TFII) mStar (24)

mInsl3 (25)
mAmhr2 (26)
mAkr1c14 (27)
mGsta3 (28)
mInha (28)

NR4A1 (NUR77, NGFI-B) mStar (9, 29, 30)
m, hHsd3b (31, 32)
h, mInsl3 (33, 34)
rCyp17a1 (35, 36)

NR5A1 (SF1, FTZ-F1) m, hStar (9, 15, 17–19, 37)
rCyp19a1 (38)
hHSD3B2 (32)
hCyp11a1 (37)
rCyp17a1 (39, 40)
rPrlr (41)
rAmhr2 (42)
mVanin-1 (43)
m, hInsl3 (33, 34)
mFdx1 (12)

NR5A2 (LRH1) mStar (9)
rCyp19a1 (44)
m, hInsl3 (33)

NR0B1 (DAX1) mStar (45)
GATA4 h, mStar (7, 18, 19, 46, 47)

hHSD3B2 (32)
mAmhr2 (46)
rSrd5a1 (46)

SP1 rSrbi (48)
mLhr (22)

SP1/SP3 mVegf (49)
mPbr (50)

KLF6 hINSL3 (34)
FOXA3 (HNF-3g) rPdgfra (51)
MEF2 mStar (47)

rNr4a1 (Nur77) (52)
mGsta1-4 (53)
mAkr1c14 (27)

NF-kb p50 rNr4a1 (Nur77) (20)
NF-kb p65 (RelA) rCyp17a1 (31)
STAT5B mStar (8)

rNr4a1 (Nur77) (8)
April 2022 | Volume
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activates the expression of Gsta3 and Inha, genes involved in the
inactivation of reactive oxygen species and in the homeostasis of
the hypothalamic-pituitary-gonadal axis, respectively (28).
Expression of several other Leydig cell genes including
Cyp17a1, Hsd3b1 and Cyp11a1 is reduced in Coup-tfii null
mice (71) and in COUP-TFII-depleted MA-10 Leydig cells
(28), implying a role for COUP-TFII in their expression.

3.1.2 NGFI-B/NR4A Receptors
The NR4A family consists of three orphan nuclear receptors:
neuron-derived clone 77 (NR4A1, NUR77, NGFI-B, TR3), nuclear
receptor related 1 (NR4A2, NURR1) and neuron-derived orphan
receptor 1 (NR4A3, NOR1). NR4A members can bind to DNA
either as monomers, homodimers, or heterodimers. NUR77 and
NURR1 also heterodimerize with RXR. As monomers, they bind
to a NGFI-B-response element (NBRE; AAAGGTCA), as
homodimers and heterodimers to a Nur-response element
(NurRE; TGATATTTN6AAATGCCA), and as heterodimers
with RXR to a DR5 sequence [reviewed in (72, 73)]. NR4A
factors are immediate early response genes involved in the
regulation of several physiological and pathological processes,
including steroidogenesis (74) [reviewed in (75)].

Leydig cells contain mainly NUR77, followed by NURR1
where both are important regulators of basal and hormone-
induced gene transcription (76). Nur77 expression is strongly
increased by LH (76) via the CAMKI pathway (29, 77) consistent
with its role as a key regulator of several genes in Leydig cells
including Cyp17a1 (31, 35), Hsd3b (31), HSD3B2 (32), Insl3 (33,
34), and Star (29, 30). NUR77 regulates the expression of these
genes by cooperating with CAMKI (29), cJUN (9), KLF6 (34),
and SF1 (34). In Leydig cells, Nur77 expression is controlled by
distinct regulatory elements for both basal and hormone-induced
expression (77), through mechanisms involving MEF2 (52),
STAT5B (8), CREB (77), cJUN (9), C/EBPb (20), and NF-kb
p50 (20).

3.1.3 FTZ-F1-Related/NR5A Receptors
The nuclear receptor 5A (NR5A) family comprises two members:
steroidogenic factor 1 (NR5A1, Ad4BP, SF1) and liver receptor
homolog 1 (NR5A2, LRH1, FTF). Both factors share high sequence
similarity, bind to the same DNA motif, regulate common target
steroidogenic genes, and exhibit overlapping expression in several
tissues [reviewed in (78, 79)]. Despite this, they have nonredundant
roles and cannot fully compensate for each other [reviewed in (78,
79)]. NR5A members regulate gene expression by binding as
monomers to the sequence (T/C)CAAGGTCA located in the
promoter region of target genes.

SF1 was initially identified as a tissue-specific activator of
several cytochrome P450 steroid hydroxylase genes (38, 80). SF1
is essential for steroidogenesis, reproduction, and male sex
differentiation, as revealed by mutations in the SF1 gene in
humans and in mouse models where adrenal and gonadal
development and function are impaired (37, 81–84) [reviewed
in (85, 86)]. Interestingly, Sf1 knockdown in MLTC-1 Leydig
cells leads to downregulation of Star and Cyp11a1 and
accumulation of neutral lipids and cholesterol (37). Moreover,
SF1 is one of only a handful of TFs that can convert fibroblasts
Frontiers in Endocrinology | www.frontiersin.org 5
into functional Leydig-like cells, revealing the pivotal role of this
nuclear receptor in Leydig cells (87, 88).

In vitro analysis of regulatory elements has shown that the
expression of several Leydig cell genes is regulated by SF1. These
include Star (9, 17, 37), Cyp19a1 (38), HSD3B2 (32), Cyp17a1
(39, 40), Cyp11a1 (37), Prlr (41), Amhr2 (42), Vanin-1 (43), Insl3
(33), and Fdx1 (12). SF1 activity relies on interactions with a long
list of protein partners, such as C/EBPb (17), cJUN (9, 12), DAX1
(45), GATA4 (89), and KLF6 (34).

Like SF1, LRH1 influences steroidogenesis and fertility. To
date, only a few genes are known to be regulated by LRH1 in
Leydig cells, including Star (in cooperation with cJUN) (9),
Cyp19a1 (44), and Insl3 (33).

3.1.4 DAX-Related/NR0B Receptors
TheDAX-related receptor (NR0B) family comprises twomembers:
critical region on the X chromosome gene 1 (NR0B1, DAX1) and
smallheterodimerpartner (NR0B2, SHP).They lack the typical zinc
finger DNA-binding domain and therefore act mainly as
transcriptional repressors by inhibiting the activity of other TFs
(90, 91). Both members are present in Leydig cells and act as
homodimers or heterodimers (92).

InDax1-deficientmice, testis cord organization is compromised
and FLC development is arrested (93). In vitro studies in Leydig cell
lines revealed that DAX1 represses steroidogenesis by inhibiting
Star expression, while silencing Dax1 expression increases Star
transcription leading to enhanced steroidogenesis (45). DAX1
interacts with and represses the activity of NUR77 and SF1,
inhibiting Star expression (36, 45). Interestingly, Dax1
knockdown in MA-10 Leydig cells decreases Cyp11a1 and Star
expression suggesting that DAX1 could also act as a coactivator in
addition to its repressor role (94).

SHP is a repressor of steroidogenesis. In mouse Leydig cells,
Shp expression is reduced by hCG treatment (95). In Shp-
deficient mice, testosterone levels as well as Star, Cyp11a1, and
Hsd3b1 mRNA levels are increased leading to premature sexual
maturation (96). SHP inhibits steroidogenesis by interacting and
repressing the activity of LHR1 (96). Shp mRNA levels are
significantly reduced in COUP-TFII- and MEF2-depleted
Leydig cells, indicating that Shp expression requires these two
TFs (28, 97).
3.2 Class of Other C4 Zinc
Finger-Type Factors
3.2.1 Two Zinc-Finger GATA Factors
The six GATA members (GATA1 to 6) are crucial for the
development and function of several tissues, including the male
gonad [reviewed in (98, 99)]. GATA factors regulate gene
expression by binding via their two zinc fingers to the DNA
sequence (A/T)GATA(A/G) in the promoter region of target
genes. Of the six GATA factors, GATA4 is the most abundant in
Leydig cells in vivo (100–102). Its expression is also the broadest
being present from the onset of testis morphogenesis and into adult
life (103). Considered one of the first gonadal markers in both sexes,
GATA4 is required for urogenital ridge development in mice and
later for mammalian gonadal differentiation (103, 104).
April 2022 | Volume 13 | Article 881309
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A Sf1-Cre mouse line, which expresses the Cre recombinase
in several tissues including Leydig, Sertoli and adrenal cells, was
used to conditionally inactivate Gata4. The resulting males were
undervirilized and had small testes lacking mature sperm (105),
thereby supporting a role for this factor in male reproductive
function. Transcriptomic analysis of GATA4-depleted MA-10
Leydig cells revealed several deregulated pathways, including
cholesterol metabolism and steroidogenesis (46). Consistent with
this, GATA4 stimulates the transcription of several genes
expressed in Leydig cells such as HSD3B2 (32), Cyp19a1 (106),
Star (46, 106), Inha (106), Sf1 (106), Amhr2 (46), and Srd5a1
(46). GATA4 also cooperates with cJUN, C/EBPb, and MEF2 to
upregulate Star expression (7, 18, 47). These results emphasize
the indispensable role of GATA4 in the differentiation and
function of FLC and ALC (46, 107). The critical nature of
GATA4 in the Leydig cell differentiation is further supported
by the demonstration that GATA4, along with SF1 and DMRT1
or NUR77, are sufficient to reprogram fibroblasts toward the
Leydig-like cell fate (87, 88).
4 SUPERCLASS OF HELIX-TURN-
HELIX DOMAINS

4.1 Class of Forkhead/Winged
Helix Factors
4.1.1 Forkhead Box (FOX) Factors
The forkhead box A3 (FOXA3) is the only member of the FOXA
subfamily present in the testes, mainly in ALC (51, 108, 109). So
far, the only direct target identified for FOXA3 in Leydig cells is
the gene coding for the platelet-derived growth factor receptor
alpha (Pdgfra) (51), that in response to PDGF signaling, acts in
Leydig cell differentiation and testis organogenesis (110). In
cAMP-induced steroidogenesis, FOXA3 is proposed to repress
Nur77 expression, which in turn reduces steroidogenic gene
expression and testosterone production (111). These findings
indicate that FOXA3 participates actively in the control of Leydig
cell function and male fertility.
5 SUPERCLASS OF a-HELICES EXPOSED
BY b-STRUCTURES

5.1 Class of MADS Box Factors
5.1.1 MEF2 Subfamily
The Myocyte Enhancer Factor 2 (MEF2) factor subfamily
comprises four members (MEF2A-2D) that share two highly
conserved domains, a MADS box and a MEF2 domain, involved
in dimerization and DNA binding [reviewed in (112)]. MEF2
factors form homo- and heterodimers that bind the sequence
YTAWWWWTAR (Y=C/T, W=A/T, R=G/A) in the promoter
region of their target genes. Because of their conserved DNA-
binding domain, MEF2 members share common targets and can
compensate for each other. MEF2 members also display unique
spatiotemporal patterns in different tissues. Due to their
divergent transactivation domain, MEF2 factors respond to
Frontiers in Endocrinology | www.frontiersin.org 6
different signals and interact with different partners, leading to
specific gene expression [reviewed in (112)].

Although widely studied in other organs, the presence of
MEF2 in the testes, more specifically in Sertoli and Leydig cells,
was only reported in 2014 (52). In Leydig cells, MEF2A and
MEF2D and to a lesser extent MEF2C, are expressed from early
gonadal development into adulthood (52). MEF2A/2D-depleted
MA-10 Leydig cells produce less steroid hormone demonstrating
that MEF2 factors have a role in male reproductive function (47).
Consistent with this, microarray analysis of MEF2A/2D-depleted
MA-10 Leydig cells identified several differently regulated genes
known to be involved in fertility, gonad morphology, and
steroidogenesis (97). To date, direct gene targets for MEF2
factors in Leydig cells include Nur77 (52), Gsta1-4 (53), Star
(involving a MEF2/GATA4 cooperation) (47), and Akr1c14
(through a cooperation with COUP-TFII) (27). The complete
network of genes regulated by MEF2 factors in Leydig cells as
well as MEF2 interacting partners remain to be fully elucidated.
6 SUPERCLASS OF
IMMUNOGLOBULIN FOLD

6.1 Class of STAT Domain Factors
6.1.1 STAT Factors
The signal transducer and activator of transcription (STAT)
family consists of seven proteins [reviewed in (113)]. Cytokines
and growth factors activate STAT members through the Janus
kinase (JAK) signaling pathway. In the nucleus, STAT factors
regulate gene transcription by binding as homo- or heterodimers
to the g-interferon-activated sequence (GAS; TTCN3GAA) in the
promoter region of target genes. So far, STAT5B is the only
STAT factor identified in Leydig cells (114). In these cells,
STAT5B is activated by growth hormone, an important
regulator of steroidogenesis (8). STAT5B activates Star
expression directly by binding to a GAS element and in
cooperation with cJUN (8). STAT5B also activates the Nur77
promoter (8).
7 OTHER TRANSCRIPTION FACTORS
PRESENT IN LEYDIG CELLS

Other TFs have been described in Leydig cells, but their
mechanisms of action remain poorly characterized. This
includes the nuclear factor E2-related factor-2 (NRF2,
NFE2l2), which is an important modulator of reactive oxygen
species levels, especially in aging Leydig cells (115–117).
Furthermore, the brain and muscle arnt-like protein-1
(BMAL1), a component of the circadian clock system, is also
directly involved in the control of Leydig cell function in different
species, by regulating the expression of Star,Hsb3b, and Cyp11a1
(21, 118, 119). Finally, members of the nuclear factor kappa-beta
(NF-kb) family, involved in immune and inflammatory
responses, also contribute to the regulation of steroidogenesis
in Leydig cells (20, 31, 120).
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8 CONCLUDING REMARKS

As described in this mini review, several TFs belonging to
different classes and families are pivotal to ensure proper
Leydig cell differentiation and function. This underscores the
complex regulatory mechanisms involved. Most of the
knowledge acquired so far has relied on in vitro analyses of
regulatory elements of genes expressed in Leydig cells. Although
we are far from fully understanding all the signals, pathways, and
TFs involved, technological advances and novel mouse models
will certainly lead to significant discoveries in the coming years.
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