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Abstract
The Nod-like receptor protein (NLRP)-3 inflammasome/IL-1β pathway is involved in the

pathogenesis of various inflammatory skin diseases, but its biological role in wound healing

remains to be elucidated. Since inflammation is typically thought to impede healing, we hy-

pothesized that loss of NLRP-3 activity would result in a downregulated inflammatory re-

sponse and accelerated wound healing. NLRP-3 null mice, caspase-1 null mice and C57Bl/

6 wild type control mice (WT) received four 8 mm excisional cutaneous wounds; inflamma-

tion and healing were assessed during the early stage of wound healing. Consistent with

our hypothesis, wounds from NLRP-3 null and caspase-1 null mice contained lower levels

of the pro-inflammatory cytokines IL-1β and TNF-α compared to WTmice and had reduced

neutrophil and macrophage accumulation. Contrary to our hypothesis, re-epithelialization,

granulation tissue formation, and angiogenesis were delayed in NLRP-3 null mice and

caspase-1 null mice compared to WT mice, indicating that NLRP-3 signaling is important for

early events in wound healing. Topical treatment of excisional wounds with recombinant IL-

1β partially restored granulation tissue formation in wounds of NLRP-3 null mice, confirming

the importance of NLRP-3-dependent IL-1β production during early wound healing. Despite

the improvement in healing, angiogenesis and levels of the pro-angiogenic growth factor

VEGF were further reduced in IL-1β treated wounds, suggesting that IL-1β has a negative

effect on angiogenesis and that NLRP-3 promotes angiogenesis in an IL-1β-independent

manner. These findings indicate that the NLRP-3 inflammasome contributes to the early in-

flammatory phase following skin wounding and is important for efficient healing.

Introduction
Normal wound healing consists of overlapping phases of hemostasis, inflammation, tissue for-
mation, and remodeling. During the inflammatory phase, leukocytes infiltrate the wound site
to eliminate microbes and clear the wound of damaged tissue [1]. These cells also provide
growth factors and cytokines that have profound effects on subsequent tissue formation and
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angiogenesis [2–5]. As such, the inflammatory response influences each subsequent phase of
healing and is thought to be essential in re-establishing cutaneous homeostasis following inju-
ry. However, excessive or prolonged inflammation is a hallmark of chronic wounds [6], is
thought to contribute to impaired healing in diabetes [7–11], and has been linked to increased
scarring [12,13].

Interleukin (IL)-1 is a pleiotropic pro-inflammatory cytokine that is produced by various
cells such as neutrophils, macrophages, fibroblasts and keratinocytes [14,15]. Activity of both
IL-1α and IL-1β is mediated by the IL-1 receptor (IL-1R) and inhibited by the IL-1 receptor an-
tagonist (IL-1Ra) [16]. Interestingly, wounds from IL-1R knockout mice showed reduced scar-
ring and inflammatory cell accumulation [17], whereas IL-1Ra knockout mice experienced
impaired wound healing accompanied by an exaggerated inflammatory cell infiltration [18]. In
addition, elevated levels of IL-1β have been found in wounds from diabetic humans and mice,
which exhibit a persistent inflammatory response and impaired healing [9,10,19,20]. Collec-
tively, these findings suggest that the IL-1 pathway plays a central role in the inflammatory re-
sponse during wound healing and that elevated levels of IL-1 may contribute to
impaired healing.

Following tissue injury, a variety of pro-inflammatory danger signals are thought to induce
the assembly and activation of a multiprotein complex called the Nod-like receptor protein
(NLRP)-3 inflammasome [21–23]. During activation, procaspase-1 is recruited to the NLRP-3
complex and cleaved to produce active caspase-1, which in turn cleaves proIL-1β to produce
the active cytokine. Inflammasome components can be expressed in various cell types involved
in wound healing including macrophages and keratinocytes [24–26]. Furthermore, the
inflammasome/IL-1β pathway is involved in the pathogenesis of various inflammatory skin
diseases [27–29], and we and others have previously shown that sustained NLRP-3 inflamma-
some activity contributes to impaired healing in diabetic wounds [25,30]. However, little is
known about the role of the NLRP-3 inflammasome in normal skin wound healing. Thus, we
investigated the healing response in mice lacking components of the NLRP-3 inflammasome
following cutaneous wounding. We hypothesized that mice deficient in either NLRP-3 or
caspase-1 would have reduced IL-1β production, and thus, a downregulated inflammatory re-
sponse and accelerated wound healing.

Materials and Methods

Animals
C57Bl/6 wild-type (WT) controls were obtained from Jackson Laboratories. Breeding pairs of
NLRP-3 knockout (KO) mice on a C57Bl/6 background were provided by Genentech and
caspase-1 KO mice on a C57Bl/6 background were provided by Drs. Mihai Netea and Leo Joos-
ten, Radboud University Nijmegen Medical Center. Experiments were performed on 12–16
week-old mice.

Ethics statement
All procedures involving animals were approved by the Animal Care Committee at the Universi-
ty of Illinois at Chicago (protocol #12–207). All animals were housed under standard conditions
and treated according to the Guide for the Care and Use of Laboratory Animals of the NIH.

Excisional wounding and treatment
Mice were subjected to full-thickness excisional wounding on the skin of their dorsum with an
8 mm biopsy punch as described previously [7,20]. As indicated, wounds of NLRP-3 KO mice
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were topically treated with either 300 pg/wound or 3 μg/wound of recombinant mouse IL-1β
(PeproTech, Rocky Hill, New Jersey, USA) in F-127 pluronic gel (50 μl of a 25% gel in saline)
[31,32] or a vehicle control (PBS-loaded gel) on days 1, 2 and 3 post-injury. In addition,
wounds fromWTmice were treated with the caspase-1 inhibitor Ac-YVAD-cmk (20 μmol/L;
Cayman Chemical) in F-127 pluronic gel (50 μl of a 25% gel in saline) or a vehicle control
(DMSO-loaded gel) immediately post-injury and on day 2 post-injury. Wounds were harvested
at day 5 post-wounding.

Wound healing assays
Wound healing was assessed using our previously published assays of re-epithelialization,
granulation tissue formation, collagen deposition, and angiogenesis using hematoxylin and
eosin, Masson’s Trichrome and CD31 stained cryosections [2,7,33]. Two wounds per mouse
were collected and sectioned from one edge to well past the center. Sections were then selected
from the center of the wound by microscopic assessment. Three 10-μm sections judged to be at
the actual center of the wound were used for re-epithelialization and granulation tissue thick-
ness measurements. Adjacent three 10-μm sections were used for trichrome staining, CD31
staining, and inflammatory cell staining (described below). For all assays, digital images were
obtained using a Nikon Instruments 80i microscope and DS-QI1 digital camera and analyzed
using NIS Elements image analysis software (Nikon, Melville, NY, USA).

Re-epithelialization and granulation tissue thickness
Wound re-epithelialization was measured by morphometric analysis of wound sections. Sec-
tions taken from the center of the wound were stained with H&E and the distance between the
wound edges, defined by the distance between the first hair follicle encountered at each end of
the wound, and the distance that the epithelium had traversed into the wound, were measured
using image analysis software. The percentage of re-epithelialization [(distance traversed by
epithelium)/(distance between wound edges) ×100] and granulation tissue thickness [(area of
granulation tissue present)/(distance between wound edges)] was calculated for three sections
per wound and was averaged over sections to provide a representative value for each wound.

Collagen Deposition and Angiogenesis
Dermal healing was assessed using Masson's trichrome stain for collagen deposition and
immunohistochemical staining for CD31 for angiogenesis. For trichrome analysis, staining was
performed according to the manufacturer's directions (IMEB, San Marcos, CA, USA), and
image analysis software (NIS Elements) was used to quantify the percentage of blue collagen-
stained area relative to the total area of the wound bed. For angiogenesis, an antibody against
CD31 (BD Pharmingen, San Diego, CA, USA) was used in conjunction with procedures identi-
cal to those for inflammatory cells described below, and image analysis software was used to
quantify the percentage of CD31-stained area relative to the total area of the wound bed. For
each assay, digital images covering the majority of the wound bed (usually three images at ×20
magnification) were first obtained. The percent area stained in each image was then quantified
by counting the number of pixels staining above a threshold intensity and normalizing to the
total number of pixels. Threshold intensity was set such that only clearly stained pixels were
counted. The software allowed the observer to exclude staining identified as artifact, large ves-
sels, and areas deemed to be outside the wound bed. For both trichrome and CD31 staining,
three sections per wound were analyzed, and data were averaged over sections to provide a rep-
resentative value for each wound.
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Inflammatory Cell Accumulation
Immunohistochemical analysis was performed on cryosections taken from the center of each
wound [2,7,33]. Sections were air-dried, fixed in cold acetone, washed with PBS, quenched
with 0.3% hydrogen peroxide, and washed with PBS. Sections were blocked with buffer con-
taining 3% bovine serum albumin and then incubated with F4/80 antibody to label macro-
phages (1:100, eBioscience, San Diego, CA, USA) or Ly6G antibody to label neutrophils (1:100,
BD Pharmingen, San Diego, CA, USA). Sections were then washed with PBS and incubated
with biotinylated anti-rat secondary antibody (1:200, Vector Laboratories, Burlingame, CA,
USA). After a wash with PBS, sections were incubated with avidin D-horseradish peroxidase
(1:1000) and developed with a 3-amino-9-ethylcarbazole kit (Vector Laboratories). Digital im-
ages were obtained using a Nikon Instruments Eclipse 80i microscope with a 20x/0.75 objec-
tive, a DS-Fi1 digital camera, and NIS Elements software. The percent area stained in each
image was then quantified as described above for trichrome and CD31.

ELISA
Wounds were homogenized in CelLytic MT Cell Lysis Reagent (10 μl of reagent per mg wound
tissue; Sigma Aldrich, St. Louis, MO, USA) supplemented with protease inhibitor cocktail
(Sigma Aldrich) using a dounce homogenizer and then centrifuged. Supernatants were used
for enzyme-linked immunoassay of IL-1β and TNF-α (eBioscience, San Diego, CA, USA) and
VEGF and FGF-2 (R&D Systems, Minneapolis, MN, USA).

Statistics
Values are reported as means ± standard error. Measurements of wound healing and protein
levels were compared between mouse strains using a t-test and between treatments using
ANOVA. The Holm-Sidak post hoc test was used when ANOVAs demonstrated significance.
Differences between groups were considered significant if P� 0.05.

Results

Reduced inflammation in NLRP-3 KO and caspase-1 KOmice
As expected, mice deficient in NLRP-3 or caspase-1 exhibited a reduced inflammatory re-
sponse at day 5 following wounding compared to WT controls. Wounds in NLRP3-KO and
caspase-1 KO mice contained reduced levels of the pro-inflammatory cytokines IL-1β and
TNF-α compared to WT controls (Fig. 1A-D). In addition, wound cryosections stained with
Ly6G revealed a reduction in neutrophil accumulation in NLRP-3 KO mice versus WT mice
and a similar trend in caspase-1 KOmice (Fig. 2A-C,G-H). Furthermore, macrophage accumu-
lation assessed using F4/80 staining was attenuated in NLRP-3 KO mice and showed a similar
trend in caspase-1 KO mice (Fig. 2D-F,I-J). These findings suggest that reduced activity of the
NLRP-3 inflammasome, and thus lower production of IL-1β, leads to an attenuated inflamma-
tory response in wounds.

Delayed healing in NLRP-3 KO and caspase-1 KOmice
Associated with the reduced inflammatory response and contrary to our hypothesis, wound
healing was delayed in NLRP-3 KO mice and caspase-1 KO mice compared to WT mice.
Histological measurements indicated that wounds from caspase-1 KO mice were only 20% re-
epithelialized, at day 5 compared to 40% in WT controls; re-epithelialization showed a similar
trend in NLRP-3 KO mice (Fig. 3A-D, G). To corroborate these findings, wounds fromWT
mice were treated with the caspase-1 inhibitor Tyr-Val-Ala-Asp (YVAD). Compared to vehicle
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control-treated wounds, YVAD treatment resulted in delayed re-epithelialization (Control:
47 ± 3%; YVAD: 34 ± 4%; P� 0.05).

Granulation tissue formation was also decreased in NLRP-3 KO mice (Fig. 3A-C, E, H)
and collagen deposition, assessed with trichrome staining, was lower in caspase-1 KO mice
(Fig. 3F,I); in each case the KO strain for the other inflammasome component showed a similar
but non-significant trend. By day 10 post-injury, the differences in wound healing parameters
had disappeared (data not shown), suggesting that loss of NLRP-3 activity and the resulting
dampened early inflammatory response induces impaired early healing responses.

Impaired angiogenesis in wounds from NLRP-3 KO and caspase-1 KO
mice
Compared to WT controls, wounds from both NLRP-3 KO and caspase-1 KO mice exhibited
decreased angiogenesis as assessed by CD31 staining (Fig. 4A-C). In addition, expression of the
potent pro-angiogenic growth factor VEGF was reduced in wounds from caspase-1 KO mice

Fig 1. Reduced pro-inflammatory cytokines in wounds from NLRP-3 KO and caspase-1 KOmice.
Wounds were harvested on day 5 following injury and levels of (A-B) IL-1β and (C-D) TNF-α were measured
in wound homogenates using ELISA. Data presented as mean ± SE, n = 4–8 wounds per group. *P� 0.05.

doi:10.1371/journal.pone.0119106.g001

Fig 2. Reduced inflammatory cell accumulation in wounds from NLRP-3 KO and caspase-1 KOmice.Wounds were harvested on day 5 post-injury
and cryosections from the center of each wound were stained with antibodies against Ly6G (neutrophils) and F4/80 (macrophages). (A-C) Representative
images of Ly6G and (D-F) F4/80 stained sections, scale bar = 0.5 mm. (G-H) Ly6G and (I-J) F4/80 staining was quantified using the percentage of wound bed
area stained. For each assay, digital images covering the majority of the wound bed (usually three images at ×20 magnification) were first obtained. The
percent area stained in each image was then quantified by counting the number of pixels staining above a threshold intensity and normalizing to the total
number of pixels. Data presented as mean ± SE, n = 7–8 wounds per group. *P� 0.05. †P = 0.057 for Ly6G staining (H) and P = 0.194 for F4/80 staining (J).

doi:10.1371/journal.pone.0119106.g002
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versus controls (Fig. 4D-E). However, levels of another pro-angiogenic growth factor, FGF-2,
whose release from cells may be influenced by NLRP-3 [34], were not different between NLRP-
3 KO mice vs. WT mice (Fig. 4F). Collectively, the reduced inflammatory response and im-
paired angiogenesis in NLRP-3 KO and caspase-1 KOmice suggests that the NLRP-3-mediated
inflammatory response following injury may be necessary for angiogenesis during
wound healing.

IL-1β treatment partially rescues delayed healing in NLRP-3 KOmice
To determine whether loss of IL-1β in wounds of NLRP-3 KO mice was responsible for the de-
fects observed in wound healing, we performed rescue experiments in NLRP-3 KO mice.
Wounds from NLRP-3 KO mice were treated with a physiological or supraphysiological dose
(low, 300 pg/wound or high, 3 μg/wound, respectively) of recombinant IL-1β or vehicle (PBS)
in attempt to rescue the impaired healing phenotype. Histological assessments of wound
cryosections revealed that wounds treated with the higher dose of IL-1β exhibited a trend of
accelerated re-epithelialization compared to PBS- (P = 0.162) and low dose IL-1β-treated
wounds (Fig. 5A). In addition, granulation tissue formation was enhanced in high dose-treated

Fig 3. Delayed healing in NLRP-3 KO and caspase-1 KOmice. Images of day 5 wound cryosections stained with H&E for (A) wild-type, (B) NLRP-3
knockout and (C) caspase-1 knockout mice. Approximately one-half of the wound is shown. Note the reduced re-epithelialization and granulation tissue in
the NLRP-3 knockout and caspase-1 knockout mice. Scale bar = 0.5 mm. Arrows indicate ends of migrating epithelial tongues. gt, granulation tissue; s, scab;
ml, deep muscle. (D,G) Re-epithelialization was measured as the distance traversed by the epithelium divided by the distance between wound edges
multiplied by 100 in H&E stained sections of the wound center. (E,H) Granulation tissue thickness was measured as the area of granulation tissue divided by
the distance between wound edges in H&E stained sections of the wound center. (F,I) Trichrome staining was measured as percent area stained blue for
collagen. Data presented as mean ± SE, n = 5–8 wounds per group. *P� 0.05.

doi:10.1371/journal.pone.0119106.g003

Nod-Like Receptor Protein-3 Inflammasome andWound Healing

PLOS ONE | DOI:10.1371/journal.pone.0119106 March 20, 2015 6 / 13



wounds vs. PBS-treated wounds, but collagen deposition was unchanged (Fig. 5B-C). While
the percent collagen staining in wounds was not different among treatments, the increased
amount of granulation tissue formation in the high dose IL-1β-treated wounds implies an in-
crease in total collagen deposition.

Fig 4. Wounds from NLRP-3 KO and caspase-1 KOmice exhibit impaired angiogenesis.Wound sections were stained with antibodies against CD31.
(A) Representative images of CD31 stained sections, scale bar = 0.5 mm. (B-C) CD31 staining was quantified using the percentage of wound bed area
stained. (D-E) In addition, levels of the pro-angiogenic growth factors VEGF and (F) FGF-2 were measured using ELISA in wound homogenates. Data
presented as mean ± SE, n = 5–8 wounds per group. *P� 0.05.

doi:10.1371/journal.pone.0119106.g004

Nod-Like Receptor Protein-3 Inflammasome andWound Healing

PLOS ONE | DOI:10.1371/journal.pone.0119106 March 20, 2015 7 / 13



IL-1β treatment fails to rescue impaired angiogenesis in NLRP-3 KO
mice
In addition to its pro-inflammatory effects, IL-1β has pro-angiogenic properties [35,36]. Thus,
treating wounds of NLRP-3 KO mice with IL-1βmay be expected to restore the angiogenic re-
sponse. However, CD31 staining revealed an unexpected reduction in angiogenesis with high
dose IL-1β treatment compared to vehicle-treated wounds (Fig. 6A). Levels of the pro-
angiogenic growth factor VEGF were also reduced in both low and high dose IL-1β-treated
wounds vs. PBS-treated wounds (Fig. 6B), while FGF-2 levels were unchanged (Fig. 6C). These

Fig 5. Delayed healing in NLRP-3 knockout mice partially rescued with IL-1β treatment.Wounds of
NLRP-3 knockout mice were topically treated with vehicle (PBS) or 300 pg/wound or 3 μg/wound of
recombinant IL-1β on days 1, 2 and 3 post-injury. Quantification of (A) re-epithelialization and (B) granulation
tissue thickness measured in H&E stained cryosections and (C) trichrome staining measured as percent area
stained blue for collagen. Data presented as mean ± SE, n = 7–8 wounds per group. *P� 0.05 vs. PBS.
#P� 0.05 vs. low.

doi:10.1371/journal.pone.0119106.g005

Fig 6. IL-1β treatment unsuccessful in rescuing impaired angiogenesis in NLRP-3 KOmice.Wounds of
NLRP-3 knockout mice were topically treated with vehicle (PBS) or 300 pg/wound or 3 μg/wound of
recombinant IL-1β on days 1, 2 and 3 post-injury. (A) CD31 staining measured as percent area stained for
this endothelial cell marker. Wounds were also homogenized and levels of (B) VEGF and (C) FGF-2 were
measured using ELISA. Data presented as mean ± SE, n = 6–8 wounds per group. *P 0.05 vs. PBS.

doi:10.1371/journal.pone.0119106.g006
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observations indicate that the improvements in wound healing with IL-1β treatment occur in-
dependent of angiogenesis. When considered together with the impaired angiogenesis in
NLRP-3 and caspase-1 KO mice, these data indicate that NLRP-3 and caspase-1 may promote
angiogenesis through an IL-1β-independent mechanism.

Discussion
The NLRP-3 inflammasome is a cytosolic, multiprotein complex that assembles in response to
various danger signals released following tissue injury [21–23]. Recognition of these stimuli by
the inflammasome results in activation of caspase-1, which is required for IL-1β activation and
secretion. Although aberrant activity of the NLRP-3 inflammasome and IL-1β has been impli-
cated in the pathophysiology of various inflammatory skin diseases [27–29] and has been
shown to contribute to impaired healing in diabetic wounds [20,25,30], less is known regarding
the role of the NLRP-3 inflammasome during normal skin wound healing. In the present
study, we demonstrate that the NLRP-3 inflammasome plays an important role during the
early stages of wound healing. Mice deficient in NLRP-3 or caspase-1 experienced delayed
wound healing associated with reduced levels of IL-1β, a dampened inflammatory response,
delayed re-epithelialization and granulation tissue formation, and impaired angiogenesis. The
impaired healing phenotype in NLRP-3 KO mice was partially rescued by topically treating ex-
cisional wounds with IL-1β. These findings ultimately suggest that the early inflammatory re-
sponse is, at least partly, mediated by the NLRP-3/IL-1β pathway and is important for efficient
tissue repair.

Findings from previous studies have indicated that elevated levels of IL-1β and its pro-
inflammatory actions impair skin wound healing. Wounds from IL-1Ra knockout mice had in-
creased levels of the chemokines keratinocyte-derived chemokine and macrophage inhibitory
protein-1α and accumulation of neutrophils, which was associated with higher IL-1β levels and
impaired healing [18]. In mice lacking the IL-1 receptor, inflammatory cell accumulation was
reduced, but closure was not altered [17,37]. Elevated levels of IL-1β have also been found in
diabetic wounds, which exhibit a persistent inflammatory response and impaired healing
[9,10,19,20]. We recently reported that sustained IL-1β expression in wounds from diabetic
mice and humans is associated with a pro-inflammatory macrophage phenotype [20]. Impor-
tantly, inhibition of the IL-1β pathway in wounds of diabetic mice induced the switch from a
pro-inflammatory to a healing-associated macrophage phenotype and improved healing of
these wounds. In contrast, NLRP-3 KO and caspase-1 KO mice in the current study experi-
enced impaired healing despite a reduction in inflammatory cell accumulation and IL-1β levels,
suggesting that the IL-1β-mediated early inflammatory response is important for efficient re-
pair in non-diabetic mice.

Interleukin-1β is generally considered a pro-angiogenic factor as demonstrated by its role in
tumor angiogenesis [36]. IL-1β is thought to function directly by increasing expression of pro-
angiogenic factors such as VEGF and FGF-2 in endothelial cells, or indirectly through the acti-
vation of infiltrating myeloid cells to produce a variety of cytokines/chemokines, which further
activate tissue resident endothelial cells to produce pro-angiogenic factors [35,38]. Indeed, cu-
taneous wounds from NLRP-3 KO and caspase-1 KOmice had reduced angiogenesis and levels
of VEGF, consistent with a previous report [34]. Unexpectedly, angiogenesis and VEGF levels
were further reduced in NLRP-3 KO mice that were treated with recombinant IL-1β, suggest-
ing that the NLRP-3/caspase-1 pathway mediated angiogenesis via an IL-1β-
independent mechanism.

In addition to IL-1β, the NLRP-3 inflammasome processes and activates proIL-18 and
proIL-33 via caspase-1, although the latter remains controversial [39,40]. Few studies have
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investigated the role of IL-18 or IL-33 in wound healing. In mice, IL-18 protein levels rapidly
increased following cutaneous wounding [41]. In vitro studies have demonstrated an increased
production of extracellular matrix components with IL-18 treatment in cardiac fibroblasts
[42]; while speculative, this may suggest a role of IL-18 in granulation tissue formation. In the
eye, IL-18 is currently being investigated as a potential therapeutic strategy for the treatment of
age-related macular degeneration due to its strong anti-angiogenic actions [43]. Although IL-
18 was not measured in the current study, previous studies have reported a defect in the pro-
duction of mature IL-18 in caspase-1 KO mice [44,45]. Because IL-18 is thought to be anti-
angiogenic, we can speculate that the impaired angiogenesis in the NLRP-3 KO and caspase-1
KO mice was likely not mediated by a lack of IL-18.

Following cutaneous wounding, both mRNA and protein expression of IL-33 are elevated
in mice [46]. Furthermore, intraperitoneal administration of IL-33 following wounding was
shown to improve wound closure and collagen deposition, although angiogenesis was not
assessed in this study [46]. IL-33 has been shown to induce the proliferation, migration, and
morphologic differentiation of human endothelial cells in vitro [47], but its potential pro-
angiogenic role during cutaneous wound healing remains to be determined. Thus, further
study is needed on the role of IL-33 in wound healing.

Interleukin-1α is another member of the IL-1 family, but proIL-1α does not require
caspase-1 activity for activation and can bind and activate the IL-1 receptor [14,48]. Interest-
ingly, proIL-1α, -1β, -18 and-33 all lack a signal peptide and are secreted by an unconventional,
endoplasmic reticulum/Golgi-independent pathway, which is not fully understood [39,49,50].
Activated macrophages from NLRP-3 or caspase-1 deficient mice not only release less IL-1β
and IL-18, but also less IL-1α [28,44,45], establishing a possible role of caspase-1 and the
inflammasome in unconventional protein secretion. To this extent, secretion of proIL-1α and
another leaderless protein, FGF-2, was shown to be dependent on caspase-1 activity in activat-
ed macrophages and UV-irradiated keratinocytes [34]. Interleukin-1α is considered a less po-
tent angiogenic factor compared to IL-1β, but may stimulate angiogenesis via the recruitment
of inflammatory cells that are abundant sources of FGF and VEGF [51,52]. Thus, it is plausible
that defective caspase-1-mediated protein secretion of these leaderless proteins in NLRP-3 KO
and caspase-1 KOmice may contribute to impaired angiogenesis and wound healing. However,
FGF-2 levels were not different in NLRP-3 KO mice versus wild type mice and were not altered
with IL-1β treatment, thus, it is unlikely that the role of FGF-2 in wound healing is through the
NLRP-3/caspase-1 pathway.

Our study is limited in that only one downstream NLRP-3 target (IL-1β) was investigated as
a candidate to explain the impaired healing in NLRP-3 KO and caspase-1 KO mice. Although a
lack of IL-1β appears to contribute to impaired early healing responses, other inflammasome
targets may also contribute to the impaired healing phenotype in these mice. Another limita-
tion is that the caspase-1 KO mice have been found to be deficient in caspase-11 [53,54], and
so we cannot distinguish the role of these caspases in the impaired healing of wounds in
caspase-1/11 KO mice. Nonetheless, because the impaired healing phenotype of NLRP-3 and
caspase-1/11 KO mice were similar, our experiments indicate that the NLRP-3 inflammasome
likely contributes to the early inflammatory phase of wound healing and that NLRP-3 signaling
is important for efficient healing.

Collectively, findings from this study enhance our understanding of inflammation and
wound healing and demonstrate the important role of NLRP-3 signaling in the early inflamma-
tory response in tissue repair. Further studies elucidating the IL-1β-independent mechanism
through which the NLRP-3/caspase-1 pathway mediates angiogenesis may reveal novel path-
ways involved in angiogenesis and wound healing.
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