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Abstract

Original Article

IntroductIon

Radiation therapy is a noninvasive, normal tissue preserving 
treatment where ionizing radiation is used to treat malignant 
disease. The aim of the radiotherapy is to deliver conformal dose 
to target, simultaneously minimizing the dose in surrounding 
tissues to avoid damage to healthy organs. Radiotherapy is one 
of the treatments of choice for head-and-neck (HN) cancers. 
This treatment can affect the quality of life of treated patients, 
also affecting their physical, mental, and social health.[1] 
Radiotherapy treatment plan is generated by expert planners 
which involves step-by-step processes where the clinical 
prescription objectives given by clinical radiation oncologist 
are realized into deliverable dose distributions to defined region 
of interest. Optimizing the treatment plan is one of the major 

steps in the treatment planning process. Treatment planning is a 
trial and error process in which the planner has to trade off the 
plan between target coverage and organ at risk (OAR) sparing. 
Literature reports on knowledge-based planning (KBP) help 
to standardize the treatment plans.[2-4]

Multi-criteria optimization (MCO) is an effectual treatment 
planning method, in terms of planning time and dosimetric 
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KBP.[8,9] Optimal treatment plans generated based on the dose 
constraints and trade-offs are used as input to build and train 
the model. This model can predict the DVH of the OARs of 
new patients. RapidPlan (RP) is a KBPM model incorporated 
in Eclipse treatment planning system (Varian Medical 
Systems, Palo Alto, CA, USA). As there were few literatures 
relevant to RP model in head and neck[10,11] and also to further 
understand the model configuration process, we conducted 
this study as an extension of our previous work.[12] The main 
objectives of the study were to (i) select a cohort of clinical 
RA treatment plans by expert planners and to explore trade-off 
to improve plan quality with MCO-RA plan, (ii) compare the 
high-quality plans with in-house developed Python script 
to generate and analyze dose–volume metric automatically 
from Eclipse planning, (iii) selected quality plans were used 
to build KBP model to automate planning and evaluate with 
Model Analytics (MA), and (iv) dosimetric comparison of 
KBPM with clinical plans (CP) to validate KBPM plans to 
be used in Clinic.

MaterIals and Methods

Patient selection
Two hundred previously treated simultaneously integrated 
boost (SIB) HN patients with volumetric-modulated arc 
therapy (VMAT) technique planned by expert planners 
were selected for this study. The dose to SIB targets, PTV 
high risk, PTV intermediate risk, and PTV low risk ranges 
from 54Gy to 70Gy with dose per fraction ranging between 
1.63Gy to 2.12Gy. Clinical goals for all target coverage were 
normalized based on RTOG protocol #0225 and #0522. The 
OAR constraints are listed in Table 1.

All the treatment plans were optimized using RapidArc, 
with two full coplanar arcs and collimator angles 30° and 
330° using 6 MV photon beams in TrueBeam equipped with 
Millennium 120-MLC. Inverse planning optimizer used was 

Table 1: Planning goals for planning target volumes and 
organs at risk with dose‑volume constraints

PTV/OAR Dose‑volume constraints
PTV HR D95%≥95%

D98%≥93%
D2%<107%

PTV IR D95%≥95%
PTV (IR-HR) VHRDose<20%
PTV LR D95%≥95%
PTV (LR-IR) VIRDose<20%
Spinal cord Dmax<45 Gy
Brainstem Dmax<48 Gy
Parotids Dmean<26 Gy
Larynx Dmean<45 Gy
Mandible Dmax<70 Gy
Lips Dmean<20 Gy
Oral cavity Dmean<35 Gy
PTV: Planning target volume, OAR: Organ at risk, HR: High risk, IR: 
Intermediate risk, LR: Low risk

plan quality.[5,6] MCO method relies on the plan database which 
lies on or near the pareto-optimal surface. The treatment plans 
on the pareto-optimal surface cannot be improved without 
degrading the other plan.[7]

The Eclipse treatment planning system was capable to integrate 
scripting application programming interface (API). Eclipse 
Scripting API (ESAPI) was first released with Eclipse v11 as a 
read-only API that provided access to external beam workspace 
data with an emphasis on allowing extraction of external beam 
photon treatment planning data, structure sets, 3D dose and 
image matrices, and dose–volume histogram (DVH) data. 
Later versions included major supports like automated plan 
and dicom file pushing. This is a toolbox based on the C#.Net 
programming language with.NET framework Common 
Language Runtime (CLR). External binaries were granted 
authorization to host ESAPI through .NET command-line 
interface (CLI) in Eclipse version 15.5, allowing for read-only 
access in clinical mode and read/write access in research mode. 
ESAPI can be used in two different modes of interaction with 
plugin scripts, and with standalone executable scripts. A new 
Python for.NET implements such a CLR host in Python. This 
script allows “direct” access to the.NET objects in ESAPI 
through native Python (PyESAPI). Jupiter notebook tool 
enables us to do real-time interactive access to the Python 
runtime in a user-friendly notebook-style web interface. 
Jupyter notebook allows us to browse the ESAPI data model, 
draft and debug code, and results in real time. This does not 
require re-compile and re-start of Eclipse to update/re-run the 
new code. It is recommended to install PyESAPI and  Eclipse 
database in TBox was set to research mode and PyESAPI was 
installed to pull the patients’ CT images, RT prescriptions, and 
RT dose “directly” without the need for import and export 
filter. A sample script with highlighted code to recall the dose 
distribution in region of interest of patient image dataset is 
shown in Figure 1.

Research has been carried out in automation process 
of treatment planning which resulted in the concept of 

Figure 1: Sample script with coding that recalls the dose distribution in 
the patient image dataset
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progressive resolution optimizer, and final dose calculations 
were performed with the anisotropic analytical algorithm.

Treatment planning with multi‑criteria optimization
The 200 CPs using VMAT were further optimized with MCO 
to explore the trade-off planning which strike the right balance 
between the target coverage and OAR sparing. For MCO-RA 
plan, trade-off exploration was used with optimization 
objectives to the following OARs given in priority order: both 
parotids, spinal cord, brainstem, larynx, and oral cavity and 
lips. Treatment plans with MCO-RA were then compared with 
clinical RA plan for quality and deliverability of plan.

Plan evaluation and comparison
To evaluate and compare plan quality of 2 sets (RA and MCO-RA) 
of 200 plans, we developed an in-house Python V3.0 script 
and an integrated script with Eclipse using Eclipse Script 
application interface (ESAPI) to extract the plan information 
and to extract and analyze dose–volume metrics.

The Jupiter notebook was created to extract, store, and 
to save data from Eclipse plans using PyESAPI.[13] The 
Jupiter notebook was installed and run under the Anaconda 
environment. All 200 patients UHID are stored in CVS format. 
This information serves as input to Jupiter notebook. Figure 2 
shows the script for extracting data and storing it in an array 
for later analysis. Figure 3 shows the sample data extracted 
from the Jupiter notebook script.

The following metrics were used to evaluate target coverage such 
as D95%, D98%, D5%, and D2%, and for OARs as follows, parotids 
with mean dose (MD), spinal cord, brainstem with D0.03cc, 
larynx, pharyngeal constrictors, and oral cavity with MD, lips, 
and mandible with D0.1cc. Institution-developed plan quality 
scoring metrics were used to score the high valued plans.

Knowledge‑based planning model training and verification 
with Model Analytics
For RP-KBP model creation, 200 MCO-RA patient data and 
plans were extracted to train the DVH estimate model. The 
geometric plot, regression, and residual statistics for the cohort 
of 200 patients were analyzed. Outliers are training plans with 
data values that do not seem to fit the data in the rest of the 
training set. Cook’s distance, modified Z-score, and studentized 
residual are the different outlier statistics tools. Outliers could 
influence the generation of the model parameters and bias 
the results. The potential outliers were evaluated in order to 
exclude or keep the structure in the model. Outlier plans can be 
addressed by removing them from the model and re-planning. 
RP provides multiple tools to identify geometric outliers, 
dosimetric outliers, and influential data points which could 
have an adverse effect on the model, and therefore should be 
excluded from the RP model. Possible outliers of OARs in the 
cohort of patients were removed from the model. Varian MA, 
a cloud-based tool, was used to validate and fine tune the KBP 
model. This tool uses statistical and dosimetric parameters to 
inspect the model created and to suggest revisiting plans to 
improve the power of model prediction. MA provides geometric 
information about whether the model covers all plan volumes, 
such as targets and OARs, or whether more volumes must be 
added to the model to address any volume gaps. It also gives 
dosimetric information on target coverage and whether any 
target is an outlier to achieve desired homogeneity. Similarly 
for OARs, MA suggests whether the particular dose of certain 
OARs from the 200 plans is higher than estimated and if that 
influence to affect the accuracy of DVH estimates. Our model 
was improved further with MA informatics by revisiting few 
plans and with incorporated suggestions from MA.

Figure 2: The script to extract the data and to store in array

Figure 3: The sample Jupiter notebook script which returns the dosimetric information for any Plan ID input
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The target upper and lower objectives were manually defined 
for model-based plans, whereas the OAR line integrals were 
derived by model estimate. Additionally to control spill-off, 
normal tissue objective was used with fall-off 0.1, from a start 
dose of 100% to 50% from target border of 1 mm.

RapidPlan‑knowledge‑based planning validation
Published KBP models were then validated for a new set 
of 35 HN-SIB patients with VMAT CPs. Model plans were 
created and compared with clinical RA plans (CP). Plans 
were compared and analyzed individually and using Python 
script to quantify plan metrics. Statistical analysis was 
performed to compare the dosimetric differences between 
CP and RP plans. Paired t-test was used to compare the 
different dosimetric parameters. P < 0.05 was considered 
statistically significant.

results

RapidPlan versus multi‑criteria optimization–RA plans
Clinical RA plans selected for model creation were further 
tuned with MCO trade-off exploration. While both the sets 
of plans achieved the clinical objectives, MCO-RA plans 
were better in sparing the bilateral parotids, spinal cord, etc., 
Figure 4 compares the OAR dosimetric parameters between 
RA and MCO-RA plans by five expert planners extracted 
using in-house developed Python script. Figure 5 compares 
the overall OAR sparing by RA and MCO-RA plans for the 
set of 200 patient plans. It is observed except few potential 
outliers; MCO-RA plans were able to improve OAR sparing, 
especially for bilateral parotids and spinal cord.

Knowledge‑based planning model analysis
Table 2 summarizes the evaluation of the published model 
quality. For each structure in the model, goodness of fit was 
evaluated with coefficient of determination (R2) and the average 
Pearson’s Chi-square (χ2).  Potential outliers in the model OAR 
are also listed in Table 2. These together with MA helped in 
improving the model prediction power.

RapidPlan‑knowledge‑based planning model validation
RP-KBP model was validated against the CP.

Target coverage
The dose distributions for one representative HN cancer (HNC) 
patient on all planes of CP and RP plans are shown in Figure 6. 
Table 3 shows the detailed statistical analysis of PTVs, 
which are averaged over 35 patients. Statistically significant 
differences are observed between CP and RP plans in terms 
of PTV high risk, PTV intermediate risk, and HI. With 
better sparing of OARs, the target homogeneity was slightly 
compromised in RP plans.

Organ at risk sparing
Figure 7 shows the DVHs of OARs for one representative 
patient which shows that RP plans significantly reduce dose 
to OARs in comparison with CP plans. The MD results 
for the OARs are summarized in Table 3. When looking at 

each organ separately, the brainstem maximum dose was 
significantly lower with RP (22.84 ± 12.76 Gy) compared to 
CP (27.23 ± 12.14 Gy), P < 0.001. No statistical difference 
was found in spinal cord doses between two plans. Relatively 
remarkable decreases were observed in Dmean of both parotids. 
MD was significantly lesser in RP plans (P = 0.014, <0.001). 
There were no significant differences in OARs sparing of 
larynx, oral cavity, and mandible.

Plan MUs
To achieve a balanced plan between multiple PTVs and 
OARs in HNC treatment is a time-consuming task. The mean 
number of MUs for CP plans was 612 compared to 558 for RP 
plans (P < 0.05). A statistically significant reduction of MUs 
was observed in RP plans.

Table 2: Summary of model evaluation statistics of 
trained knowledge‑based planning model

Structure R2 χ2 Outliers
Brainstem 0.690 1.019 34
Spinal cord 0.294 1.026 5
Parotid-contra 0.328 1.026 7
Parotid-ipsi 0.355 1.026 4
Larynx 0.549 1.045 17
Lips 0.884 1.082 0
Oral cavity 0.682 1.038 15
Mandible 0.810 1.020 7
Pharyngeal constrictors 0.895 1.215 0

Table 3: Dosimetric results of planning target volumes 
and organs at risk between clinical plan and RapidPlan

PTV/OARs Parameter CP RP P
PTV

PTV HR D98% (%) 96.89±2.21 98.01±1.83 <0.001*
D2% (%) 105.13±1.12 106.92±1.13 0.142

HI 1.06±0.04 1.07±0.06 0.020*
PTV IR D95% (%) 97.03±1.68 99.76±0.82 0.004*
PTVIR-HR VHRD (%) 17.77±1.28 19.33±2.56
PTV LR D95% (%) 98.14±0.76 98.81±2.33 0.943
PTVLR-IR VIRD (%) 12.34±2.05 14.25±1.83

OARs
Brainstem D0.03cc (Gy) 27.23±12.14 22.84±12.76 <0.001*
Spinal cord D0.03 (Gy) 34.12±8.06 33.01±2.15 0.073
Left parotid Dmean (Gy) 29.38±6.44 26.33±5.81 0.014*
Right 
parotid

Dmean (Gy) 28.65±8.88 26.56±9.44 <0.001*

Oral cavity Dmean (Gy) 29.83±5.81 29.11±12.02 0.190
Larynx Dmean (Gy) 35.64±12.41 33.59±13.79 0.204
Lips D0.1cc (Gy) 49.11±7.53 41.78±5.83 <0.001*
Mandible D0.1cc (Gy) 61.93±11.32 61.01±11.89 0.152
MU 612±86 558±71 0.039*

*P<0.05 was considered statistically significant. PTV: Planning target 
volume, OAR: Organ at risk, HR: High risk, IR: Intermediate risk, LR: 
Low risk, CP: Clinical plan, RP: RapidPlan, MU: Monitor unit, HI: 
Homogeneity index
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Treatment time efficacy
The time taken to return the clinically deliverable plans 
were individually assessed. While CP plans required several 
iterations to reach the desired plan outcome, RP plans required 
one or two iterations only. RP plans consumed lesser time 
by 50% to return the desirable clinically deliverable plans 
compared to user CPs.

dIscussIon

In this study, we evaluated the performance of RP model on 
HNC radiotherapy based on RA planning. The analyzed results 

showed that RP plans provided comparable and improved plan 
quality over the CPs. The superiority of RP plans over the 
CP could be due to the challenging nature of optimally and 
consistently performing interactive planning for plans which 
contain many OARs, within a limited number of iterations. 
Caution should be used when applying RP models to patients 
whose geometry falls outside the range of the constituent plans 
in the model.

Optimization of RA plans can be a time-consuming trial and 
error process, as many planning objectives are contradictory 
to each other and cannot reach their individual optimum at the 
same time. MCO combined with interactive plan navigation is a 
promising approach to overcome these problems.[14] Literatures 
have reported that the use of RP and MCO in clinical practice 
has reduced the treatment planning time.[15] MCO-based 
treatment planning can be used as a tool for educational 
purposes for emerging clinical physicists. It is promising to 
combine MCO with KBPM. The combination of KBP and 
MCO is synergistic as the knowledge-based system provides 
the templates and beam orientations, as well as the starting 
point for the interactive navigation. If in any case with gross 
deviation in OAR overlaps with target, or the volume deviates 
grossly with the cohort of plans in model, it will reduce the 
efficiency of DVH estimate by our KBPM, with a warning of 
potential outlier that requires manual iterations. One of the 
advantages of KBPM is that the ongoing CPs can be added 
to the existing model to better train the model to improve its 
power of DVH estimate. Planners’ expertise is of least concern 

Figure 6: The dose distribution of representative HN cancer patient with 
cancer tongue. Use of normal tissue objective in RP plan improved the 
conformity of dose distribution better than clinical plan plans

Figure 4: Comparing each of five expert planner plans (RA) and multi‑criteria optimization‑RA plans for few representative organs at risk. Number of 
samples for each planner 30 RA and 30 multi‑criteria optimization‑RA plans. In‑house Python script helps with data informatics to segregate plans 
based on planner, organs at risk, etc., (a) Box and whisker plot of oral cavity (D67%). (b and c) Box and whisker plot of mean dose to left and right 
parotids. (d) The box and whisker plot for D0.03cc of spinal cord

dc

ba

Figure 5: Comparing the RA plans with multi‑criteria optimization‑RA plans for representative organs at risk for 200 sets of plans. (a and b) Comparing 
mean dose to left and right parotids, respectively, for RA vs. multi‑criteria optimization‑RA plans. (c) comparing the maximum dose D0.03cc to spinal cord

cba
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and it empowers the confidence in young planners to improve 
their planning skills. Furthermore, with DVH estimates, KBPM 
could help the clinician to judge plan outcome beforehand 
what could be the expected lines of clinical outcome with 
their contouring input.

conclusIon

The KBP model published with our institute data using the 
MCO-RA plans delivers the best DVH estimate of OAR sparing 
for the given geometry of the patient. The treatment planning 
process was well streamlined with DVH estimate model to 
return highly efficient plans and avoid the need for multiple 
iteration process. Expertise of the planner is of least concern as 
KBP delivers highly efficient and consistent plans with lesser 
time spent on treatment planning. The in-house developed 
Python ESAPI script is a great tool for clinician to quickly 
evaluate whether plan clinical goals are met.
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