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Abstract
The genome- wide association studies (GWASs) are essential to determine the genetic 
bases of either ecological or economic phenotypic variation across individuals within 
populations of the model and nonmodel organisms. For this research question, the 
GWAS replication testing different parameters and models to validate the results' re-
producibility is common. However, straightforward methodologies that manage both 
replication and tetraploid data are still missing. To solve this problem, we designed the 
MultiGWAS, a tool that does GWAS for diploid and tetraploid organisms by execut-
ing in parallel four software packages, two designed for polyploid data (GWASpoly 
and SHEsis) and two designed for diploid data (GAPIT and TASSEL). MultiGWAS has 
several advantages. It runs either in the command line or in a graphical interface; it 
manages different genotype formats, including VCF. Moreover, it allows control for 
population structure, relatedness, and several quality control checks on genotype 
data. Besides, MultiGWAS can test for additive and dominant gene action models, 
and, through a proprietary scoring function, select the best model to report its as-
sociations. Finally, it generates several reports that facilitate identifying false asso-
ciations from both the significant and the best- ranked association Single Nucleotide 
Polymorphisms (SNPs) among the four software packages. We tested MultiGWAS 
with public tetraploid potato data for tuber shape and several simulated data under 
both additive and dominant models. These tests demonstrated that MultiGWAS is 
better at detecting reliable associations than using each of the four software pack-
ages individually. Moreover, the parallel analysis of polyploid and diploid software 
that only offers MultiGWAS demonstrates its utility in understanding the best genetic 
model behind the SNP association in tetraploid organisms. Therefore, MultiGWAS 
probed to be an excellent alternative for wrapping GWAS replication in diploid and 
tetraploid organisms in a single analysis environment.
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1  | INTRODUC TION

The genome- wide association studies (GWASs) comprise statistical 
tests that identify which variants through the whole genome of a 
large number of individuals are associated with a specific trait (Begum 
et al., 2012; Cantor et al., 2010). This methodology started with hu-
mans and several model plants, such as rice, maize, and Arabidopsis 
(Cao et al., 2011; Han & Huang, 2013; Korte & Farlow, 2013; Lauc 
et al., 2010; Tian et al., 2011). Because of the advances in the high- 
throughput sequencing technology and the decline of the sequenc-
ing cost in recent years, there is an increase in the availability of 
genome sequences of different organisms at a faster rate (Ekblom 
& Galindo, 2011; Ellegren, 2014). Thus, the GWAS is becoming the 
standard tool to understand the genetic bases of either ecologi-
cally or economically relevant phenotypic variation for both model 
and nonmodel organisms. This increment includes complex species 
such as polyploids (Figure 1) (Ekblom & Galindo, 2011; Santure & 
Garant, 2018).

The GWAS for polyploid species has four related challenges. 
First, replication among tools is critical to validate GWAS results and 
capture positive associations (Chanock et al., 2007; De et al., 2014), 
because each tool has its assumptions (i.e., data quality control, 
false- positive control, and model optimizations), leading to differ-
ent results such as p- values, significance thresholds, and genomic 
control inflation factors. Consequently, each tool can be considered 
an independent environment to replicate a GWAS analysis. For ex-
ample, the significance threshold for p- value changes through four 
GWAS software (i.e., PLINK, TASSEL, GAPIT, and FaST- LMM) when 
the sample size varies (Yan et al., 2019). It means that well- ranked 
SNPs from one package can be ranked differently in another.

Second, there are very few tools focused on integrating sev-
eral GWAS software to compare different parameters and condi-
tions across them. As far as we know, there are only two software 
packages with this service in mind: iPAT and easyGWAS. The iPAT 
allows running in a graphic interface three well- known command- 
line GWAS software such as GAPIT, PLINK, and FarmCPU (Zhang 
et al., 2018). However, the output from each package is separated. 

On the other hand, the easyGWAS allows running a GWAS analysis 
on the Web using different algorithms and combining several GWAS 
results. This analysis runs independently of both the computer ca-
pacity and the operating system. Nevertheless, it needs either sev-
eral datasets to obtain the different GWAS results to make replicates 
or GWAS results already computed. In either case, the results from 
different algorithms are also separated (Grimm et al., 2017). Thus, al-
though both software iPAT and easyGWAS integrate with different 
programs or algorithms, an output that allows to compare similitude 
and differences in the association is missing.

Third, although there are different GWAS software packages 
available to repeat the analysis under different conditions (Gumpinger 
et al., 2018), most of them are designed exclusively for the diploid 
data matrix (Bourke et al., 2018). Therefore, it is often necessary to 
“diploidizing” the polyploid genomic data to replicate the analysis. 
This process could withdraw how allele dosage affects the pheno-
type expression in polyploid species (Ferrão et al., 2018). However, 
some genome sections of autopolyploid species did not duplicate, 
leading to loci's disomic inheritance (Dufresne et al., 2014; Lynch & 
Conery, 2000; Ohno, 1970). Moreover, the inheritance mechanism 
of most of the polyploid species is still unknown. Therefore, soft-
ware that accounts for both polyploid and diploid data facilitates 
analyzing both inheritance types in polyploids.

Finally, for polyploid species, any tool that integrates and com-
pares different gene action models among software is key to un-
derstanding how redundancy or complex interaction among alleles 
affects the phenotype expression and the evolution of new pheno-
types (Bourke et al., 2018; Ferrão et al., 2018; Rosyara et al., 2016).

This study developed the MultiGWAS tool that performs GWAS 
analyses for both diploid and tetraploid species using four software 
packages in parallel to overcome these challenges. The tool includes 
GWASpoly (Rosyara et al., 2016) and SHEsis (Shen et al., 2016) 
that accept polyploid genomic data. Also, it includes GAPIT (Tang 
et al., 2016) and TASSEL (Bradbury et al., 2017), designed for GWAS 
in plants, but that in the case of tetraploid data, their use requires 
“diploidizing” genomic matrix. This wrapping tool deals with different 
input file formats that come from several polyploid genotypes call-
ing software, including VCF. Besides, MultiGWAS manages data pre-
processing, searches associations by running four GWAS software 
packages in parallel, and creates a score to choose between gene 
action models in GWASpoly and TASSEL. This study describes the 
utilities of MultiGWAS and its evaluation through simulation studies 
and one public GWAS dataset, demonstrating its advantages.

2  | METHOD

The MultiGWAS tool has three main steps: the adjustment, the 
multi- analysis, and the integration (Figure 2). In the adjustment 
step, MultiGWAS processes the configuration file. Then, it cleans 
and filters the genotype and phenotype datasets, and in the case of 
tetraploids, MultiGWAS “diploidizes” the genomic data. Next, during 
the multi- analysis, each GWAS tool runs in parallel. Subsequently, 

F I G U R E  1   The number of peer- reviewed papers that contains 
the keywords “GWAS” and “polyploid” in the PubMed database 
between 2009 and 2019
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in the integration step, the MultiGWAS tool scans the output data 
files from the four packages (i.e., GWASpoly, SHEsis, GAPIT, and 
TASSEL); postprocesses the data; and finally, it generates a summary 
of all results that contain associations tables, Venn diagrams show-
ing associated SNPs shared among tools, SNPs in linkage disequi-
librium (LD), Manhattan and quantile– quantile (Q– Q) plots, chord 
diagrams showing the position in the chromosome of the associated 
SNPs, and finally SNP profiles (see Section 2.3.3).

2.1 | Adjustment stage

MultiGWAS takes as input a configuration file where the user speci-
fies the genomic data and the parameters for the four tools. Once 
the configuration file is read and processed, the genomic data files 
(genotype and phenotype) are then cleaned, filtered, and checked 
for data quality. The output of this stage corresponds to the inputs 
for the four programs at the multi- analysis stage.

2.1.1 | Reading configuration file

The configuration file includes the following settings that we briefly 
describe:

Ploidy
Currently, MultiGWAS supports diploid and tetraploid genotypes, 
where two for diploids and four for tetraploids.

Genomic input files
MultiGWAS mainly uses two input files for the genotype and the 
phenotype files, and depending on the genotype format (see below) 
could be needed a map file with marker information (chromosome 
name, genomic position, reference allele, and alternate allele).

For genotypes aligned with a reference genome, the N chromo-
somes/contigs displayed in the plots were specified. Chromosomes 
are sorted in decreasing order by size. Chromosome/contig size is ap-
proximated to the highest variant position. And, when chromosome/

contig names are numerical or are too large, they are changed with 
the string prefix “contig” and a sequential number from 1 to N.

MultiGWAS allows genotype data in five different formats: 
“gwaspoly” (Rosyara et al., 2016), “vcf” (Parra- Salazar et al., 2020; 
Team, 2015), “matrix,” “fitpoly” (Zych et al., 2018), and “updog” 
(Gerard & Ferrão, 2020). The former two formats already include 
marker information, but the last three formats do not, and they need 
the additional map file. VCF files are transformed into GWASpoly 
format using NGSEP 4.0.2 (Tello et al., 2019). A detailed information 
on these files and formats is available in the GitHub tool (https://
github.com/agros avia- bioin fo/Multi GWAS).

Test model
One of the main factors in detecting real trait– marker associations 
depends on the gene action models. A unique feature offered by 
MultiGWAS is to test the different gene action models supported 
by the tools (see Section 2.2). The additive model is the default 
model supported by all the tools. However, GWASpoly supports 
eight, TASSEL three, GAPIT two, and SHEsis only supports one. To 
integrate the different models in one wrapping tool, MultiGWAS 
offers three testing options: “additive” (supported by all the tools), 
“dominant” (supported by all tools except SHEsis), and “all” (for test-
ing all effects supported by the tools, including both additive and 
dominant effects). In any of the three tests, MultiGWAS reports its 
top N associations with low p- value (with N defined by the user; see 
below). Taking these associations is straightforward for the former 
two tests, but not for the last one, as tools report different associa-
tions for each gene action model. For this last test, we have created 
a method that automatically selects the “best” gene action model 
described in Section 2.3.1.

GWAS model
MultiGWAS works with quantitative phenotypes and runs two types 
of GWAS, either with control for population structure and related-
ness between samples or without any control. The first is known in 
the literature as the Q + K or full model, where Q refers to population 
structure and K to relatedness, and the second is known as the naive 
model (Sharma et al., 2018).

F I G U R E  2   MultiGWAS flowchart has 
three steps: adjustment, multi- analysis, 
and integration. In the first step, after 
the input data management upload, 
MultiGWAS read the configuration file 
and preprocess the input data (genotype 
and phenotype dataset). The second step 
is the GWAS analysis, where MultiGWAS 
configures and runs the four packages 
in parallel. Finally, in the third step, 
MultiGWAS summarizes the results and 
generates a report using different tabular 
and graphical visualizations

https://github.com/agrosavia-bioinfo/MultiGWAS
https://github.com/agrosavia-bioinfo/MultiGWAS
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Both models are linear regression approaches, and GWAS tools 
used by MultiGWAS implements some variations of those mod-
els. The naive is modeled with generalized linear models (GLMs, 
Phenotype + Genotype), and the full is modeled with mixed linear 
models (MLMs, Phenotype + Genotype + Structure + Kinship). 
The default model used by MultiGWAS is the full model (Q + K) (Yu 
et al., 2006), and the equation is as follows:

In this equation, the y is the vector of observed phenotypes. 
Moreover, the β is a vector of fixed effects other than SNP or pop-
ulation group effects, the � is a vector of SNP effects (quantitative 
trait nucleotides), the v is a vector of population effects, the � is 
a vector of polygene background effects, and the e is a vector of 
residual effects. Besides, Q, modeled as a fixed effect, refers to the 
incidence matrix for subpopulation covariates relating y to v, and 
X, S, and Z are incidence matrices of 1s and 0s relating y to β, �, 
and �, respectively.

Genome- wide significance
Genome- wide association studies search SNPs associated with 
the phenotype in a statistically significant manner. A threshold 
or significance level � is specified and compared with the p- value 
derived for each association score. Standard significance levels 
are 0.01 or 0.05 (Gumpinger et al., 2018; Rosyara et al., 2016), 
and MultiGWAS uses an � of 0.05 for the four GWAS packages. 
However, in GWASpoly and TASSEL, which calculates the SNP ef-
fect for each genotypic class using different gene action models 
(see “Multi- analysis stage”), the threshold is adjusted according 
to these two packages. Therefore, the number of tested markers 
may be different in each model (see below), impacting the p- value 
thresholds.

Multiple testing correction
Due to the massive number of statistical tests performed by GWAS, 
it is necessary to perform a correction method for multiple hypoth-
esis testing and adjusting the p- value threshold accordingly. Two 
standard methods for multiple hypothesis testing are the false dis-
covery rate and the Bonferroni correction. The latter is the default 
method used by MultiGWAS, which is one of the most rigorous 
methods. However, instead of adjusting the p- values, MultiGWAS 
adjusts the threshold below which a p- value is considered significant, 
that is, �∕m, where � is the significance level and m is the number of 
tested markers from the genotype matrix.

Number of reported associations
The use of stringent significance levels could discard many p- value 
associations closer to significant threshold, generating a high num-
ber of false negatives (Kaler & Purcell, 2019; Thompson et al., 2011). 
To avoid this problem, MultiGWAS provides the option to specify 
the number of best- ranked associations (lower p- values), adding 
the corresponding p- value to each association found. In this way, 

it is possible to enlarge the number of results and their replicabil-
ity across the different programs. Nevertheless, the report displays 
each association with its corresponding p- value.

Quality control filters
A control step is necessary to check the input data for the genotype 
or phenotype errors or low quality, leading to spurious GWAS re-
sults. MultiGWAS provides the option to select and define thresh-
olds for the following filters that control the data quality: minor allele 
frequency (MAF), individual missing rate (MIND), SNP missing rate 
(GENO), and Hardy– Weinberg threshold (HWE). All of these filters 
are built- in implementations of MultiGWAS, except the HWE for 
tetraploids:

• MAF of x: filters out SNPs with minor allele frequency below x 
(default 0.01);

• MIND of x: filters out all individuals with missing genotypes ex-
ceeding x*100% (default 0.1);

• GENO of x: filters out SNPs with missing values exceeding x*100% 
(default 0.1);

• HWE of x: filters out SNPs with a p- value below the x threshold 
in the Hardy– Weinberg equilibrium exact test. In the case of tet-
raploid genotypes, this calculation is taken from SHEsis (Shen 
et al., 2016).

GWAS tools
List of the four GWAS software names to run and integrate into 
MultiGWAS analysis are as follows: GWASpoly and SHEsis (designed 
for polyploid data), and GAPIT and TASSEL (designed for diploid 
data).

Linkage Disequilibrium threshold (R2)
It is defined as user- defined squared correlation threshold (R) above 
which a pair of SNPs is considered to be in LD (see Section 2.3.3 for 
details).

2.1.2 | Data preprocessing

Once the configuration file is processed, the genomic data are read 
and cleaned by selecting individuals present in both genotype and 
phenotype. Then, MultiGWAS removes individuals and SNPs with 
low quality following the previously selected quality control filters 
and their thresholds.

At this point, the format "ACGT" suitable for the polyploid soft-
ware GWASpoly and SHEsis is "diploidized" for GAPIT and TASSEL. 
The homozygous tetraploid genotypes are converted to diploid: 
AAAA→AA, CCCC→CC, GGGG→GG, and TTTT→TT. Moreover, 
for tetraploid heterozygous genotypes, the conversion depends on 
the reference and alternate alleles calculated for each position (e.g., 
AAAT→AT, …,CCCG→CG).

y = X� + S� + Q� + Z� + e
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After this process, MultiGWAS converts the genomic data, gen-
otype, and phenotype datasets to the specific formats required for 
each of the four GWAS packages.

2.2 | Multi- analysis stage

As described in Section 2.1.1, MultiGWAS can run two types of 
GWAS: naive without any genotype data control and full with con-
trol for population structure and relatedness. GWASpoly, GAPIT, 
and TASSEL support both models. However, SHEsis supports only 
the naive model. To control population structure and relatedness in 
the full model, MultiGWAS uses built- in algorithms to calculate both 
principal components as covariates and kinship among pairs of in-
dividuals. A more detailed description of each of the GWAS tools is 
given below.

2.2.1 | GWASpoly

GWASpoly (Rosyara et al., 2016) is an R package designed for 
GWAS in polyploid species used in several studies in plants 
(Berdugo- Cely et al., 2017; Ferrão et al., 2018; Sharma et al., 2018; 
Yuan et al., 2020). GWASpoly uses a Q + K linear mixed model 
with biallelic SNPs that account for population structure and relat-
edness. Also, to calculate the SNP effect for each genotypic class, 
GWASpoly provides eight gene action models: general, additive, 
simplex dominant alternative, simplex dominant reference, duplex 
dominant alternative, duplex dominant, diplo- general, and diplo- 
additive. Therefore, each gene action model calculates p- values 
differently. GWASpoly considers the number of obtained p- values 
that vary among gene action models and thus varies their respec-
tive significance threshold (Bonferroni), resulting in different 
thresholds depending on the model.

MultiGWAS uses GWASpoly version 1.3 with all gene action 
models available to find associations. The MultiGWAS reports the 
top N best- ranked (the SNPs with lowest p- values) that the user 
specified in the N input configuration file. The full model used by 
GWASpoly includes the population structure and relatedness, 
which are estimated using the first five principal components and 
the kinship matrix, respectively, both calculated with the GWASpoly 
built- in algorithms.

2.2.2 | SHEsis

SHEsis (Shen et al., 2016) is a program based on a linear regression 
model that includes single- locus association analysis for polyploids, 
among other analyses. However, it has been used mainly by animals 
and humans, both diploids (Meng et al., 2019; Qiao et al., 2015).

MultiGWAS uses version 1.0, which does not take into account 
of population structure or relatedness. However, MultiGWAS exter-
nally estimates relatedness for SHEsis by excluding individuals with 

cryptic first- degree relatedness using the kinship matrix calculated 
by GWASpoly built- in algorithm.

2.2.3 | GAPIT

GAPIT is an R- based program designed for plants. This tool imple-
ments the classical MLM for the full model correcting by population 
structure and relatedness. Also, it uses the GLM approach for the 
naive model without any correction (Tang et al., 2016).

GAPIT offers two models of gene action: additive and dominant. 
For both models, the genotype must be in numerical format. For the 
additive model, the genotype is implicitly transformed by GAPIT, 
using 0 for homozygous genotypes with recessive allele combina-
tions, 2 for homozygous genotypes with dominant allele combina-
tions, and 1 for heterozygous genotypes. For the dominant model, 
MultiGWAS transforms the genotype, using 0 for the two types of 
homozygous genotypes and 1 for heterozygous genotypes, as indi-
cated by the authors (Tang et al., 2016). MultiGWAS uses the latest 
version 3, which also implements several state- of- the- art methods 
developed for statistical genomics (Wang & Zhang, 2020).

2.2.4 | TASSEL

TASSEL is another standard GWAS program developed initially for 
maize but currently used in several species (Álvarez et al., 2017; 
Zhang et al., 2018). TASSEL is a java package that runs either using 
a graphic user interface developed in JAVA or a command- line inter-
face through a Perl pipeline. In MultiGWAS is implemented the Perl 
pipeline.

For the association analysis, TASSEL includes the general linear 
model (GLM) for a naive analysis. Moreover, it uses the MLM for a 
full analysis controlling for population structure, a principal compo-
nent analysis, and controlling relatedness using a kinship matrix with 
a centered IBS method with TASSEL built- in algorithms. Moreover, as 
GWASpoly, TASSEL provides three- gene action models to calculate 
each genotypic class SNP effect: general, additive, and dominant. 
Hence, the significance threshold depends on each action model.

2.3 | Integration stage

The outputs resulting from the four GWAS packages are post-
processed to identify SNP with either significative p- value as-
sociation or best- ranked association (i.e., with p- values close to a 
significance threshold).

2.3.1 | Selection of best gene action model

MultiGWAS offers three testing options: “additive,” “dominant,” and 
“all.” Taking the best associations from “additive” and “dominant” 
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tests is straightforward. However, for the option “all,” MultiGWAS 
has a method to select within each tool the “best” gene action model 
and takes the top associations.

The method works by scoring each gene action model using 
three criteria: inflation factor (I), shared SNPs (R), and significant 
SNPs (S), using the following equation:

where score(Mi) is the score for the gene action model Mi, with i from 
1…k, for a GWAS package with k gene action models. Ii is the score for 
the inflation factor defined as Ii = 1 − |1 − �(Mi) |, where �(Mi) is the 
inflation factor for the Mi model. Ri is the score of the shared SNPs de-
fined as Ri =

∑
k
j= 1

�Mi ∼ Mj �, where |Mi ∼ Mj | is the number of SNPs 
shared between Mi and Mj models, normalized by the maximum num-
ber of SNPs shared between all models. And, Si is the number of signif-
icant SNPs of model Mi normalized by the total number SNPs shared 
among all models.

The score is high when an Mi model has an inflation factor � close 
to 1, identifies a high number of shared SNPs, and contains one or 
more significant SNPs. Conversely, the score is low when the Mi 
model has an inflation factor � either low (close to 0) or high (𝜆 > 2), 
which identifies a small number of shared SNPs, and contains 0 or 
few significant SNPs. In any other case, the score results from the 
balance among the inflation factor, the number of shared SNPs, and 
the number of significant SNPs.

2.3.2 | Selection of significant and best- ranked 
associations

MultiGWAS reports two groups of associations from the four GWAS 
packages: the statistically significant associations with p- values 
below a threshold of significance, and the best- ranked associations 
with the lowest p- values, but not reaching the limit to be statistically 
significant. However, they are representing interesting associations 
for further analysis (possible false negatives).

2.3.3 | Integration of results

All four GWAS packages adopted by MultiGWAS use linear regres-
sion approaches. However, they often produce different association 
results for the same input. Computed p- values for the same set of 
SNPs are different between packages. Therefore, SNPs with signifi-
cant p- values for one package may be not significant for the others. 
Alternatively, well- ranked SNPs in one package may be ranked dif-
ferently in another.

MultiGWAS integrates the results of the four tools generating 
six types of outputs that combine graphics and tables to compare, 
select, and interpret the set of possible SNPs associated with a trait 
of interest (Figure 3). The unified output is one HTML document that 
contains the tables and figures to cover all user's needs to present 
results and includes the following:

Q– Q plots for GWAS associations
The Q– Q plot shows how well most SNPs fit the null hypothesis of 
no association with the phenotype. Both distributions should coin-
cide, and most SNPs should lie on the red diagonal line. Deviations 
for many SNPs may reflect inflated p- values due to population struc-
ture or cryptic relatedness. Nevertheless, few SNPs deviate from the 
diagonal for a truly polygenetic trait (Power et al., 2016). MultiGWAS 
adds the top of each Q– Q plot the corresponding inflation factor � to 
assess the test statistic inflation degree.

Manhattan plot for GWAS associations
MultiGWAS uses classical Manhattan plots to visualize each pack-
age's results. In both plots, the points are the SNPs and their p- values 
are transformed into scores like − log10(p - values) (see Figure 3). The 
Manhattan plot shows the strength of association of the SNPs (y- 
axis) distributed at their genomic location (x- axis), so the higher the 
score, the stronger the association. MultiGWAS adds distinctive 
marks to the plot; significant SNPs are above a red line, best- ranked 
SNPs are above a blue line, and SNPs shared between packages are 
colored green.

Tables and Venn diagrams for single and shared SNPs
MultiGWAS provides tabular and graphic views to report the best- 
ranked and significant SNPs identified by the four GWAS packages 
in an integrative way (Figure 3). Both p- values and significance levels 
have been scaled as − log10(p - values) to give high scores to the best 
statistically evaluated SNPs.

First, best- ranked SNPs correspond to the top- scored N SNPs, 
whether they were assessed significant or not by its package, and 
with N defined by the user in the configuration file. These SNPs 
appear in both an SNP table and in a Venn diagram. The table lists 
them by package and sorts them by decreasing score, whereas the 
Venn diagram emphasizes whether they were best- ranked either in 
a single package or in several at once (shared). Second, the signifi-
cant SNPs correspond to the ones valued statistically significant by 
each package. They also appear in a Venn diagram and the SNP table, 
marked with significance TRUE (T).

Views of SNPs in LD
MultiGWAS reports a Venn diagram and a table (Figure 7a, b, re-
spectively) for pairs of SNPs with squared correlation equal to or 
greater than the threshold R, where R is defined by the user in the 
configuration file (see Section 2.1.1). MultiGWAS joins the N best 
associations found for each GWAS packages (SNPs with the low-
est p- value), and calculates for each pair of SNPs the R using the 
R ldsep library for LD in polyploids (Gerard, 2021). Finally, it sum-
marizes the results in a table with pairs of SNPs per row along with 
their calculated R.

Pairs of SNPs in LD are assigned a new ID (LD_SNP) and reported 
in a Venn diagram, highlighting the shared SNPs in LD detected be-
tween the GWAS software packages. This view allows for quick 
identification of related SNPs with different names instead of a plain 
table, as most GWAS packages report their results.

score(Mi) = Ii + Ri + Si
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Heat maps for the structure of shared SNPs
For each SNP identified more than once, MultiGWAS provides its 
SNP profile. It is a two- dimensional heat map representing the SNP 
that visualizes each trait by individuals and genotypes as rows and 

columns, respectively. Within the figure, at the left, the individuals 
are grouped in a dendrogram by their genotype. At the right, there 
is the name or ID of each individual. At the bottom, the genotypes 
are ordered from left to right, starting from the major allele to the 

F I G U R E  3   Reports presented by MultiGWAS. Results for GWASpoly, GAPIT, TASSEL, and SHEsis. For each tool, we present, first, a Q– Q 
plot that assesses the resultant p- values, and second, a Manhattan plot with two lines, blue and red, representing the lower limit for the 
best- ranked and significant SNPs, respectively. Also, we present Venn diagrams that visualize the reproducibility of results; SNPs profiles 
that visualize SNPs by a two- dimensional representation; chord diagrams that show how the strongest associations are limited to a few 
chromosomes. Furthermore, we present tabular summaries with details of SNPs in linkage disequilibrium and significant and best- ranked 
associations
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minor allele (i.e., AAAA, AAAB, AABB, ABBB, BBBB). At the top, there 
is a description of the trait based on a histogram of frequency (top 
left) and an assigned color for each numerical phenotype value using 
a color scale (top right). Thus, each individual appears as a colored 
line by its phenotype value on its genotype column. For each column, 
there is a solid cyan line with each column's mean and a broken cyan 
line that indicates how far the cell deviates from the mean (Figure 3).

Because each MultiGWAS report shows one specific trait at a 
time, the histogram and color key will remain the same for all the 
best- ranked SNPs.

Chord diagrams for SNPs by chromosome
The chord diagrams visualize the location across the genome of 
the best- ranked associated SNPs shared among the four packages 
and described in the tables. This visualization complements the 
Manhattan plots from each GWAS package (Figure 3).

3  | AVAIL ABILIT Y AND IMPLEMENTATION

MultiGWAS is a wrapping tool developed in R (R>=3.6). However, it 
is not an R package or run in the R interface. Instead, it runs on Linux 
environments because it integrates four external GWAS software pack-
ages implemented in different languages. GWASpoly and GAPIT are R 
packages; SHEsis is a binary program developed in C++, and TASSEL 
is a Java package that runs through a pipeline implemented in Perl. 
Consequently, users can run MultiGWAS either by a command- line in-
terface (an R script) or a graphic user interface (a Java application). For 
detailed instructions and usage examples, refer to https://github.com/
agros avia- bioin fo/Multi GWAS#runni ng- the- examples.

3.1 | Input parameters

MultiGWAS uses a single configuration text file with the values for the 
main parameters that drive the analysis. If users prefer a text file, it 
must have the parameter names and values separated by a colon, file-
names without blank spaces, TRUE or FALSE values to indicate whether 
filters are applied, and NULL value to indicate that there is no value for 
the parameter. This file must have the structure shown in Figure 4. In 
contrast, if users prefer the GUI application, they can create the con-
figuration file using the GUI described in Section 3.2.2. The input files 
(genotype/phenotype/map) do not need to be in the working directory, 
but if this is the case, MultiGWAS needs the absolute path.

3.2 | Installing and using MultiGWAS

MultiGWAS offers different installations from scratch, precompiled 
versions, a virtual machine, and a docker image. Specific instructions 
for the different installation types, including a ready- to- use Linux 
virtual machine (VM) for running MultiGWAS on other platforms 
(Windows, OS X), are available in the GitHub tool (https://github.
com/agros avia- bioin fo/Multi GWAS).

3.2.1 | Using the command- line interface

The execution of the CLI tool is simple. In a Linux console, move to 
the folder where is the configuration file, and type the executable 
tool's name, followed by the filename of the configuration file, like 
this: multiGWAS Test01.config.

Then, the tool starts the execution, showing information on the 
process in the console window. When it finishes, the results are in 
a new subfolder called “out- Test01,” containing a subfolder for each 
trait in the phenotype file. The results in each trait subfolder include 
a complete HTML report containing the different views described in 
the Methods section, the source graphics and tables supporting the 
report, and the preprocessed tables from the results generated by 
the four GWAS packages used by MultiGWAS.

3.2.2 | Using the graphical user interface

The interface allows users to save, load, or specify the different 
input parameters for MultiGWAS in a friendly way (Figure 5). The 
input parameters correspond to the settings included in the con-
figuration file described in subsection 2.1.1. It executes by calling 
the following command from a Linux console: jmultiGWAS.

F I G U R E  4   Example of the configuration text file for running 
MultiGWAS. The input parameters have five sections: (1) input files 
for genotype and phenotype file paths, (2) genotype information 
for additional information of the genotype, (3) GWAS parameters 
for setting the main parameter driving the GWAS analysis, (4) 
quality control filters to enable/disable and set values for quality 
control filters on the data, and (5) tools for setting the software 
to include in the analysis and the number of associations to be 
reported. The details of each parameter are in Section 2.1.1

https://github.com/agrosavia-bioinfo/MultiGWAS#running-the-examples
https://github.com/agrosavia-bioinfo/MultiGWAS#running-the-examples
https://github.com/agrosavia-bioinfo/MultiGWAS
https://github.com/agrosavia-bioinfo/MultiGWAS
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4  | TESTING MULTIGWA S

4.1 | Testing MultiGWAS in real data

We tested MultiGWAS in real data using an open dataset of a diver-
sity panel of phenotype and genotype information for tetraploid po-
tato. These data are part of the USDA- NIFA SolCAP Project (Hirsch 
et al., 2013). We limited the experiment only for the tuber shape 
trait, testing both the full model and the naive GWAS model.

4.2 | Testing MultiGWAS in simulated data

We created two different simulated genotyping– phenotyping 
datasets as an experiment to determine the advantages of run-
ning a wrapping tool as MultiGWAS compared with an individual 
analysis of each of the four GWAS software packages that integrate 
MultiGWAS (i.e., GWASpoly, SHEsis, GAPIT, and TASSEL). The first 
simulated dataset had an additive inheritance model, and the second 
one had a dominant inheritance model.

In both simulations, we used as a founder population a subset of 
400 SNP and 150 individuals from tetraploid potato data described 
by Enciso- Rodriguez et al. (2018). To create both simulations of 

phenotypes, we sampled either additive or dominant effects from 
a gamma distribution Γ (shape = 0.2 and scale = 5) and specified 
10 SNPs as causal SNPs along with their effects under the Phyton 
3 SeqBreed software (Pérez- Enciso et al., 2020), inspired in the 
pSBVB software created to generate polyploid data (Zingaretti 
et al., 2019).

Both simulated datasets were analyzed in MultiGWAS using the 
following parameters: gene action, either additive or dominant, false 
filtering, Bonferroni correction method, and naive GWAS model 
using the founder genotype and either the additive or dominant 
phenotype. After MultiGWAS analysis, we summarized the top SNPs 
(i.e., the N best- ranked SNPs found by the tool) and significant SNPs 
found by each GWAS tool. Then, we calculated two metrics: true- 
positive rates (TPRs) and true-  negative rates (TNRs) expressed in 
the following equations:

where TP is the number of SNPs correctly identified as causal SNPs, 
and FN is the number of SNPs incorrectly identified as noncausal 
SNPs.

TPR =
TP

TP + FN

TNR =
TN

TN + FP

F I G U R E  5   Main view of the MultiGWAS graphical user interface. The interface has a toolbar at the left side and four tabs at the top. In 
the toolbar, users can select the GWAS tools (GWASpoly, SHEsis, TASSEL, and GAPIT). In the Input tab, at top, users can specify the working 
directory where outputs will be saved, along with genotype, phenotype, and additional information of the genotype. And at bottom, users 
can set the GWAS parameters and quality control filters. The Output tab shows the execution of each process. In the Results tab, users can 
browse the HTML report of the current analysis generated by the tool. Finally, in the Files tab, users can browse the source files of each 
software and access the produced data across the analysis. The details of each parameter are described in Section 2.1.1
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where TN is the number of SNPs correctly identified as noncausal 
SNPs, and FP is the number of SNPs incorrectly identified as causal 
SNPs.

5  | RESULTS

5.1 | MultiGWAS performance in real data

We run MultiGWAS for the tuber shape of the tetraploid potato 
dataset using a full GWAS model controlling the population struc-
ture and relatedness (Hirsch et al., 2013).

The full GWAS analysis found several associated SNPs (table of 
Figure 6a). From them, three SNPs named as c2_25471, c2_45606, 
and c2_45611 were detected from top SNPs across the four GWAS 
packages (central intersection in Figure 6a). Two SNPs, named 
as c1_8019 and c2_25471, were identified as significant by the 

polyploid packages GWASpoly and SHEsis (Figure 6b). Previous as-
sociation studies also reported these SNPs where the SNP c1_8019 
is associated with potato tuber shape and eye depth traits (Rosyara 
et al., 2016; Sharma et al., 2018), while the SNPs c2_45606 and 
c2_45611 are associated with eye depth (Totsky et al., 2020).

MultiGWAS strengthened the replicability of these associated 
SNPs by the four GWAS packages. Also, the LD analyzed confirmed 
this replicability. Furthermore, when the naive GWAS model was 
used to analyze the same dataset, MultiGWAS showed all four tools 
simultaneously detected the SNP c1_8019 as a significant associ-
ated SNP, highlighting it as a reliable association (see Supplemental 
Materials S1 and S2 at https://github.com/agros avia- bioin fo/multi 
GWAS/tree/maste r/docs.)

Two pairs of SNPs resulted in LD, c2_8019 with c2_25471 and 
c2_45606 with c2_45611, named by MultiGWAS as LD_SNP1 
and LD_SNP2, respectively (table of Figure 7a). The Venn diagram 
(Figure 7b) shows that almost one SNP of the pairwise SNPs in LD 

F I G U R E  6   Shared SNP views. Tabular and graphical views of SNP associations identified by one or more GWAS packages (shared SNPs). 
SNPs identified by all packages are marker with red background in all figures. (a) Table with details of the N = 8 best- ranked SNPs from each 
GWAS package. Each row corresponds to a single SNP. (b) Venn diagram of the best- ranked SNPs. SNPs identified by all packages are in the 
central intersection. Other shared SNPs are in both upper central and lower central intersections. (c) Venn diagram of the significant SNPs 
(score threshold)

(a)

(b)

(c)

https://github.com/agrosavia-bioinfo/multiGWAS/tree/master/docs
https://github.com/agrosavia-bioinfo/multiGWAS/tree/master/docs


     |  7421GARRETA ET Al.

was detected by the four GWAS packages, showing the replicabil-
ity of the SNPs in the four packages. Moreover, the chord diagrams 
show that most of the best- ranked SNPs were in chromosome 10 
(Figure 7c). Finally, the best- ranked SNP's heat maps show visible 
differences that related the association of the genotype with the 
phenotype for tuber shape (Figure 7d).

The Manhattan plot for each GWAS package showed that four 
packages found that the associated SNP location (i.e., SNP above the 

blue line) was chromosome 10 (Figure 8). GWASpoly and SHEsis find 
significant SNPs (above the red line). Both SNP groups, the strong 
associated and the significant, are present in both the shared table 
and Venn diagram (Figure 6).

Additionally, for most GWAS packages, except for SHEsis, the 
majority of observed p- values corresponded to the expected p- 
values, as it is shown in the Q– Q plots generated from the associ-
ations found for each package (Q– Q plots above Manhattan plots 

F I G U R E  7   SNPs in LD, SNPs by chromosome, and SNP structure. MultiGWAS brings different views to figure out SNP relationships 
and structure. (a) Table of pairs of SNPs in LD with columns LD_SNP for an ID given by MultiGWAS to the pair of SNPs; SNP1 and SNP2 
for the names of SNPs; and R2 for the squared correlation value between SNPs. (b) Venn diagram of pairwise SNPs in LD. LD_SNPs in the 
center show that the four packages simultaneously detected at least one SNP from the pairwise SNPs shown in the table. (c) Chord diagram 
showing that best- ranked SNPs are located in chromosome 10. (d) SNP profiles showing the structure of one of the pairwise SNPs in LD

(a)

(c)

(d)

(b)
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in Figure 8). For SHEsis, its genomic inflation factor � was far above 
1.0, meaning that its calculated scores were inflated, and explain-
ing because SHEsis does not control for population structure and 
relatedness.

5.2 | MultiGWAS performance in simulated data

For MultiGWAS, we present the results using different sets to evi-
dence the effect of replicability in the performance (MultiGWAS_1: 
predicted by one software package, MultiGWAS_2: predicted by 
two software packages, MultiGWAS_3: predicted by three software 
packages, and MultiGWAS_4: predicted by four software packages).

For the additive effect simulation, GWASpoly (green) and SHEsis 
(blue) had the best performance based on true- positive rate (TPR) 
and true- negative rate (TNR) in the detection of the best- ranked 
SNP. The two diploid software packages GAPIT and TASSEL have 
similar results but lower performance in both statistics. In parallel, 
MultiGWAS performance changes depending on the number of soft-
ware involved in the predicted SNP intersection; the TPR was pro-
gressively lower, and TNR was progressively higher. Consequently, 

in the two more restrictive cases (i.e., the intersection of predicted 
SNP by three and all the four software packages, MultiGWAS_3 and 
MultiGWAS_4, respectively), the TPR was similar to that obtained 
by TASSEL and GAPIT. However, the TNR was higher than even 
GWASpoly and SHEsis (Figure 9a).

For the dominant effect simulation, GAPIT (cyan) tends to have 
a higher TPR than the other three software packages. Moreover, 
SHEsis had a lower value of both TPR and TNR since it was designed 
only to detect associations with additive effects. Comparing these 
four software's performance with a wrapping tool as MultiGWAs, it 
had a similar performance to the additive effect simulation. As the 
more restrictive the intersection is, the TPR was progressively lower 
and TNR was progressively higher. However, in the two more re-
strictive cases (i.e., the intersection of predicted SNP by three and 
all the four software packages, MultiGWAS_3 and MultiGWAS_4, 
respectively), the TNR was higher than all the four software pack-
ages (Figure 9b).

In the case of significant SNPs, for additive effects, SHEsis 
(blue) has the highest TPR but has the lowest TNR, suggesting that 
SHEsis probably is overestimating the significative p- value asso-
ciation. Therefore, true and false associations are reaching the 

F I G U R E  8   Associations for each GWAS package. MultiGWAS shows the associations identified by the four GWAS packages using 
Manhattan and Q– Q plots. The tetraploid potato data showed several SNPs shared between the four GWAS packages (green dots). The 
best- ranked SNPs are above the blue line, but only GWASpoly and SHEsis identified significant associations (SNPs above the red line) for this 
dataset. However, the inflation factor given by SHEsis is too high (� = 3.9, at the top of the Q– Q plot), which is observed by the high number 
of SNPs deviating from the red diagonal of the Q– Q plot
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significance threshold. In comparison, MultiGWAS_4, GWASpoly, 
and GAPIT are more conservative, with closer TPR but high TNR 
(Figure 10a).

For dominant effect simulation, GWASpoly had the higher TPR 
with a lower TNR. Thus, this software was the most sensitive de-
tecting significative associations, but at the same time, it was one 
of the least specific. In comparison, MultiGWAS_4 and GAPIT had 
TPR slightly lower than GWASpoly, but with the highest TNR. This 
pattern suggests that both are less sensitive in detecting signifi-
cative association but more specific than GWASpoly. Therefore, 
MultiGWAS_4 provides very accurate associations (Figure 10b).

6  | DISCUSSION

The reanalysis of both potato and simulated data with MultiGWAS 
showed that this wrapping tool is handy to improve the GWAS in 
both diploid and tetraploid species for additive and dominant gene 
action effects. Through MultiGWAS performance, we could test its 
effectiveness to answer some of the challenges of analyzing poly-
ploid organisms. They include integrating and replicating among 
parameters and software, the diploidization of polyploid data, and 

the incorporation of different inheritance mechanisms (Dufresne 
et al., 2014).

The main advantage of MultiGWAS is that it replicates the 
GWAS analysis among four software packages and integrates the re-
sults obtained across software, models, and parameters. Therefore, 
in MultiGWAS, users do not have to choose between specificity 
and sensitivity because they can observe their effect in the analysis 
within the same wrapping environment.

Another difficulty for replication among software is the variabil-
ity of formats for the genomic input data. MultiGWAS receives the 
genotype data in five different formats, including two software out-
puts used to call polyploid allele dosage. Currently, the most com-
mon format for next- generation sequencing variant data is the VCF 
(variant call format) (Danecek et al., 2011; Ebbert et al., 2014). One of 
the advantages of VCF is its versatility in summarizing important ge-
nome information for hundreds or thousands of individuals and SNP, 
including information about ploidy levels. MultiGWAS facilitates 
users; it receives VCF files as input (but see VarStats tool in VTC) 
and runs the four GWAS software mentioned by adjusting internally 
to specific formats.

Moreover, the MultiGWAS is the unique wrapping tool we are 
aware of that facilitates understanding the effect of diploidizing the 

F I G U R E  9   Boxplots for the true- positive rates (TPRs) and true- negative rates (TNRs) for the top SNPs (i.e., the N best- ranked) identified 
for each GWAS software using simulated datasets under either (a) additive or (b) dominant inheritance model after 50 replicates. Each 
panel compares MultiGWAS with each of the four software packages that integrate it (i.e., GWASpoly, SHEsis, GAPIT, and TASSEL). 
The MultiGWAS results are separated into four groups: MultiGWAS_1, predicted by one tool; MultiGWAS_2, predicted by two tools; 
MultiGWAS_3: predicted by three tools; and MultiGWAS_4: predicted by four tools

(a) (b)
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tetraploid data in the analysis performance directly. The SNP pro-
file allows identifying what the significant associations detected by 
more than one software are. Furthermore, although MultiGWAS 
checks for significative SNPs based on the p- value, it is essential to 
go back to the data and check whether the SNP is a true association 
between the genotype and phenotype. For this purpose, the SNP 
profile gives visual feedback for the accuracy of the association.

Furthermore, the MultiGWAS allows comparing among the 
gene action models that offer GWASpoly and TASSEL. GWASpoly 
(Rosyara et al., 2016) provides models of polyploid gene action mod-
els, including additive, diploidized additive, duplex dominant, sim-
plex, and general. On the other hand, TASSEL (Bradbury et al., 2007) 
also models different gene action types for general, additive, and 
dominant diploids. To choose among models, we propose an auto-
matic selection of the gene action model for both tools based on a 
balance between three criteria: the inflation factor, the replicability 
of identified SNPs, and the significance of identified SNPs. This in-
flation index is a new tool for comparison that does not offer either 
GWASpoly or TASSEL. This automatic strategy will help to under-
stand the gene action model for the trait of interest. Although the 
main focus is on the resultant SNPs, the model has assumptions that 
reflect a specific phenotype's gene actions.

Finally, MultiGWAS, through the active comparison among 
models, addresses the search of the inheritance mechanisms by 
comparing among two software packages designed for polysomic 
inheritance (Rosyara et al., 2016; Shen et al., 2016) with two 
software packages designed for disomic inheritance (Bradbury 
et al., 2007; Purcell et al., 2007.). Understanding the inheritance 
mechanisms for polyploid organisms is an open question. For auto-
polyploids, most loci have a polysomic heritage. However, sections 
of the genome that did not duplicate lead to disomic inheritance 
for some loci (Dufresne et al., 2014; Lynch & Conery, 2000; 
Ohno, 1970). Thus, it is a valuable tool for researchers because 
it looks for significant associations that involve both types of 
inheritance.

6.1 | Future remarks

The evolution and population genomics of polyploids are an excit-
ing novel area of research. The advancement of next- generation 
sequencing techniques produces more empirical polyploid data in 
different model and nonmodel organisms (Ekblom & Galindo, 2011; 
Ellegren, 2014).

F I G U R E  1 0   Boxplots for the true- positive rates (TPRs) and true- negative rates (TNRs) for the identification of significant SNP identified 
for each GWAS software using simulated datasets under either (a) additive or (b) dominant inheritance model after 50 replicates. Each 
panel compares MultiGWAS with each of the four software packages that integrate it (i.e., GWASpoly, SHEsis, GAPIT, and TASSEL). 
The MultiGWAS results are separated into four groups: MultiGWAS_1, predicted by one tool; MultiGWAS_2, predicted by two tools; 
MultiGWAS_3: predicted by three tools; and MultiGWAS_4: predicted by four tools

(a) (b)
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Many assumptions developed for diploids in the GWAS anal-
ysis do not apply entirely for polyploids (Dufresne et al., 2014). 
Fortunately, in the last five years, different models to calculate sev-
eral parameters for population genomics on polyploids are testing 
and developing in simulated and empirical data (Blischak et al., 2016; 
Hardy, 2016; Meirmans et al., 2018).

For MultiGWAS, we started with the most simple ploidy, such 
as tetraploids. Nevertheless, future MultiGWAS versions should in-
clude more complex ploidies than tetraploids and the explicit calcu-
lation of parameters either for filtering polyploid data before GWAS 
analysis or for complementing other population genomics' parame-
ters of the data analyzed.
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