
Received: 22 June 2020 Accepted: 23 June 2020 Published online: 2 July 2020

DOI: 10.1002/ctm2.123

LETTER TO EDITOR

A long non-coding RNA signature for diagnostic prediction
of sepsis upon ICU admission

Dear Editor,
Sepsis, the highest mortality disease in critically ill

patients, is clinically diagnosed through the dysregulated
systemic inflammatory response of patients to infection in
the presence of organdysfunction.1–3 No effective biomark-
ers and approvedmolecular therapies have been developed
for sepsis to diagnose and treat the immune response state
of the patients, leading to the management of these
critically ill patients only relies on early recognition by
experience and supportive care.4,5 Long noncoding RNAs
(lncRNAs) are implicated in a wide variety of biological
processes and accumulative studies have demonstrated
that several dysregulated lncRNAs play important roles
in tumorigenesis and tumor progression.6–8 However,
the lncRNA signature has not been studied for the rapid
diagnosis of sepsis, due to the limitation of data sources
and lack of RNA-seq datasets.3 Hence, we analyzed three
whole blood transcriptome cohorts of critically ill adult
patients and identified a 28-lncRNA signature for sepsis
diagnosis, which imputes a score to assess the risk of
sepsis.
The expression profiling of 3745 lncRNAs in three

cohorts, GSE95233, GSE28750, and GSE57065, were nor-
malized and reannotated for the investigation6,9 (Table
S1). The largest cohort GSE95233 was set as the discov-
ery dataset, while the other two independent cohorts
were set as the validation datasets. To select lncRNAs for
the predictive signature, we first determined 84 differen-
tially expressed (DE) lncRNAs between sepsis patients and
healthy individuals based on the discovery dataset. Then
we took advantage of a regression algorithm least absolute
shrinkage and selection operator (LASSO) to further iden-
tify 28 predictive lncRNAs, named SepSig28, which serves
as a molecular diagnostic signature to calculate the risk
score to predict whether individuals were suffering from
sepsis or not. After that, we validated the diagnostic sig-
nature in two independent datasets and demonstrated the
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high performance of the 28 lncRNAs in the risk prediction
of sepsis (Figure 1A).
Risk score = (BOLA3.AS1 × 0.254) + (LINC00354

× 0.1996) + (C5orf27 × 0.1537) + (RP1.187B23.1 × -
0.1427) + (MBNL1.AS1 × -0.1419) + (LINC01420 × -
0.1140) + (RP13.436F16.1 × 0.1060) + (CTB.31O20.2 ×

0.1023) + (LINC01425 × 0.0949) + (C10orf25 × -0.0763) +
(RP11.111M22.3 × 0.0743) + (LAMTOR5.AS1 × 0.0739) +
(FLJ37453 × 0.0713) + (AX746755 × -0.0690) + (TTTY12
× 0.0678) + (ASMTL.AS1 × -0.0535) + (LOC101928491
× 0.0461) + (RBM26.AS1 × -0.0438) + (ANP32A.IT1 ×
0.0437) + (LOC101060691 × 0.0319) + (MSH5 × -0.0311)
+ (LOC100507221 × 0.0289) + (RP11.1137G4.3 × -0.0245)
+ (LOC100506457 × 0.0237) + (MIR612 × -0.0189) +
(AC114730.11 × 0.0079) + (LOC101927526 × 0.0026) +
(LINC01019 × -0.0020). The values following the symbols
are the importance weights of the expression abundance of
each lncRNA.These lncRNAs are listed in order of decreas-
ing importance.
When tuned in the discovery dataset using fivefold

cross-validation, the SepSig28 can perfectly classify the
sepsis patient samples and healthy control samples, with
all the measures equal 1, including the area under curve
(AUC), accuracy, sensitivity, and specificity (Figure 1B,C).
To test the randomness of the model, we randomly picked
up an equivalent number of lncRNAs 1000 times and
evaluated their performance using the same procedure as
SepSig28. Our result shows that no random combinations
can achieve the score of AUC as high as 1 (Figure 1D).
Besides, we constructed all possible 27-lncRNA signatures
(28 minus 1) by excluding one lncRNA once a time to
evaluate the predictive capability of each lncRNA in the
SepSig28 model. For the discovery dataset, two lncRNA
members are not necessary for themodel, as themodel can
perform equally well without either of them (Figure 1C).
We added these two as supplementary features to make
the model more robust.
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F IGURE 1 Model construction and internal validation. A, Workflow to identify the lncRNA signature of sepsis. B, ROC curves for the
28-lncRNA signature and other 28-minus-one lncRNA signatures. C, AUC, accuracy, sensitivity, and specificity for the 28-lncRNA signature
and other 28-minus-one lncRNA signatures. D, Distribution of AUCs for the simulated models in which the lncRNAs were randomly picked
up. ROC curve, receiver operating characteristic curve; AUC, area under curve

In the independent cohorts GSE28750 and GSE57065,
the hierarchical clustering shows altered expression
pattern of the SepSig28 lncRNAs cannot well distinguish
sepsis patient samples from the normal ones (Fig-
ure 2A,B). Using the computed risk scores by weighted
sum, however, SepSig28 can achieve the AUC scores
as high as 0.9712 for GSE57065 and 0.95 for GSE28750,
respectively (Figure 2C,D), which outperforms almost
all the other combinations of 27 (28 minus 1) lncRNAs.
Overall, SepSig28 has the best classification performance
for all three cohorts according to the measures of AUC,
accuracy, sensitivity, and specificity (Figure 2E).
To investigate the biological functions the SepSig28

involved, we associated them with their co-expressed
genes across the sepsis samples of each cohort. Genes
co-expressed with the lncRNAs in all the cohorts (Pear-
son correlation coefficient > 0.7) were considered to be
co-expressed. Gene Ontology (GO) and KEGG pathway
enrichment analysis were separately performed for the set
of co-expressed genes.10 GO enrichment analysis showed
that the lncRNAs of SepSig28 are mainly involved in three
biological processes, including hormone mediated signal-
ing pathway, RNA splicing, and histone modification (Fig-
ure S1A). KEGG analysis showed the SepSig28 associated
genes are significantly implicated in pathways that are
known to be related to sepsis pathogenesis, including Wnt
signaling pathway, Th17 cell differentiation, Notch signal-
ing pathway, etc. (Figure S1B). Interestingly, both GO and
KEGGenrichment revealed that lncRNAs in SepSig28 tend
to participate in hormone signaling related pathways, indi-

cating an underlying association between hormone signal-
ing and sepsis.
In conclusion, we identified and validated the first non-

coding signature consisting of 28 lncRNAs that can well
distinguish sepsis patients fromhealthy controls for adults.
Despite limitations such as the limited number of lncRNA
features and the small sample size, we provided evidence
that lncRNAs could be adopted as markers for the diagno-
sis of critical diseases. The proposed model could be used
as an alternative or complementary diagnostic metric for
sepsis.

AUTH OR CONTRIBUT IONS
LC conceived the idea and drafted the manuscript. LC per-
formed data analysis. XL, XZ, JW, NZ, and RW performed
data management and analysis. XL, KL, and XY helped
interpret the results and give suggestions. All authors read
and approved the final manuscript.

CONFL ICT OF INTEREST
The authors declare no conflict of interest.

Xueyan Liu1,∗
Xubin Zheng2,3,∗

Jun Wang1,∗
Ning Zhang1

Kwong-Sak Leung3
Xiufeng Ye2

Lixin Cheng1,2

https://orcid.org/0000-0002-9427-383X


LETTER TO EDITOR 3 of 4

F IGURE 2 External validation of SepSig28. Hierarchical clustering of the expression samples based on the 28-lncRNA signature in dataset
GSE57065 (A) and 28750 (B), respectively. ROC curves for the 28-lncRNA signature and other 28-minus-one lncRNA signatures in dataset
GSE57065 (C) and 28750 (D). E, AUC, accuracy, sensitivity, and specificity for the 28-lncRNA signature and other 28-minus-one lncRNA sig-
natures in the two validation cohorts
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