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Abstract

A key constraint in genomic testing in oncology is that matched normal specimens are not

commonly obtained in clinical practice. Thus, while well-characterized genomic alterations

do not require normal tissue for interpretation, a significant number of alterations will be

unknown in whether they are germline or somatic, in the absence of a matched normal con-

trol. We introduce SGZ (somatic-germline-zygosity), a computational method for predicting

somatic vs. germline origin and homozygous vs. heterozygous or sub-clonal state of vari-

ants identified from deep massively parallel sequencing (MPS) of cancer specimens. The

method does not require a patient matched normal control, enabling broad application in

clinical research. SGZ predicts the somatic vs. germline status of each alteration identified

by modeling the alteration’s allele frequency (AF), taking into account the tumor content,

tumor ploidy, and the local copy number. Accuracy of the prediction depends on the depth of

sequencing and copy number model fit, which are achieved in our clinical assay by sequenc-

ing to high depth (>500x) using MPS, covering 394 cancer-related genes and over 3,500

genome-wide single nucleotide polymorphisms (SNPs). Calls are made using a statistic

based on read depth and local variability of SNP AF. To validate the method, we first evalu-

ated performance on samples from 30 lung and colon cancer patients, where we sequenced

tumors and matched normal tissue. We examined predictions for 17 somatic hotspot muta-

tions and 20 common germline SNPs in 20,182 clinical cancer specimens. To assess the

impact of stromal admixture, we examined three cell lines, which were titrated with their

matched normal to six levels (10–75%). Overall, predictions were made in 85% of cases,

with 95–99% of variants predicted correctly, a significantly superior performance compared

to a basic approach based on AF alone. We then applied the SGZ method to the COSMIC
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database of known somatic variants in cancer and found >50 that are in fact more likely to

be germline.

Author summary

We introduce SGZ, a computational method for predicting somatic vs. germline origin

and homozygous vs. heterozygous or sub-clonal state of variants identified from deep

massively parallel sequencing of clinical formalin-fixed, paraffin embedded (FFPE) cancer

specimens. The method does not require fresh tissue or a patient matched normal control,

enabling broad application in clinical research. It supports functional prioritization and

interpretation of alterations discovered on routine testing and may inform clinical deci-

sion making and ultimately expand treatment choices for cancer patients.

This is a PLOS Computational BiologyMethods paper.

Introduction

Characterization of clinical cancer specimens using MPS for targeted treatment selection is

becoming increasingly common [1–5]. These procedures generate large numbers of alterations

per patient, only a minority of which are potential oncogenic drivers or therapeutically rele-

vant, while the rest are either passenger mutations or germline polymorphisms that are typi-

cally functionally benign [6]. Although most therapeutic strategies will focus on variants that

have already been well-characterized in the literature, an important opportunity to discover

novel oncogenic targets will arise as hundreds of thousands of clinical cancer cases are

sequenced. An essential component in this on-going analysis will be prioritizing uncharacter-

ized variants for further follow-up, with somatic versus germline origin determination being a

critical step.

The definitive approach to distinguishing somatic mutations from germline variants

requires sequencing the tumor alongside a patient matched normal, and subsequently per-

forming a comparison: variants detected in tumor tissue but not present in the normal control

are advanced as mutation candidates [7–10]. However, while it is possible to establish proto-

cols for paired collection in the academic cancer center setting, sequencing a patient matched

normal specimen is not part of broad oncology practice, and known cancer drivers targetable

by approved or investigational therapies can usually be discerned from tumor sequencing

alone from well-established databases such as COSMIC [11]. It is therefore likely that as clini-

cal cancer sequencing becomes routine and wide-spread, matched normal data will not be

available for the majority of cases, foreclosing a significant opportunity for novel discovery

and potential future therapeutic benefit unless this limitation is overcome. Although methods

have been developed to determine germline status by matching to public germline databases

like dbSNP or sequence a large number of normal individuals to be surrogates for matched

normal [12], such methods cannot adequately account for rare germline variants that are pri-

vate to a family or small population.

We present SGZ, a novel computational method for predicting the somatic vs. germline ori-

gin of variants discovered in cancer specimens (Fig 1) without the need for a matched normal

SGZ distinguishes somatic vs germline mutations without matched normal

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005965 February 7, 2018 2 / 13

Funding: All authors in this study were funded by

Foundation Medicine, Inc. (www.

foundationmedicine.com). The funder had a role in

study design, data collection and analysis, decision

to publish, and preparation of the manuscript.

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests: JXS, YH, MM, GMF,

JSR, VAM, PJS, and DL are paid employees of

Foundation Medicine. JXS, YH, ES, GMF, JSR,

VAM, PJS, DL, and RY are shareholders of

Foundation Medicine. ES and RY are former

employees of Foundation Medicine, but were

employees when the studies in this paper were

conducted.

https://doi.org/10.1371/journal.pcbi.1005965
http://www.foundationmedicine.com
http://www.foundationmedicine.com


sample. In this method, the cancer specimen is sequenced to high depth (>500x) using MPS,

in our implementation by a targeted clinical assay of 394 cancer-related genes and over 3,500

genome-wide SNPs [1]. SGZ leverages the precise measurement of the allele frequencies of var-

iants of interest offered by deep sequencing and a statistical model of genome-wide copy num-

ber and tumor/normal admixture to characterize the mutational state of the variants. The

method is generally applicable to any MPS sequencing platform where the sequencing depth is

sufficient, an accurate model of copy number can be created, and the tumor specimen is suffi-

ciently admixed with the surrounding normal tissue.

Methods

The SGZ method works as follows (Fig 1, S1 Fig): For each sample, we first execute a standard

MPS variant analysis pipeline, which aligns unique sequence reads and obtains candidate

mutations with associated mutant allele frequencies [1]. The pipeline also creates a genome-

wide copy number profile based on coverage and allele frequencies at over 3,500 SNPs, which

Fig 1. SGZ method overview. The SGZ pipeline is overviewed in panel A. Key components include fitting an optimal copy

number model to the genome-wide log-ratio and minor allele frequency profiles (B), and modeling the expected allele

frequencies of germline, somatic, and subclonal somatic mutations (C). In panel B, the dots in the top panel correspond to

log ratios at each exon sequenced, segmented and fitted to discrete copy number levels, while the dots on the bottom panel

are germline SNP minor allele frequencies. In panel C, examples of expected variant allele frequencies are shown for various

scenarios of copy number and tumor purity. The expected allele frequencies are shown for germline (blue), somatic (red),

and subclonal somatic (yellow).

https://doi.org/10.1371/journal.pcbi.1005965.g001
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is segmented and modeled to estimate the overall tumor purity (p) and ploidy (C), as well as

the per segment copy number (C) and minor allele count (M). An overview of our copy num-

ber detection approach is shown in Fig 2. To obtain a log-ratio profile of signal intensity,

aligned tumor sequence reads are normalized by dividing read depth by that of a process-

matched normal control, followed by a GC-content bias correction using Lowess regression.

The minor allele frequency (MAF) profile is obtained from the heterozygous genome-wide

SNPs. These constitute the observed data for the statistical model.

We fit the log-ratio and MAF data by a statistical model which predicts genome-wide copy

number profile. This is done in two steps: First, we use the circular binary segmentation (CBS)

algorithm to divide the genome into segments of equal copy number [13]. CBS recursively

divides the log-ratio data into individual segments until each segment is homogenous such

that no further divisions lead to statistically significant differences in signal level. Depending

on the aneuploidy and data quality of one sample, the number of segments can range from 22

to a few hundred. Second, we use the segment-based log-ratio and MAFs to fit the statistical

copy number model. Briefly, if Si is a genomic segment, let li be its length and Ci be its copy

number. The tumor ploidy C of the sample is C ¼

P
i
liCiP
i
li

. If ri is the random variable repre-

senting the median-normalized log-ratio coverage of all exons within Si, and p is the tumor

purity, we model ri as a Normal distribution as:

ri � Nðlog
2

pCi þ 2ð1 � pÞ
pCþ 2ð1 � pÞ

; sriÞ ð1Þ

where σri is the SD of the log-ratio data in segment Si, reflecting the noise observed. Similarly,

if fi random variable represents the MAF of SNPs within segment Si, Mi the copy number of

minor alleles in Si, distributed as integer 0�Mi� Ci/2, and σfi the SD of the SNP data at seg-

ment Si, we model fi as:

fi � N
pMi þ 1 � p
pCi þ 2ð1 � pÞ

; sfi

� �

ð2Þ

Given this model of the log-ratio and MAF, a two-step approach is used to find the optimal

fit of model parameters Ci and Mi at each segment, as well as the genome-wide model parame-

ters tumor purity (p) and ploidy (C). First, an initial fit is assessed using the JAGS software

package [14], a Gibbs sampling based Markov Chain Monte Carlo algorithm. Assuming a sam-

ple has 200 segments after segmentation, the total number of parameters is more than 400.

Based on our pipeline design, there are around 10,000 observed SNPs and 50,000 observed

median-normalized log-ratios. After checking the convergence of all parameters, the following

key MCMC parameters are employed: sampling size at 500, burn-in size at 500, thinning

Fig 2. Copy number detection overview. Aligned DNA sequences of the tumor specimen are normalized against a

process-matched normal, producing log-ratio and minor allele frequency (MAF) data. Next, whole-genome

segmentation is performed using a circular binary segmentation (CBS) algorithm on the log-ratio data. Then, a Gibbs

sampler fitted copy number model and a grid-based model are fit to the segmented log-ratio and MAF data, producing

genome-wide copy number estimates. Finally, the degree of fit of candidate models returned by Gibbs sampling and

grid sampling are compared and the optimal model is selected by an automated heuristic.

https://doi.org/10.1371/journal.pcbi.1005965.g002
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interval at 1 and 9 chains. Second, a grid-based method is used to find alternative solutions

that can also fit the model [15]. The grid-based method evaluates the mean-squared-error

between the measured and the expected copy numbers, over a grid of different tumor purity

and ploidy. All local minima in the grid are considered as model candidates.

The goodness of fit of all copy number models returned by Gibbs sampling and grid sam-

pling are assessed by the mean squared error (MSE) of log-ratios of all segments and the MSE

of MAF of all segments. Gibbs model is the default optimal model and is compared to grid-

based copy number models at the first three local minima. A grid-based copy number model is

selected as the final optimal model if it is proven to meet all of the following five requirements:

1) the MSE of log-ratios and the MSE of MAFs are reduced; 2) the ploidy is higher than 1.2; 3)

the model does not have excessive copy number loss events (CN = 0); 4) it is not a more com-

plex model, which is defined by a higher ploidy delta of at least 1.1 and a lower purity delta of

at least 0.1; 5) it is not a high purity sample (predicted purity> 0.99) unless an independent

high purity estimation prediction algorithm agrees.

Given the output of the copy number model, each variant’s measured AF is compared to

expectation at its local segment i: AFgermline ¼
pViþ1� p

pCiþ2ð1� pÞ vs. AFsomatic ¼
pVi

pCiþ2ð1� pÞ, where Vi is the

variant allele count in the tumor, which can be either Mi or Ci-Mi. To determine whether a var-

iant is predicted somatic, germline, or ambiguous, we used the following statistical model:

Define y: = (n,f), where y is the variant data comprising read depth n and allele frequency f;
G: = germline hypothesis; and S: = somatic hypothesis. Given the germline hypothesis G, the

probability of y is obtained using the 2-tailed binomial test P(y|G; AFgermline) = Bin (nf, n,

AFgermline). Given the somatic hypothesis S, the probability of y is obtained using the 2-tailed

binomial test P(y|S; AFsomatic) = Bin (nf, n, AFsomatic). A variant is predicted somatic if P(y|S;

AFsomatic)> α and P(y|G; AFgermline)� α. A variant is predicted germline if P(y|S; AFsomatic)�
α and P(y|G; AFgermline)> α. A variant is predicted subclonal somatic if P(y|S; AFsomatic)� α,

P(y|G; AFgermline)� α, and f< AFsomatic / 1.5. Subclonal somatic predictions are made only in

samples with a tumor purity of greater than 20%. A variant is declared ambiguous and not

called if none of the conditions above holds. The variable α is set to be 0.01. All possible predic-

tion outcomes are enumerated in S2A Fig, with an example sample shown in S2B Fig.

Similar to prior studies [15–18], the SGZ method classifies the tumor zygosity of the muta-

tion (homozygous vs. heterozygous) or predicts that the mutation resides in a minor subclone.

A variant in the tumor is classified as homozygous if all copies in the tumor carries the mutant

allele (V = C and V6¼0), heterozygous if both the reference and the mutant are present (V6¼C
and V6¼0), and not in tumor if the tumor only carries the reference (V = 0, applicable only to

germline variants). A somatic mutation is further classified as subclonal if the allele frequency

is significantly less than the lowest expected allele frequency.

Results

Method validation datasets

We validated SGZ in three different ways, including (1) specimens with matched normal

where the true origin of all alterations was known, (2) cell-line admixtures that modeled the

impact of varying tumor purity on the inference, and (3) a large set of clinical FFPE specimens

with known somatic drivers where real-world somatic variant recovery was assessed.

The first dataset consisted of 87 specimens from 30 non-small cell lung and colon cancer

patients, wherein each patient we studied three samples: the primary tumor, a metastatic site,

and adjacent tissue matched normal (S3 Table). All DNA were extracted from fresh-frozen

clinical specimen. The primary and metastatic tumors uniformly contained a mixture of

malignant and benign epithelial, stromal and inflammatory cells. The gold standard origin of a

SGZ distinguishes somatic vs germline mutations without matched normal
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mutation is established by following the rules: whenever a variant appeared in the matched

normal with significant allele frequency, it was considered germline, and tumor-only variants

were called somatic. In several samples, low levels of tumor infiltrated into the matched nor-

mal sample, hence the sample was found to carry low levels of mutation with allele frequency

<10%. These were regarded as somatic mutations. A total of 330 unique variants were detected

and evaluated, including 70% (N = 231) germline and 30% (N = 99) somatic according to gold

standard. SGZ was applied to the primary and metastatic tumor samples to make somatic/

germline predictions. DNA from the 30 non-small cell lung and colon cancer patients was

obtained from Institute Gustave Roussy [19, 20].

To assess the robustness of the method to different levels of tumor purity, we examined

three cancer cell lines (HCC-1937, HCC-1954, & NCI-H1395), which were titrated with their

matched lymphoblastoid normal to six levels of tumor purity (10%, 20%, 30%, 40%, 50%, 75%).

A total of 42 unique variants were detected by our pipeline and used for validation (S4 Table).

The third dataset is data from 20,182 clinical FFPE tissue samples sent to Foundation Medi-

cine for FoundationOne testing. The samples were of a variety of tumor types, originating

from a wide diversity of cancer centers and community oncology practices. To evaluate SGZ

predictions of germline/somatic origin, we examined predictions at 17 known somatic hotspot

mutations (e.g. BRAFV600, KRASG12) and 20 common germline SNPs. To assess SGZ pre-

dictions of tumor zygosity, we selected the most frequently mutated somatic variants at onco-

genes (BRAF, EGFR, IDH1, KRAS,NRAS, PIK3CA) and tumor suppressor genes (TP53, RB1,

PTEN) for analysis. To assess the ability of SGZ to detect subclonal mutations, we examined

EGFR T790M, a common subclonal tyrosine kinase inhibitor resistance mutation, in all the

non-small cell lung samples in this dataset (N = 69). The FoundationOne assay platform, its

clinical application, and an early description of the cohort genomics is described in Frampton

et al. 2013.

Method validation results

To demonstrate the importance of taking into account the genome-wide copy number profile

for somatic/germline prediction, we applied SGZ to the three validation datasets and com-

pared SGZ to a method that does not take tumor aneuploidy into account (referred to as

“basic method”), in which a variant is classified as germline if its mutation frequency is near

50% or 100%, or otherwise is classified as somatic [21] (S1 Method).

SGZ yielded somatic vs. germline calls for 85% of variants in the lung and colon sam-

ples, 83% of variants in the three cell lines admixtures, and 84% in the 17 somatic hotspot

mutations and 20 common germline variants in the 20,182 Foundation Medicine clinical

samples. Among these calls, 95%, 97% and 96% of the somatic mutations were predicted

correctly, respectively; 99%, 97%, and 97% of the germline mutations were predicted cor-

rectly, respectively. On the contrary, the basic method was able to make predictions for

100% of the variants in the three datasets, but only predicted somatic variants correctly

67%, 92% and 95% of time, and germline variants correctly 87%, 41% and 51% of the time,

which are significantly lower than the accuracy of SGZ. Importantly, in none of the three

datasets did the basic method achieve satisfactory performance in both germline muta-

tions and somatic mutations simultaneously (Table 1, S1 Table). In the cell line dataset,

out of a total number of 184 short variants that are correctly classified by SGZ, 63 short

variants are incorrectly classified by the basic method due to local copy number deviation

from 2 and/or zygosity deviation from the heterozygous state, strongly suggesting the

necessity to take copy number variation into account in order to make accurate predic-

tions (S5 Table, S3 Fig).

SGZ distinguishes somatic vs germline mutations without matched normal
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SGZ had a no-call rate in around 15% of mutations in the lung and colon samples and the

Foundation Medicine clinical dataset due to multiple factors (Fig 3), including excessively

high tumor purity (>95%), gross deviations of the copy number model at the variant site,

observed mutation AF compatible with both somatic and germline AF expectations, and

observed AF outside of both somatic and germline expectations.

To characterize the performance of SGZ as a function of tumor purity, we captured the call

rate and prediction accuracy of SGZ in each tumor purity level in the cell-line dataset

(Table 2). Overall, the call rate is between 75% to 94%, and the prediction accuracy ranges

from 88% to 100%. As expected, the call rate at 10% tumor purity is the highest among all dilu-

tion levels, due to the large difference between expected germline and somatic AF (S1 Fig).

Though not available in this dataset, it is expected that call rate would rapidly drop to 0% as

the tumor purity exceeds 90% due to much smaller differences between somatic and germline

variant AF expectations. For germline and somatic prediction accuracy, a high level of accu-

racy is maintained from 10% through 75% tumor purity. It is also expected that the prediction

accuracy would drop as tumor content exceeds 90%.

Table 1. Validation of somatic and germline predictions.

Validation study Call rate Somatic variants predicted

correctly

Germline variants predicted

correctly

All variants in 30 lung & colon samples with matched-normal as gold standard

(basic method)

100% (568/568) 67% (255/380) 87% (164/188)

All variants in 30 lung & colon samples with matched-normal as gold standard

(SGZ)

85% (480/568) 95% (312/327) 99% (151/153)

All variants in 3 cell lines with varying proportions of tumor-normal admixture

(basic method)

100% (215/216) 92% (83/90) 41% (51/125)

All variants in 3 cell lines with varying proportions of tumor-normal admixture

(SGZ)

83% (184/222) 97% (60/62) 97% (118/122)

17 somatic hotspot mutations and 20 common germline variants in 20,182

clinical samples (basic method)

100% (12506/

12506)

95% (7213/7560) 51% (2537/4946)

17 somatic hotspot mutations and 20 common germline variants in 20,182

clinical samples (SGZ)

84% (9829/

11646)

96% (5325/5540) 97% (4172/4289)

https://doi.org/10.1371/journal.pcbi.1005965.t001

Fig 3. Breakdown of no-calls made by SGZ. Reasons behind no-calls made by SGZ are shown for (left) all variants in 30 lung and colon

samples and (right) 17 somatic hotspot mutations and 20 common germline variants within 20,182 clinical samples.

https://doi.org/10.1371/journal.pcbi.1005965.g003

SGZ distinguishes somatic vs germline mutations without matched normal
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To assess SGZ predictions of tumor zygosity, we examined data from the most frequently

mutated somatic variants at oncogenes (BRAF, EGFR, IDH1, KRAS,NRAS, PIK3CA) and

tumor suppressor genes (TP53, RB1, PTEN) in the Foundation Medicine clinical sample set.

Alterations in oncogenes are expected to be mostly heterozygous, as a single mutation is

required for activation, whereas the tumor suppressor genes are expected to have the first func-

tional copy inactivated via mutation, and the second inactivated through loss-of-heterozygos-

ity (LOH) [22]. Our predictions of tumor zygosity are concordant with the roles these genes

play: TP53 and RB1were to determined have>90% of mutations under LOH, while BRAF
V600 and KRASG12 mutations showed no significant enrichment for LOH (Table 3).

To assess our ability to detect subclonal mutations, we examined EGFR T790M in the non-

small cell lung carcinoma subset of our dataset, where the mutation would be expected to

occur in tyrosine kinase inhibitor resistant subclones. Indeed, we discovered a significant

enrichment of subclonal somatic vs. somatic heterozygous/homozygous calls for T790M –a

ratio of 1.5 (41/28)–compared to a ratio of only 0.24 (1043/4282) for the 17 somatic hotspot

mutation sites. The SGZ method was also applied to predict the clonality and zygosity of 12

ESR1mutations in estrogen receptor positive breast cancer biopsies and determined these

ESR1mutations to be somatically acquired, clonal biomarkers of endocrine resistance [23].

Cancer database application

Despite best efforts of cancer investigators leveraging matched normal controls, germline vari-

ants may erroneously get nominated and recorded as somatic mutations in the literature and

public catalogues of somatic variation, due to the challenges inherent in large scale sequencing

studies and MPS data analysis. These variants may divert scarce resources needed for func-

tional follow-up or potentially mislead therapeutic choice if pursued clinically. It would thus

Table 2. SGZ performance as a function of tumor purity in the cell line dataset.

Tumor Purity 10% 20% 30% 40% 50% 70%

Call Rate 0.94 0.89 0.83 0.78 0.75 0.80

Germline Accuracy 1.00 1.00 1.00 1.00 0.94 0.88

Somatic Accuracy 1.00 1.00 0.92 1.00 0.90 1.00

https://doi.org/10.1371/journal.pcbi.1005965.t002

Table 3. Tumor zygosity predictions of somatic mutations in 20,182 clinical samples.

Gene Amino acid affected Gene type Samples with mutation Mutations with LOH LOH enrichment ratio1

BRAF V600† Oncogene 279 6.8% 0.61

EGFR L858R Oncogene 116 4.3% 0.63

IDH1 R132H Oncogene 131 0.8% 0.06

KRAS G12† Oncogene 1444 16.6% 1.21

NRAS Q61† Oncogene 198 13.1% 0.68

PIK3CA H1047† Oncogene 347 11.5% 0.86

PTEN All substitutions‡ Suppressor 308 81.8% 3.54

RB1 All substitutions‡ Suppressor 307 90.6% 2.75

TP53 All substitutions‡ Suppressor 4666 91.8% 3.74

1The enrichment ratio with respect to background LOH percentage, which is measured in non-mutated samples at the genomic locations in each gene.
†Includes all missense mutations of the codon.
‡All missense and nonsense substitutions of confirmed somatic status in COSMIC or consensus splice site variants. Samples with compound heterozygous mutations in

a gene are excluded as they are not expected to be under LOH.

https://doi.org/10.1371/journal.pcbi.1005965.t003
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be beneficial if these false somatic variants could be collectively flagged and potential interpre-

tation and application corrected.

To discover mutations that may be misclassified as somatic in a public database, we applied

the SGZ method to the 20,182 clinical specimens to identify variants predicted to be germline

but annotated in COSMIC (v62) as somatic. To confidently call a variant as germline, we

required germline predictions in multiple specimens and obtained p-values using a binomial

model of SGZ error rate by tabulating the number of somatic, germline, and ambiguous pre-

dictions for each variant and obtaining P(S|nG, nS), the probability of a variant being somatic,

given the nG germline calls and nS somatic calls: Using Bayes rule and a flat prior, i.e P(G) = P(S) =

0.5, PðSjnG; nSÞ ¼
PðnG ;nSjSÞ

PðnG;nSjGÞþPðnG ;nSjSÞ
. Multiple observations were modeled as binomial distributions:

PðnG; nSjGÞ ¼
nG þ nS
nG

 !

enSG ð1 � eGÞ
nG and PðnG; nSjSÞ ¼

nG þ nS
nS

 !

enGS ð1 � eSÞ
nS with eG as

the single sample germline error rate, i.e. the probability of SGZ making an error given a germline

prediction is made and eS as the single sample somatic error rate. We used conservative parame-

ters eG = 0.05 and eS = 0.10, which are higher than the error rates from Fig 2A. P(G|nG, nS) can be

readily obtained as 1 – P(S|nG, nS).
Table 4 shows the top 10 variants present in COSMIC, but strongly predicted by our

method as germline. Each variant was predicted germline in at least 45 samples. Although 9 of

10 variants were annotated as confirmed somatic, the number of entries in the database were

all low (�4), reinforcing that the somatic annotation is likely inaccurate. Further evidence of

germline origin was that most variants had an entry in dbSNP, though few were classified as

common SNPs. The full list of seventy COSMIC variants predicted to be germline is given in

S2 Table.

Discussion

The SGZ method leverages deep MPS to predict variant somatic and germline origin without a

matched normal control. While the definitive approach for discovery of novel somatic muta-

tions includes sequencing a patient matched normal, SGZ supports functional prioritization

and interpretation of alterations discovered on routine testing performed with tumor alone

and can enable assay development and clinical research.

Table 4. Likely somatic status mis-annotation in COSMIC, predicted by SGZ to be germline in multiple samples in Foundation Medicine sample set†.

Gene Protein change Status in COSMIC v62 Entries in COSMIC dbSNP ID Common SNP in 1000 Genomes P-value‡

EP300 P925T Confirmed somatic 1 rs148884710 No 8.0E-235

VHL P25L Confirmed somatic 1 rs35460768 No 3.0E-191

CSF1R V32G Confirmed somatic 1 rs56048668 No 3.4E-181

APC I1307K Confirmed somatic 1 rs1801155 No 1.5E-159

RET Y791F Confirmed somatic 1 rs77724903 No 6.4E-124

MSH6 V509A Confirmed somatic 1 rs63751005 No 3.0E-84

MLL L3614P Confirmed somatic 1 rs146191865 Yes 7.6E-71

IL7R T244I Confirmed somatic 2 rs6897932 Yes 2.3E-60

CREBBP S893L Confirmed somatic 4 rs142047649 No 5.7E-47

ATM S978P Unknown 1 rs139552233 No 2.0E-45

†The listed mutations have “confirmed somatic” status in COSMIC, but are likely mis-annotation, as the number of references supporting the status is low, while SGZ

predicted these variants to be germline in multiple samples. Furthermore, although the mutations are not necessarily common SNPs, each mutation has a dbSNP entry,

which further supports germline status.
‡Probability of being somatic, given multiple SGZ predictions for each variant.

https://doi.org/10.1371/journal.pcbi.1005965.t004
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There are several limitations of the SGZ method. Samples must have adequate admixture of

the surrounding normal tissue. The exact mixture requirement depends on sequencing depth,

which is considered in our statistical model on a per mutation basis, but given our coverage

depth of>500X, somatic versus germline calling generally requires at least 10% normal tissue,

i.e. tumor content under 90%. This held for 97% of solid tumor clinical cancer specimens that

we sequenced. Zygosity calling required estimated tumor purity to be at least 20%, which held

for 76% of our sample set.

Accuracy of the copy number model is likewise important. Minor misfit of the model can

lead to an elevated rate of no calls, and major misfit of the model can lead to misclassification

of somatic versus germline status, especially when tumor content is high, where the expected

difference between germline and somatic allele frequency is reduced (S1 Fig). However, in

copy number modeling, a key subset of copy number models is mathematically equivalent in

terms of SGZ predictions, which improves robustness (S1 Note). Additionally, in low tumor

content samples, the differences in expected allele frequencies between germline and somatic

mutations are large, hence more robust to deviations in copy number model.

As shown in S1 Fig, there are also limited scenarios where the differences in expected allele

frequencies between germline and somatic mutations are small, hence a prediction cannot be

made. For example, a mutation with measured allele frequency of 33% in a genomic region

with copy number 3 and LOH is equally likely to be either “germline and not in tumor” or

“somatic and homozygous”. Finally, there is a scenario in which a subclonal somatic mutation

produces an allele frequency equivalent to the expected germline frequency, misclassifying the

mutation as germline. In practice, this is rare.

Despite these limitations, SGZ achieved impressive accuracy in validation studies, reaching

call rates of 85% and accuracy of 95–99% when applied to individual samples. Importantly,

for recurrent mutations (typical focus of cancer studies and clinical research), a key way to

improve performance is to apply SGZ to a large cohort of samples, where recurrent mutations

can be tabulated in the number of times a germline or somatic prediction is made. This infor-

mation can be used to annotate variants for which somatic/germline status is unknown or in

doubt. When applied over a large cohort of samples, SGZ can aid in the discovery of novel

recurrent somatic mutations, along with their clonality and zygosity status [23, 24]. Con-

versely, SGZ can also identify germline variants not yet catalogued in public databases such as

dbSNP and flag them from further consideration as cancer drivers. In this report, we describe

the computational approach, which may be implemented on any cancer deep sequencing plat-

form with copy number modeling support and provide both the methodology and a detailed

worksheet to ease implementation (S1 Fig). We also apply the method to generate a proposed

re-annotation of a large number of variants currently believed to be somatic, in the hope of

improving the reliability of publicly availably cancer information. Ultimately, the application

of SGZ may inform clinical decision making and expand treatment choices for cancer

patients.
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