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Abstract

The nucleus is the largest and the highly organized organelle of eukaryotic cells. Within nucleus exist a number of pseudo-
compartments, which are not separated by any membrane, yet each of them contains only a specific set of proteins.
Understanding protein sub-nuclear localization can hence be an important step towards understanding biological functions
of the nucleus. Here we have described a method, SubNucPred developed by us for predicting the sub-nuclear localization
of proteins. This method predicts protein localization for 10 different sub-nuclear locations sequentially by combining
presence or absence of unique Pfam domain and amino acid composition based SVM model. The prediction accuracy
during leave-one-out cross-validation for centromeric proteins was 85.05%, for chromosomal proteins 76.85%, for nuclear
speckle proteins 81.27%, for nucleolar proteins 81.79%, for nuclear envelope proteins 79.37%, for nuclear matrix proteins
77.78%, for nucleoplasm proteins 76.98%, for nuclear pore complex proteins 88.89%, for PML body proteins 75.40% and for
telomeric proteins it was 83.33%. Comparison with other reported methods showed that SubNucPred performs better than
existing methods. A web-server for predicting protein sub-nuclear localization named SubNucPred has been established at
http://14.139.227.92/mkumar/subnucpred/. Standalone version of SubNucPred can also be downloaded from the web-
server.
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Introduction

Nuclear proteins are produced in cytoplasm from where they

are transported to the nucleus. Unlike other compartmentalized

organelles such as mitochondria and chloroplast, no membrane

bound sub-nuclear partition exists inside the nucleus. Even then,

every nuclear protein localizes to its specific location within the

nucleus forming a number of virtual sub-nuclear compartments

like nucleolus, nuclear matrix, centromere etc. At present several

experimental methods like co-expression of fluorescent proteins

[1], electron and fluorescence microscopy [2,3], immuno-fluores-

cence labeling [4,5], photo-activated localization microscopy [6],

liquid-chromatography-tandem mass spectrometry [7,8] etc are

available to study protein localization. But the requirement of time

and resources limit their usage.

Localization of a protein strongly correlates with its function.

Thus understanding the subcellular localization of a protein can be

of fundamental importance in revealing different regulatory

mechanism. For example, alterations in gene expression of

proteins located in different sub-nuclear locations may cause

cancer and other genetic diseases [9,10]. Therefore knowledge of

proteins sub-nuclear localization is essential not only for under-

standing the cellular processes and genomic regulation but also to

understand the clinico-pathological manifestations caused due to

mis-localized nuclear proteins. The prediction of protein localiza-

tion at the sub-nuclear level is difficult compared to the

generalized subcellular level due to (i) absence of physical barrier

or membrane within the cell nucleus [11] and (ii) dynamic nature

of protein complexes within the nucleus [12].

In the past, several attempts have been made to predict the sub-

nuclear localization of nuclear proteins [13–21]. Shen and Chou

[13] developed a pseudo amino acid composition based Optimized

Evidence-Theoretic K-nearest classifier to predict proteins at 9

different sub-nuclear locations viz. Cajal body, chromatin,

heterochromatin, nuclear diffuse, nuclear pore, nuclear speckle,

nucleolus, PcG body and PML body. Lei and Dai [14] used

Support Vector Machine (SVM) for prediction of six sub-nuclear

classes (PML body, nuclear lamina, nuclear splicing speckles,

chromatin, nucleoplasm and nucleolus). Huang et al [15]

proposed an evolutionary support vector machine based classifier,

ProLoc, trained on a large set of physicochemical composition

features using dataset of [13] and [14]. Mundra et al [16] reported

a multi-class SVM based classifier using amino acid attributes,

dipeptide composition, pseudo amino acid composition and PSSM

on dataset of [13] and reported better performance. Shen and

Chou [17] again developed a 9 sub-nuclear location (chromatin,

heterochromatin, nuclear envelope, nuclear matrix, nuclear pore

complex (NPC), nuclear speckle, nucleolus, nucleoplasm and

nuclear PML body) predictor, Nuc-PLoc, using combination of

evolutionary information and pseudo-amino acid composition. Li

and Li [18] proposed another method using an algorithm of

increment of diversity combined with improved quadratic
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discriminant analysis by using amino acid and pseudo amino acid

compositions. Jiang et al [19] reported an ensemble classification

method for sub-nuclear locations on dataset of [13] and [14] using

decision trumps, Fuzzy K-Nearest Neighbors algorithm and radial

basis-SVMs.

All the sub-nuclear protein localization methods reported above

have following problems which need to be taken care of: (1) the

datasets used were SNL9 [13] (in case of [15,16,19]), SNL6 [14]

(in case of [15,18–21] and Nuc-PLoc [17] in case of [20,21]. These

datasets (SNL6, SNL9 and Nuc-PLoc dataset) were collected more

than five years ago and our analysis revealed that in current

SwissProt annotations, their locations have changed in the

intervening period. (2) Highly homologous sequences were

included in their benchmark datasets because the cutoff to remove

homologous sequences in SNL6 [14] and Nuc-PLoc dataset [17] is

,50% and #80% respectively while in case of SNL9 only one

criteria was used i.e. ‘protein sequences having same name but

from different species, only one of them was included to reduce the

redundancy’ [13]. Therefore a more stringent non-redundant

dataset is needed to avoid homology bias during training and also

to include the recent progress in the field of protein function

annotation.

In this paper, we report a method for prediction of sub-nuclear

localization of proteins using two different approaches, namely

Method-I and Method-II. At start of a prediction cycle, the query

sequence is presented to Method-I, which checks the presence or

absence of unique Pfam domains and if it does not find any unique

domain prediction is referred to Method-II, which is based on

amino acid composition based SVM model. We considered the

following 10 sub-nuclear locations for the present study: (i)

centromere, (ii) chromosome, (iii) nuclear speckle, (iv) nucleolus,

(v) nuclear envelope, (vi) nuclear matrix, (vii) nucleoplasm, (viii)

nuclear pore complex (ix) PML body and (x) telomere. First we

evaluated the upper limit of the prediction on the basis of presence

of location specific Pfam domains that were identified by Hidden

Morkov model and SVM model separately. In order to exploit the

advantages of both the approaches, we used both methods

sequentially and obtained higher prediction accuracy. The final

method thus developed, was called ‘SubNucPred’. We also

benchmarked performance of SubNucPred vis-à-vis other existing

methods on an independent dataset. A web server as well as

standalone package was also established at http://14.139.227.92/

mkumar/subnucpred/ to make SubNucPred available for public

usage.

Materials and Methods

Datasets
Training Dataset (DataMAIN). Protein sequences used in

this work were obtained from the SwissProt protein database

(version 94.0). We applied the following qualifiers to obtain high-

quality protein sequences: (i) location experimentally confirmed

and limited to a single sub-nuclear location, (ii) a full-length

protein, (iii) protein length between 50–3000 amino acids, (iv)

subcellular location annotation should not contain the term

‘probable’, ‘potential’ or ‘by similarity’ (v) should not contain

membranous proteins and (vi) protein existence must be proven

experimentally. Using the above-mentioned criteria, 1000 nuclear

proteins belonging to 10 different sub-nuclear locations (nucleolus,

chromosome, centromere, nuclear speckle, telomere, nucleoplasm,

nuclear matrix, nuclear envelope, nuclear pore complex, PML

body) were obtained. In order to ensure that each location had

sufficient number of proteins, only locations having more than 10

sequences were considered. As SwissProt contains a lot of

redundant proteins, which may result in over-estimation of

prediction capability, we reduced the redundancy among

sequences at 40% using CD-HIT [22] and obtained 669 proteins

(Table S1). We also added 100 randomly selected non-redundant

non-nuclear proteins to provide comprehensive information about

the protein universe to enable discrimination between nuclear and

non-nuclear proteins.

As described earlier, three datasets namely SNL6, SNL9 and

Nuc-PLoc dataset were mainly used for developing and bench-

marking other sub-nuclear prediction methods. In SNL6 following

6 locations were considered: PML body, nuclear lamina, nuclear

splicing speckles, chromatin, nucleoplasm and nucleolus while in

SNL9 the locations considered were PML body, nuclear speckle,

chromatin, nuclear diffuse, nucleolus, Cajal body, heterochroma-

tin, nuclear pore and PcG body. Nuc-PLoc dataset comprised

nuclear proteins in 9 sub-nuclear locations i.e., chromatin,

heterochromatin, nuclear envelope, nuclear matrix, nuclear pore

complex, nuclear speckle, nucleolus, nucleoplasm and nuclear

PML body. In SubNucPred we tried to include as many locations

as possible. For example we have included all SNL6 locations

except nuclear lamina (due to retrieval of less than 10 sequences).

If we compare the SNL9 locations vis-à-vis SubNucPred, five

locations (nuclear speckle, nucleolus, nuclear pore, nuclear

diffuse/nucleoplasm and PML body) are common in both. Cajal

body and PcG body was not considered due to presence of less

than 10 sequences. Further in SubNucPred rather than simply

categorizing a protein as chromatin or heterochromatin (as was

done in SNL9 and Nuc-PLoc dataset) we have assigned precise

locations such as chromosome, centromere and telomere.

Benchmarking Dataset (DataIND). For benchmarking our

method we downloaded all nuclear proteins of the above ten

locations from SwissProt (version 113), which were not present in

training dataset using the retrieval criteria of DataMAIN. While

compiling this dataset, we made sure that no sequence of DataIND

had homologous sequence in DataMAIN. Further no two sequences

of DataIND have more than 40% identity with each other. We

found 31 sequences in centromere, 38 in chromosome, 14 in

nuclear speckle, 46 in nucleolus, 51 in nuclear envelope, 6 in

nuclear matrix, 7 in nucleoplasm, 2 in nuclear pore complex, 7 in

PML body and 5 in telomere (Table S1).

Unique Single Sub-nuclear Location Domain Library
Pfam is a database of protein domain families in which each

family is represented by multiple sequence alignments and profile

hidden markov models (HMM) [23]. The idea behind using Pfam

domain is the fact that in eukaryotes, specialized functions is

carried out at specific locations only. It means that domain which

is exclusively found in a specific location may be used to carry out

the localization prediction.

In Pfam each HMM represents one Pfam domain. We used

manually curated section of Pfam, Pfam-A, (version-26.0)

containing 13,672 families. 1,000 redundant proteins, retrieved

from SwissProt for constructing DataMAIN, were searched against

the Pfam database using ‘hmmpfam’ model of HMMER package

[24] at an E-value threshold of 1e25. Redundant proteins were

preferred over entire DataMAIN because it has been reported by

Guda et al [25] that clustering at sequence identities lower than

90% produce smaller and diverse data sets, resulting in loss of

some unique Pfam domains. After searching the Pfam domain

library, we found 384 domains in total, which were present only in

single sub-nuclear location (Table S2).

Since the unique domain library was compiled using nuclear

proteins only, it might be possible that some of the 384 domains

may be present in extra nuclear locations. In order to make an

Protein Sub-Nuclear Localization Prediction
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unambiguous domain library, we downloaded 90% redundancy

reduced non-nuclear proteins (65,076 proteins) from SwissProt.

The criteria used in downloading were same as in DataMAIN but

here we considered membrane proteins also to avoid loss of even a

single non-nuclear domain. HMMER found a total of 7,879 Pfam

domains in them at E-value threshold 1e25. After removing all

domains that were common in both nuclear and non-nuclear

proteins, only 171 unique domains (Table S2) were obtained

which were present in a single sub-nuclear location, henceforth

called as single sub-nuclear location domain (SSLD). SSLDs are

exclusively found in a single sub-nuclear location and nowhere

else, neither at remaining nuclear nor non-nuclear locations

(names of all SSLD are listed in Table S3).

We also tried to find out the domains, which were unique for

more than one sub-nuclear location and got two such domains for

locations ‘centromere and chromosome’ and ‘centromere and

PML body’. We found one unique domain for ‘chromosome and

nucleoplasm’, ‘chromosome and telomere’, ‘nuclear envelope and

nuclear pore complex’, ‘nuclear speckle and nuclear matrix’ and

‘nuclear matrix and nucleolus’ (Table S4). We could not find

domains unique for more than two different locations. This shows

that different sub-nuclear locations share very few domains, which

may be due to very specific functional nature of nuclear proteins.

Support Vector Machine
SVM is one of the most common machine learning algorithm

used for development of several bioinformatics prediction methods

[15,26–33]. SVM takes a set of feature vector attributes along with

their real output as input. During training, SVM maps the input

space into higher dimensional feature space thereby separating a

given set of labelled data with an optimal hyperplane. As a result of

training, SVM generates a model which can be used for the

prediction of unknown examples. A detailed description of SVM

can be obtained from Vapnik [34]. In this work, SVM_light

software was employed to perform the prediction (available at

http://svmlight. joachims.org).

Figure 1. Flow diagram of SubNucPred. The overall schema is divided into three steps. Step-1 does prediction on the basis of presence or
absence of unique Pfam domain (Method-I). Step-2 and 3 (referred as Layer-I & II respectively in manuscript) does prediction on the basis of amino
acid composition based SVM model and threshold (Method-II). In step 2 or Layer-I, prediction is made for five sub-nuclear locations (centromere,
chromosome, nucleolus, nuclear speckle and others). In case the SVM score of location ‘others’ is greater than the threshold, query protein is
predicted to belong to locations contained in ‘Others’. 3rd step or Layer-II SVM prediction is used then and prediction is also done for the six locations
belonging to ‘Others’.
doi:10.1371/journal.pone.0098345.g001
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Cross-Validation and Performance Evaluation
In the present study, we adopted one-against-all approach to

develop trained SVM models. It constructs i SVM models, where i

is the number of classes. The i-th SVM is trained on all examples

of i-th class with positive labels and all examples of remaining

classes with negative labels. Hence during a complete training

cycle, at once, example of each location is labeled positive. Same

approach has been used earlier for this type of problem [14].

While training we adopted jack-knife/leave-one-out cross-valida-

tion (LOOCV) approach. Although LOOCV is time consuming, it

is considered better than other methods of cross-validation [35–

44]. During the LOOCV, each protein in the dataset was, in turn,

singled out for testing by the classifier trained with the remaining

proteins. To evaluate the performance, we calculated following

indices for each complete cycle of LOOCV: true positive (TP),

true negative (TN), false positive (FP), false negative (FN),

sensitivity, specificity, accuracy and Matthews Correlation Coef-

ficient (MCC), as formulated below:

Sensitivity~
TP

TPzFN
|100

Specificity~
TN

TNzFP
|100

Accuracy~
TPzTN

TPzFPzTNzFN
|100

MCC~
(TP|TN){(FP|FN)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TPzFP)(TPzFN)(TNzFP)(TNzFN)

p

Where TP and TN were number of proteins whose location was

correctly predicted while FP and FN were number of proteins

whose location was wrongly predicted.

Prediction Schema
The objective of the present work was to develop a prediction

method that can predict the sub-nuclear location of a protein. The

proposed predictor first searches for Pfam domains in the query

sequence. If a Pfam domain is found, the predictor directs the

query sequence to Method-I where the location is predicted on the

basis of SSLD. If Method-I does not find any SSLD, the query is

forwarded to Method-II, which uses amino acid composition

based SVM modules for prediction. The procedure adopted by

Method-II is an example of multi-class classification because we

were trying to predict one among many candidate classes. A

simple strategy to handle multi-class classification is to divide

whole problem into a series of binary classifications and develop

predictor for each class. This is popularly known as ‘‘one-versus-

Figure 2. Average amino acid composition analysis of proteins belonging to different sub-nuclear locations.
doi:10.1371/journal.pone.0098345.g002
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rest’’ approach [45,46]. During development of each binary

classifier, one class is considered as positive while the remaining

classes as negative. In this work for each binary classification, one

sub-nuclear location was treated as positive while remaining all

classes as negative. It means an SVM trained to predict proteins of

a particular sub-nuclear location was trained with all samples of

that location with positive label and proteins of remaining

locations with negative label. The same approach has been used

in a number of earlier studies like prediction of subcellular

localization [47,48], G-protein coupled receptors [49–52], NRP

protein sub-family prediction [53–56].

When the ‘‘one-versus-rest’’ method is applied, the data

imbalance problem will emerge since positive examples tend to

be under-represented in comparison to the larger number of

proteins of other classes (negative examples). As evident in Table

S1, the dataset is heavily imbalanced with the ratio of positive to

negative class protein varying around 1:1 to 1:55. A classifier based

on an imbalanced data, will usually be biased towards the majority

class, which can reduce the accuracy for the dataset having smaller

number of samples or of less diversity. Thus there is a danger that

the dominant data points may overwhelm the information

provided by the less abundant data points. In order to overcome

this problem, we adopted two-layered training approach. In first

layer we kept location with more than 50 proteins viz (1)

centromere (2) chromosome (3) nuclear speckle (4) nucleolus and

(5) others containing all locations having less than 50 proteins

(nuclear envelope, nuclear matrix, nucleoplasm, nuclear pore

complex, PML body and telomere). In second layer, sequences

belonging to locations ‘others’ were used only and SVM models

were developed using the data of ‘others’ location only. This

artifical division among different sub-nuclear locations enabled us

to reduce the ratio of Positive/Negative data with 1:1 to 1:12 at

Table 1. Prediction efficiency at various sub-nuclear locations on the basis of presence of SSLD.

Location Number of Unique Domains Proteins Predicted Prediction Efficiency (%)

Centromere (86) 21 39 45.35

Chromosome (113) 19 22 19.47

Nuclear speckle (50) 16 12 24.00

Nucleolus (294) 81 102 34.69

Nuclear envelope (17) 6 7 41.18

Nuclear matrix (18) 3 5 27.78

Nucleoplasm (30) 7 6 20.00

Nuclear pore complex (12) 4 3 25.00

PML body (12) 4 3 25.00

Telomere (37) 10 10 27.03

SSLD represents single sub-nuclear domain.
Values in parenthesis are the number of proteins in that location.
doi:10.1371/journal.pone.0098345.t001

Table 2. Performance of SVM model based on amino acid composition using layer approach. (For detail please see Table S9).

Location TP TN FP FN Sensitivity Specificity Accuracy MCC AUC

Layer-I

Centromere (86) 67(44) 524(628) 159(55) 19(42) 77.91(51.16) 76.72(91.95) 76.85(87.39) 0.38(0.41) 0.83

Chromosome (113) 76(38) 423(606) 233(50) 37(75) 67.26(33.63) 64.48(92.38) 64.89(83.75) 0.23(0.29) 0.71

Nuclear speckle (50) 35(15) 527(701) 192(18) 15(35) 70.00(30.00) 73.30(97.50) 73.08(93.11) 0.23(0.33) 0.80

Nucleolus (294) 211(162) 342(411) 133(64) 83(132) 71.77(55.10) 72.00(86.53) 71.91(74.51) 0.43(0.44) 0.78

Others (126) 86(86) 438(438) 205(205) 40(40) 68.25(68.25) 68.12(68.12) 68.14(68.14) 0.28(0.28) 0.72

Layer-II

Nuclear envelope (17) 12(8) 83(100) 26(9) 5(9) 70.59(47.06) 76.15(91.74) 75.40(85.71) 0.35(0.39) 0.76

Nuclear matrix (18) 13(5) 75(104) 33(4) 5(13) 72.22(27.78) 69.44(96.30) 69.84(86.51) 0.30(0.33) 0.72

Nucleoplasm (30) 20(23) 65(59) 31(37) 10(7) 66.67(76.67) 67.71(61.46) 67.46(65.08) 0.30(0.33) 0.67

Nuclear pore
complex (12)

9(9) 90(90) 24(24) 3(3) 75.00(75.00) 78.95(78.95) 78.57(78.57) 0.36(0.36) 0.80

PML body (12) 8(8) 76(76) 38(38) 4(4) 66.67(66.67) 66.67(66.67) 66.67(66.67) 0.20(0.20) 0.66

Telomere (37) 27(20) 64(82) 25(7) 10(17) 72.97(54.05) 71.91(92.13) 72.22(80.95) 0.42(0.51) 0.76

Where TP, TN, FP, FN, MCC and AUC are True positive, True negative, False positive, False negative, Matthews correlation coefficient and Area under ROC curve
respectively.
Values in parenthesis are the number of proteins in that location at column ‘location’ and in column ‘TP’, ‘TN’, ‘FP’, ‘FN’, ‘Sensitivity’, ‘Specificity’, ‘Accuracy’ and ‘MCC’ are
the values at which maximum MCC was found.
doi:10.1371/journal.pone.0098345.t002
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layer-I and 1:2 to 1:9 at layer-II. In short, SubNucPred presents

the query protein to layer-I and predicts it as a member of class

whose SVM prediction score is equals to or greater than the

threshold. The algorithm will enter into layer-II only if the SVM

score of others is equal to or more than the threshold of prediction

(Figure 1).

Calculation of Protein Features
Amino Acid Composition. Amino acid composition is a

quantitative measurement of each amino acid within a sequence.

Following equation was used to compute the amino acid

composition.

Comp(i)~
Ri

N
|100

Here Comp(i) is amino acid composition of residue type Ri and N

is the total number of amino acids in particular protein.

Dipeptide Composition. In order to understand the com-

positional biasness, we also calculated the dipeptide composition.

It gives information about the fraction of amino acid as well as

their local order by a fixed length pattern of 400 possible

dipeptides.

Following equation was used to compute the dipeptide

composition.

Dipep(j)~
Mj

Ndipep
|100

Here Dipep(j) is dipeptide composition of dipeptide type Mj,

where j can be any of the 400 dipeptides and Ndipep is the total

number of possible dipeptide in the protein.

Physicochemical Properties. Han et al [21] has reported a

sub-nuclear localization prediction method using a set of 30

physicochemical properties obtained from AAindex database [57].

In this work we used the same properties to train the SVM. The

input vector for physicochemical properties based SVM was

created by multiplying the value of each physicochemical property

with the corresponding amino acid composition. Therefore for

each protein the dimension of input vector would be 20630 = 600.

The list of physicochemical property used in this work is provided

in Table S5.

Results and Discussion

Amino acid Composition Analysis
We calculated the average amino acid composition of different

sub-nuclear locations (Figure 2) and performed ANOVA test to

find out statistically significant difference in amino acid compo-

sitions of different sub-nuclear locations. The test showed that at

P-value 0.01 all except sulphur containing amino acid (Cys and

Met) had statistically significant difference in amino acid

composition (Table S6). We also observed that in a group of

amino acids having same physicochemical property, composition

of few amino acids had more variations. For example, variability

in occurrence of Glu and Lys in different sub-nuclear locations is

more than what is observed in other amino acids having similar

property i.e. Asp and Arg respectively. Amino acids whose

presence has significant influence on protein conformation,

namely Gly and Pro also appeared to vary considerably in

different sub-nuclear locations. Sulphur containing (Cys and Met)

and aromatic amino acids (Phe, Trp and Tyr) were less abundant

and showed very little variation among all the sub-nuclear

locations.

HMM Based Searching of SSLD
In order to estimate the number of proteins whose location can

be predicted using the presence of unique domain(s) only, we

searched the presence of SSLD in the proteins of DataMAIN

(referred as Method-I). We were able to correctly predict only

45.35%, 19.47%, 24.00%, 34.69%, 41.18%, 27.78%, 20.00%,

25.00%, 25.00% and 27.03% proteins belonging to centromere,

chromosome, nuclear speckle, nucleolus, nuclear envelope,

nuclear matrix, nucleoplasm, nuclear pore complex, PML body

and telomere respectively (Table 1). It shows that presence of

location specific domain(s) is not sufficient to predict even half of

their proteins. The result also indicates that very few sub-nuclear

specific domains are present in the nuclear proteins and these

nuclear proteins are composed of a limited set of domains.

SVM Modules
Amino Acid Composition Based SVM. Using one-versus-

rest and LOOCV approach of training we found 76.85% accuracy

Figure 3. ROC curve of amino acid composition based SVM modules.
doi:10.1371/journal.pone.0098345.g003
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for centromere, 64.89% for chromosome, 72.17% for nuclear

speckle, 72.43% for nucleolus, 69.05% for nuclear envelope,

67.62% for nuclear matrix, 58.65% for nucleoplasm, 77.24% for

nuclear pore complex, 62.55% for PML body and 68.14% for

telomere (Table S7 and Table S8).

Amino Acid Composition Based SVM with Two-Layered

Training Approach. As evident in Table S7, performance of

SVM was poor for locations having less number of proteins

namely, nuclear envelope, nuclear matrix, nucleoplasm, nuclear

pore complex, PML body and telomere. The reduced perfor-

mance might have occurred due to the highly skewed nature of

positive/negative example ratio.

In order to reduce the unbalancing of data, we reorganized

whole data in two groups and adopted two-layered training

approach. In the first layer, we included locations having more

than 50 proteins viz. centromere, chromosome, nuclear speckle,

nucleolus and others (all locations having less than 50 proteins viz.

nuclear envelope, nuclear matrix, nucleoplasm, nuclear pore

complex, PML body and telomere). In second layer sequences

belonging to locations merged in class ‘Others’ of first layer were

only used. With layered approach we observed sharp increase in

overall performance. At first layer, we obtained overall accuracy

76.85%, 64.89%, 73.08%, 71.91% and 68.14% respectively for

centromere, chromosome, nuclear speckles, nucleolus, and

‘others’ location (Table 2 and Table S9). At the second layer,

we obtained overall accuracy 75.40%, 69.84%, 67.46%, 78.57%,

66.67% and 72.22% for nuclear envelope, nuclear matrix,

nucleoplasm, nuclear pore complex, PML body and telomere

respectively (Table 2 and Table S9).

As layered approach of training performed better, we adopted

this in all other SVM modules described in following sections.

Dipeptide Composition Based SVM with Two-Layered

Training Approach. In this work we also tried to use dipeptide

composition based SVM model. In general, dipeptide composition

based SVM model are better than amino acid composition based

models [52,58–60]. But in this study performance of dipeptide

composition based SVM models was significantly poor than

amino acid based SVM models. Here we found 76.72% accuracy

for centromere, 69.44% for chromosome, 72.17% for nuclear

speckle, 73.08% for nucleolus, 65.02% for others 70.63% for

nuclear envelope, 59.52% for nuclear matrix, 61.11% for

nucleoplasm, 68.25% for nuclear pore complex, 57.94% for

PML body and 69.84% accuracy for telomere (Table S10).

Physicochemical Properties Based SVM with Two-

Layered Training approach. At first layer, we obtained

overall accuracy 73.60% for centromere, 57.22% for chromo-

some, 73.73% for nuclear speckle, 68.53% for nucleolus and

65.28% for others (Table S11). At the second layer, we found

57.14% accuracy for nuclear envelope, 60.32% for nuclear

matrix, 64.29% for nucleoplasm, 77.78% for nuclear pore

complex, 61.11% for PML body and 65.87% for telomere (Table

S11).

It is clear from Table 2 and Tables S9-S11 that hierarchical

approach of training with amino acid composition showed

maximum performance and hence this model was used for

further analysis. It is referred as Method-II henceforth.

Receiver Operating Characteristics Curve and Area Under
ROC Curve Analysis

When a classifier has to do the multi-class classification,

especially on an imbalanced dataset, as is the case with the present

work, overall accuracy might be an unrealistic assessment of

classifier’s performance due to the correct classification to the

classes in majority. Hence to avoid biasness, the prediction
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capability of SVM model was assessed at the threshold where

sensitivity and specificity values are nearly equal. This also took

care of the biasness in value of accuracy due to unequal number of

positive and negative examples and enabled us to analyze the

performance on the basis of overall accuracy. Another way of

unbiased estimation of classifier’s accuracy is by using the receiver

operating characteristic (ROC) [61] plot, which is a very popular

way of analyzing the overall performance of a classifier system. It

shows the tradeoff between sensitivity and specificity at various

thresholds and is created by plotting sensitivity (True positive rate)

vs 1-specificity (False positive rate). The area under the ROC

curve (AUC) is commonly used as a summary measure of

diagnostic accuracy. The ROC plot (Figure 3, Figure S1 and

Figure S2) and corresponding AUC values (Table 2, Table S10

and Table S11) clearly shows that amino acid composition based

SVM modules can predict sub-nuclear localization at very high

accuracy and was better than dipeptide composition and

physicochemical properties based SVM modules.

Combined Approach of Prediction
The above observations clearly show that neither the presence

of Pfam domains nor SVM alone is sufficient to do prediction with

very high accuracy. Hence we used both approaches sequentially

to get advantages of them. In the current method, first and

foremost Pfam domains were searched in a protein and if any

SSLD was found, the protein was predicted to belong to that

particular sub-nuclear location (Method-I). If a protein lacked any

SSLD then we used SVM module for prediction (Method-II). By

using this approach at layer-I prediction accuracy for centromere,

chromosome, nuclear speckle, nucleolus and others were 85.05%,

76.85%, 81.27%, 81.79% and 82.05% respectively (Table 3). At

layer-II, the prediction accuracy for nuclear envelope, nuclear

matrix, nucleoplasm, nuclear pore complex, PML body and

telomere were 79.37%, 77.78%, 76.98%, 88.89%, 75.40% and

83.33% respectively (Table 3). The results clearly show that this

approach significantly increases the accuracy of sub-nuclear

protein prediction. This new combined method has been named

as SubNucPred.

Benchmarking on Independent Dataset
We benchmarked SubNucPred on DataIND and found 65.22%

accuracy for centromere, 65.70% for chromosome, 67.15% for

nuclear speckle, 76.33% for nucleolus, 60.26% for nuclear

envelope, 73.08% for nuclear matrix, 64.10% for nucleoplasm,

70.51% for nuclear pore complex, 70.51% for PML body and

52.56% accuracy for telomere (Table 4). The confusion matrix

generated by prediction on the basis of presence of unique

domains only is shown in Table S12.

Comparison of SubNucPred with Existing Web-Server
It is important to compare the performance of a newly

developed method with the existing methods to justify the need

and usage of new method. Among a number of sub-nuclear

prediction methods reported earlier, we found only three have

working web-interface namely sub-nuclear compartments predic-

tion system (Scp) [14], Nuc-PLoc [17] and Snlpred [21].

Therefore we compared the performance of our method with

Scp, Nuc-PLoc and Snlpred using DataIND (Table 5).

In the SubNucPred web-server, prediction is done by compar-

ing prediction scores of each model to the threshold of prediction.

A query protein is assigned to the location(s), whose SVM

prediction score is greater or equals to the threshold. The overall

prediction schema of SubNucPred web-server prediction works as

followings. The query protein first goes to the Method I. If a
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unique domain is found, the location is assigned on the basis of

domain. In case, no unique domain is found, the query is

forwarded to the Method II. If the SVM score is greater than the

threshold, the query protein is assigned to the locations. In case of

location ‘Others’ if the SVM score of location ‘others’ were greater

than the threshold of prediction, the second layer prediction will

be done.

Due to the difference in number and nature of sub-nuclear

locations, it is not possible to do one by one comparison of

performance of four web-servers. For the locations identical in all

four web-servers i.e. nuclear speckle, nucleolus, nuclear matrix,

nucleoplasm and PML body, except nucleolus, the performance of

SubNucPred web-server is better (Table 5). In case of nucleolar

proteins, SubNucPred performance was better than Scp but

inferior than Nuc-Ploc and Snlpred. We also analyzed perfor-

mance for locations which are not identical among all four web-

servers i.e. centromere, chromosome, nuclear envelope, nuclear

pore complex and telomere and found that, the performance of

SubNucPred is better in case of centromere, chromosome and

telomere. It was also observed that Scp, Nuc-Ploc and Snlpred did

not predict centromeric protein as centromeric; Scp predicted 2

proteins as chromatin binding protein, Nuc-Ploc predicted 7

proteins as chromatin and 2 as hetrochromatin binding protein,

whereas Snlpred predicted all 11 proteins as chromatin binding

protein. Out of 38 chromosomal proteins, SubNucPred correctly

identified 16, Scp 1 and Nuc-Ploc predicted 2 proteins as

chromatin binding respectively while Snlpred predicted 7 proteins

as chromatin binding. Nuclear envelope proteins were predicted

by other web-servers as nuclear lamina, which is not exactly

identical to the nuclear envelope. Similarly in case of telomeric

proteins, SubNucPred correctly predicted 2 telomeric proteins

while Nuc-Ploc and Snlpred predicted 1 protein as chromatin and

Scp did not provide any telomeric protein. The detailed prediction

result is shown in Table S13.

In summary, considering the fact that there is difference in

locations, we can’t unambiguously conclude that performance of

SubNucPred is inferior to the remaining three web-servers.

Web-Server and Standalone Software
For the convenience of scientific community, a user-friendly

web-server is also established at http://14.139.227.92/mkumar/

subnucpred/, which may help in predicting the sub-nuclear

location of nuclear proteins. This web-server can predict up to 25

sequences at a time and if a user gives more than 25 sequences, it

will automatically predict only first 25 sequences. We also

developed standalone version of SubNucPred, which can be

installed locally and used for large-scale prediction. It can be

downloaded from http://14.139.227.92/mkumar/subnucpred/

download.html.

Conclusions

We developed a combined method, SubNucPred, for predicting

the sub-nuclear location of nuclear proteins with high accuracy by

combining Pfam domain information and SVM score. We have

also developed a publicly available web-server, which allows users

to predict the sub-nuclear location of nuclear proteins. It is

anticipated that the reported method may become a useful tool in

speeding up the pace of nuclear proteins annotation. One of the

shortcomings we see in our method that it works only for the

known nuclear proteins and it will fail to classify in case a non-

nuclear protein is submitted. The prediction rate of SubNucPred is

expected to improve as more Pfam domains become available.

Supporting Information

Figure S1 ROC curve of dipeptide composition based SVM

modules.

(TIF)

Figure S2 ROC curve of physicochemical properties based

SVM modules.

(TIF)

Table S1 Number of proteins present in different sub-nuclear

locations in DataMAIN and DataIND.

(DOC)

Table 5. Comparison of performance of SubNucPred with Nuc-PLoc, Snlpred and Scp web-servers using DataIND.

Location SubNucPred Scp
$

Nuc-PLoc& Snlpred#

Centromere (31) 15 2 Chromatin 7 Chromatin + 2 Hetrochromatin 11 Chromatin

Chromosome (38) 16 1 Chromatin 2 Chromatin 7 Chromatin

Nuclear speckle (14) 12 4 3 5

Nucleolus (46) 35 10 43 37

Nuclear envelope (51) 31 47 Nuclear Lamina 18 7 Nuclear Lamina

Nuclear matrix (6) 2 0 1 0

Nucleoplasm (7) 1 0 0 1

Nuclear pore complex (2) 1 1 Nuclear Lamina 0 2 Nuclear Lamina

PML body (7) 2 0 1 0

Telomere (5) 2 0 1 Chromatin 1 Chromatin

As all Scp, Nuc-Ploc and Snlpred don’t have same sub-nuclear locations as in SubNucPred, we adjusted prediction of centromeric, chromosomal and telomeric protein
to chromatin and hetrochromatin as correct prediction. Similarly for nuclear envelope and nuclear pore complex a prediction saying nuclear lamina was classified as
correct.
Values in parenthesis are the number of proteins in that location.
$
Lei Z, Dai Y (2005) An SVM-based system for predicting protein subnuclear localizations. BMC Bioinformatics 6: 291.

&Shen HB, Chou KC (2007) Nuc-PLoc: a new web-server for predicting protein subnuclear localization by fusing PseAA composition and PsePSSM. Protein Eng Des Sel 20:
561–567.
#Han GS, Yu ZG, Anh V, Krishnajith AP, Tian YC (2013) An ensemble method for predicting subnuclear localizations from primary protein structures. PLoS One 8: e57225.
doi:10.1371/journal.pone.0098345.t005
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Table S2 Number of single sub-nuclear location Pfam domains

in different sub-nuclear locations.

(DOC)

Table S3 Unique Pfam domains present in different sub-nuclear

locations. These domains are present only in a single sub-nuclear

location nowhere else. Referred as single sub-nuclear location

domain (SSLD) in the manuscript.

(DOC)

Table S4 Pfam domains which are present exclusively in two

different sub-nuclear locations, nowhere else.

(DOC)

Table S5 30 physiochemical properties of amino acids selected

from AAindex database to make SVM model (Source: Han et al

(2013) PLoS One 8: e57225.).

(DOC)

Table S6 ANOVA test for analysis of difference in occurrence of

different amino acids at P-value 0.01 (Table value = 2.40, df1 = 9,

df2 = 659).

(DOC)

Table S7 Performance of SVM models based on amino acid

composition without using layer approach of training during

LOOCV. (For detail please see Table S8).

(DOC)

Table S8 Performance of SVM model on amino acid compo-

sition without using layer approaches at different threshold.

(during LOOCV).

(XLSX)

Table S9 Performance of SVM model based on amino acid

composition using layer approach at different threshold (during

LOOCV).

(XLSX)

Table S10 Performance of SVM model during LOOCV based

on dipeptide composition using layer approach.

(DOC)

Table S11 Performance of SVM model during LOOCV based

on physiochemical properties of amino acids using layer

approaches.

(DOC)

Table S12 Prediction on the basis of Pfam domains using

DataIND.

(DOC)

Table S13 Performance of SubNucPred web-server on Da-

taIND.

(XLSX)
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