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Abstract

There are a number of magnetic resonance imaging techniques available for use in the diagnosis and management of
patients with cerebral metastases. This article reviews these techniques, in particular, the advanced imaging meth-
odologies from which quantitative parameters can be derived, the role of these imaging biomarkers have in distin-
guishing metastases from primary central nervous system tumours and tumour mimics, and metrics that may be of
value in predicting the origin of the primary tumour.
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Introduction

This article reviews the magnetic resonance imaging
(MRI) techniques available for use in the diagnosis and
management of patients with cerebral metastases.
Particular attention is paid to advanced imaging meth-
odologies from which quantitative parameters can be
derived, the role of these imaging biomarkers in distin-
guishing metastases from primary central nervous system
(CNS) tumours and tumour mimics, and metrics that
may be of value in predicting the origin of the primary
tumour.

Cerebral metastases are believed to account for up to
50% of brain tumours. This is likely to be a significant
underestimation[1]. Autopsy studies have reported an
incidence of cerebral metastases of up to 25% in patients
with systemic cancer[2,3]. With advancements in the man-
agement of patients with systemic malignancy, there has
been a decline in patients dying from uncontrolled sys-
temic disease. Cancer patients are surviving longer and
whilst their systemic disease is controlled with newer
medications, an increase in CNS dissemination has
been reported[1,4,5].

Cerebral metastases are a leading cause of mortality
in patients with metastatic malignancy and the median
survival for those patients receiving whole brain

radiotherapy (WBRT) is 7 months[6]. Surgical resection
of solitary metastases has been shown to convey a sur-
vival advantage in patients with systemically controlled
disease in a small number of studies, but this is dimin-
ished in the presence of small, additional, non-resectable
metastases[7]. In addition, stereotactic radiosurgery
(SRS) is increasingly being utilized in the treatment of
multiple (up to 4) small (less than 3 cm maximum diam-
eter) metastases, although the advantages of this tech-
nique over WBRT for the treatment of more than 2
lesions remains controversial[8,9]. It is therefore impera-
tive that imaging provides accurate diagnosis, identifica-
tion, size information and localization of all intracranial
lesions in patients with presumed cerebral metastatic dis-
ease in order to optimize their management.

Diagnosis

The differential diagnosis of the solitary enhancing cere-
bral mass, of which metastatic disease is one of the lead-
ing causes, can be a major diagnostic challenge in
neuroradiology. Approximately 50% of cerebral metasta-
ses are solitary. Whilst multiplicity favours the diagnosis
of metastatic disease, differentiation from multifocal glio-
blastoma multiforme (GBM) and tumour mimics such as
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infection or tumefactive demyelination can be difficult.
Distinction between these entities and metastatic disease
is important with regard to both immediate patient man-
agement, and the need for additional imaging in patients
with no known malignancy to identify a primary site and
treat appropriately.

Conventional imaging

Classically, cerebral metastases are seen on either com-
puted tomography (CT) scanning or MRI as lesions
occurring at the cortical interface at the grey and white
matter junction, most commonly located within the cere-
bral hemispheres followed by the cerebellum. Lesions
can vary from radiologically silent microscopic deposits
to masses measuring several centimetres in diameter.
Contrast enhancement is frequently seen and can
be intense, punctate, nodular or ring enhancing.
Haemorrhage can also be a feature, and occurs more
frequently in certain underlying primary pathologies

(see below). The degree of peri-tumoural oedema varies
from virtually none to (more commonly) extensive sur-
rounding oedema. MRI exhibits superior sensitivity to CT
for small lesion identification, particularly in the poste-
rior fossa, and double/triple dose contrast, delayed ima-
ging and the use of magnetization transfer to suppress
background signal from non-enhancing tissues can fur-
ther improve the sensitivity of lesion detection[10,11]. In
addition, certain imaging characteristics such as high
attenuation on non-contrast CT and low T2 signal inten-
sity as seen in mucinous metastases (Fig. 1) or high
signal on non-contrast T1 imaging of melanoma metasta-
ses (Fig. 2), can suggest the underlying primary lesion.
The utilization of alternative conventional sequences
such as contrast-enhanced multi-shot echo planar fluid
attenuated inversion recovery (FLAIR)[12] and pre-
and post-contrast inversion recovery T1-weighted
sequences[13] instead of conventional T1 spin echo
sequences have failed to demonstrate benefit in improv-
ing lesion conspicuity. Phenotypic descriptors such as

Figure 1 Imaging appearances of a solitary mucinous metastases from a colonic carcinoma primary on (a) non-contrast
CT (hyper-attenuating lesion); (b) T2-weighted imaging (markedly hypointense); (c) T1-weighted pre-contrast imaging
(isointense); (d) post-gadolinium contrast T1-weighted imaging (rim enhancement).
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non-enhancing cortical FLAIR signal abnormality adja-
cent to the mass lesion have been described more fre-
quently in glioma but this feature is also seen in some
cases of cerebral metastases[14].

The relative volume of signal hyperintensity on FLAIR
or T2-weighted imaging to the enhancing lesion volume is
frequently cited as a good discriminator of malignant
glioma and cerebral metastases in radiology textbooks.
A greater degree of peri-lesional signal change, com-
monly referred to as oedema although the underlying
content in glioma is more complex, is reportedly indica-
tive of metastatic disease rather than glioma. The pub-
lished literature supporting this is scant, however. A
small (n¼ 29) CT-based study from 1989 reported differ-
ences in the mean ratio of oedema volume to tumour
volume between metastases (3.1) and primary lesions
(1.4)[15]. A more recent MRI study of 26 metastases
and 22 high-grade gliomas (HGG) evaluated the peri-
tumoural oedema to tumour area ratio, and found signif-
icant differences between HGG (0.69� 0.41) and metas-
tases (2.41� 1.63), P50.001[16]. More evidence actually
supports the use of advanced imaging metrics in the peri-
lesional oedema to discriminate these 2 entities as
detailed below, reflecting the underlying pathological dif-
ferences in the origin of this signal change.

Perfusion/permeability imaging

Dynamic contrast-enhanced (DCE) imaging techniques
have been developed that allow for a number of para-
meters to be estimated that are thought to reflect the
microvascular environment. Detailed descriptions of
these methodologies are beyond the scope of this
review and interested readers are directed to a number
of excellent review articles on the subject of perfusion
and permeability imaging in neuro-oncology[17�20]. In
brief, a bolus of contrast agent is injected intravenously
and tracked with a series of dynamic images. Baseline

longitudinal relaxivity (T1) is measured, and changes in
T1-weighted signal intensity are converted to changes in
contrast agent concentration. Contrast agent concentra-
tion time courses are generated, and post-processing of
the data with application of pharmacokinetic modelling
techniques allows for the calculation of a number of
parameters, the most widely used of which is Ktrans (con-
trast volume transfer coefficient, in effect the amount of
contrast passing from the intravascular space to the extra-
vascular, extracellular space) reflecting both local blood
flow and capillary permeability. For dynamic susceptibil-
ity contrast techniques (DSC-MRI), the contrast agent
bolus is tracked using fast T2- or T2*-weighted acquisi-
tions. Models of differing complexity can be used but the
fundamental goal is to derive estimates of cerebral blood
volume (CBV) and cerebral blood flow (CBF).

In distinguishing primary from metastatic cerebral
tumours, the only parameter reported to have value in
robustly separating the 2 entities is CBV. A number of
studies have reported higher CBV values in the solid
tumour component of HGGs than in metastases[21-30].
Furthermore, in the examination of the peri-tumoural
so-called oedematous region (peri-lesional T2/FLAIR
signal hyperintensity seen adjacent to enhancing or
clearly solid tumour mass), HGGs are reported to
demonstrate higher CBV values than metastases[30-33]

(Fig. 3). This may reflect differences in the underlying
mechanisms of the so-called peri-tumoural oedema,
which in primary intrinsic tumour may contain infiltrat-
ing angiogenic tumour cells in addition to vasogenic
oedema, and in metastatic disease is more likely to reflect
pure vasogenic oedema.

Diffusion-weighted imaging and tractography
Diffusion-weighted imaging (DWI) allows quantifica-

tion of the movement of free water molecules occurring
secondarily to random thermal motion. The apparent dif-
fusion coefficient (ADC) is a measure of the degree
of random motion of water molecules due to thermal

Figure 2 Imaging characteristics of melanoma metastases. (a) T2; (b) pre-contrast T1; (c) post-contrast T1.
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energy. The term apparent is used to convey that it is not
truly the free diffusion of water that is being observed. On
visual inspection of diffusion imaging and ADC maps,
there is considerable evidence suggesting that this is of
value in distinguishing necrotic tumours (both primary
HGGs and metastases) from abscesses, with restricted
diffusion seen in the core of abscesses[34]. However, it
should be noted that the distinction is not clear cut and
restricted diffusion has been reported in cerebral metas-
tases of certain histological types (both small and non-
small-cell lung, breast, colon and testicular carcinoma)
(Fig. 4)[35]. The literature regarding the usefulness of
measurement of ADC values and related metrics in dis-
tinguishing HGG from cerebral metastases is controver-
sial. Some groups have reported higher values of ADC
and ADC ratios in the solid tumour[36,37] or peri-
tumoural tissue[36�39] in cerebral metastases than in
HGG, while others have reported lower values in either
tumour[40,41] or peri-lesional tissue[42] and some have
reported no significant difference in ADC values between
HGG and metastatic disease[23,43,44]. These conflicting
results may be a reflection of the wide variation in differ-
ent imaging acquisitions, post-processing analysis techni-
ques and scanners used. In addition, all studies have had
relatively small recruitment numbers, few containing
more than 20 patients with cerebral metastases and
none containing a single metastatic histological tissue
type, thus making the data rather heterogeneous and
limiting its interpretation and applicability.

The use of diffusion tensor imaging (DTI) allows
assessment of different, more detailed, diffusion-based
parameters such as mean diffusivity (MD) and fractional
anisotropy (FA). MD from DTI takes into account the

orientation of the diffusion ellipsoid in each voxel, while
ADC from DWI represents diffusion in the orthogonal
measurement directions as applied to every voxel.
Confusion can arise from the often interchangeable use
of MD and ADC. Like studies evaluating the role of
ADC in cerebral metastases, the literature regarding
MD and FA measures is also controversial[38,45,46]. In
a study comparing 16 GBMs with 12 metastases, mea-
sures of MD in both tumoural and peri-tumoural tissue
was found to be significantly different between metasta-
ses and GBM, with low MD values in the solid tumour in
metastatic disease (0.98� 0.188) compared with GBM
(1.22� 0.284), and high MD values in the peri-tumoural
tissue of metastases (1.41� 0.097) versus GBM
(1.25� 0.201). This study also reported differences in
the FA values of the peri-tumoural region, but not the
solid tumour between the 2 malignancy types with metas-
tases having significantly lower FA values (0.159� 0.02)
than GBM (0.188� 0.045)[47]. In comparison, a similar
study that included 10 GBMs and 6 metastases reported
no significant difference between enhancing tumoural or
peri-tumoural tissue MD or FA values, although the MD
value of the cystic component was reported to be signifi-
cantly lower in the metastatic group than the GBM
group; however there was considerable overlap between
the 2 entities[48]. A larger study by Wang et al.[49] of
63 patients with ring-enhancing lesions (38 GBMs and
25 metastases) examined more detailed features of the
diffusion tensor shape, namely linear and planar coeffi-
cients (CL and CP, respectively), in addition to measures
of FA and ADC in the tumour core, enhancing rim,
immediate peri-tumoural region and distant peri-tumoural
region. They reported significantly higher values of both

Figure 3 Perfusion imaging in (a) solitary cerebral metastasis and (b) GBM (axial imaging on the left and sagittal
reformats on the right). Top row: T2-weighted imaging. Middle row: post-contrast T1-weighted imaging. Bottom row:
CBV maps. Magnified images of CBV maps and corresponding T2-weighted images. (a) The peri-lesional non-enhancing
tissue surrounding the metastasis exhibits a very low relative CBV (white arrowhead) and represents vasogenic oedema;
(b) the peri-lesional non-enhancing tissue surrounding the GBM has a slightly higher relative cerebral blood volume
(white arrow) and represents infiltrating glioma.
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FA and CP for all tissue regions and elevated CL in all
but the distant peri-tumoural region in GBM tumours
compared with cerebral metastases. No significant differ-
ence in ADC measures was found between GBM or
metastases but the model from this study that best pre-
dicted tumour type with a sensitivity of 92% and specifi-
city of 100% included ADC, FA and CP measures. Other
scalar measures of directional diffusion that can be
derived include p (pure isotropic diffusion), q (pure ani-
sotropic diffusion) and L (the total magnitude of the
diffusion tensor). In a comparative study of the value
of these measures in distinguishing GBM from metasta-
ses, the only parameter found to have a significantly
lower value in the cerebral metastases compared with
GBM was the measure q in the peri-tumoural
region[50]. There is also evidence for the utility of DWI
or DTI in discriminating solitary, cystic metastases from
cerebral abscesses[34]. Since abscesses often exhibit sig-
nificantly lower central ADC, they can be confused with

mucinous adenocarcinomas. Reiche et al.[48] have
recently suggested that a combination of central ADC
with rim FA helps to distinguish those neoplastic cysts
with low central ADC from abscesses.

Magnetic resonance spectroscopy

Proton magnetic resonance spectroscopy (MRS) allows
tissue metabolites to be assessed non-invasively. The 2
main techniques use single voxel (e.g. PRESS,
STEAM) or multivoxel chemical shift imaging (CSI)
techniques. Details of these approaches can be found
in a recent review[51]. A number of studies using CSI
have shown some potential in differentiating GBM
from cerebral metastases, wherein examination of the
peri-tumoural region has been reported to show a lower
choline (Cho)/creatine (Cr) ratio in cerebral metastases
than that seen in GBMs[32,33,52�55]. In a study of 53
HGGs and 20 metastases, Server et al.[54] reported

Figure 4 Restricted diffusion in cerebral metastases. (a) T2-weighted imaging; (b) post-contrast T1-weighted imaging;
(c) DWI; (d) ADC map. There is restricted diffusion within the medial aspect of the tumour which demonstrates
restriction in the more solid, T2 hypointense, non-enhancing component.
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100% sensitivity, 88.9% specificity, a positive predictive
value (PPV) of 80% and a negative predictive value
(NPV) of 100% using a cut-off value of 1.24 for the
peri-tumoural Cho/Cr ratio to discriminate between
HGG and metastases. Similarly, this group also reported
the value of examining the peri-tumoural Cho/NAA ratio
and, using a cut-off value of 1.11, found 100% sensitivity,
91.1% specificity, 83.3% PPV, and 100% NPV in discrim-
inating HGG from cerebral metastases. A recent report
in 2 cases of mucinous adenocarcinoma has described
the presence of a metabolite peak that mimics NAA and
may reduce the specificity of MRS in this tumour
type[56]. The use of short echo time proton spectroscopy
allows lipid and macromolecule signals to be observed.
These are often found to be high in necrotic tumours.
Opstad et al.[57] studied the value of short echo time
MRS in comparing lipid and macromolecule signals in
cerebral metastases (n¼ 34) and GBM (n¼ 25) and
reported significantly higher values in metastases than
GBM, although there was considerable overlap between
the 2 groups. In an attempt to address the multicenter
applicability of single voxel spectroscopy for assisting
differential diagnosis of brain tumours, Garc�1a-G�omez
et al.[58] assessed spectra from several sites in over 300
intracranial lesions with histological diagnosis. They
reported around 90% accuracy in pairwise discriminant
analysis for differentiation between meningiomas, low-
grade gliomas, GBM and metastases. Unfortunately, the
discrimination of GBM from metastasis was less accurate
at 78%, and they recommend a combined approach in
further work.

The value of MRS in non-invasive discrimination of
source tissue in cerebral metastases has been studied by
2 groups[59,60]. Chernov et al.[59] reported increased
mobile lipid content and elevated Lip/nCr in cerebral
metastases arising from a colorectal primary when com-
pared with metastases from histologically distinct pri-
mary tumours. In addition, Huang et al.[60] compared
non-small-cell lung carcinoma (NSCLC) cerebral metas-
tases (n¼ 40) with those from breast (n¼ 17) and mel-
anoma (n¼ 9) using CSI MRS, reporting the Cho/Cr
ratio to be significantly lower in NSCLC metastases
than in either breast or melanoma metastases. MRS
can be performed ex vivo on biopsy samples for meta-
bolic classification of tumours, and there is evidence for
clinically useful differential characterization of cerebral
metastases[61]. While this is invasive, it provides evidence
for the potential use of new metabolic and spectroscopic
imaging techniques in vivo.

Multi-parametric imaging

As with many advanced MRI techniques, where optimi-
zation of acquisition and analysis requires further work,
there is often diagnostic overlap within a particular ima-
ging parameter. Evidence suggests that the ability to dis-
tinguish primary HGGs from solitary cerebral metastases

is improved when a multi-parametric imaging approach is
taken[33,53,62]. Law et al.[33] reported significant differ-
ences in both rCBV and Cho/Cr in the peri-tumoural
region of GBM and metastases and advocated that
these imaging parameters could be used together to try
and distinguish between the 2 tumour types. Similarly,
Bulakbasi et al.[62] found both ADC values and MRS
values were separately useful in differentiating cerebral
tumours, but when combined there was added value in
predicting tumour type. The combined use of perfusion-
weighted imaging (PWI) and MRS has also shown value
in differentiating cerebral metastases originating from pri-
mary lung carcinoma from lesions originating from either
breast carcinoma or melanoma[60]. Wang et al.[63] used a
combination of DTI and DSC to distinguish GBM, soli-
tary metastases and primary cerebral lymphoma (PCL).
They concluded that the best discriminative combination
for distinguishing GBM from the other tumour types
involved FA from the enhancing rim and rCBV from
the peri-tumoural region. This finding is in keeping with
the histopathological findings in GBM with pseudopalli-
sading cellular rim, and angiogenesis occurring adjacent
to microinvasive disease in the surrounding oedema.
Again, the multiparametric approach has been used for
the discrimination of infectious from cystic neoplastic
lesions. In a relatively small study, the lower central
ADC was again found in infectious lesions, while the
presence of amino acids on MRS was also indicative of
infection[36]. In addition, the blood volume in the rim of
the neoplastic lesions was found to be higher.

Conclusions

The evidence regarding the use of advanced imaging
techniques in cerebral metastatic disease is largely con-
troversial with a variety of conflicting results regarding
the different advanced imaging modalities. The majority
of studies have focused on discriminating HGG from
solitary cerebral metastases, with fewer studies attempt-
ing to differentiate metastatic lesions according to histo-
logical subtype, and therefore inform further imaging. At
best, the majority of evidence suggests that quantitative
metrics derived from PWI, DWI, DTI or MRS of the peri-
tumoural tissue may provide a supplementary means of
discriminating HGG from cerebral metastases, and the
use of a multimodality approach combining parameters
derived from each of the advanced imaging techniques is
likely to improve both the diagnostic sensitivity and spe-
cificity. Unfortunately, most of the current studies are
limited with regard to their small patient numbers (few
have more than 30 patients for a given tumour type) and
the heterogeneous collection of histological types of cere-
bral metastases that are frequently grouped together. A
large multi-centre trial is required to evaluate the useful-
ness of these combined advanced MR parameters in dis-
criminating both GBM from cerebral metastases, and
metastases of different histological subtype. In order to

250 S.J. Mills et al.



achieve diagnostic currency in the setting of busy clinical
scanners, a selection of optimized advanced MR techni-
ques requiring limited post-processing is desirable. A
combination of short echo time MRS, DTI and DSC
imaging is a likely combination, with attention paid to
both the enhancing tumour itself and the peri-tumoural
tissue. The limitations in the receiver operating character-
istics of these approaches mean that the expert input of a
suitably experienced radiologist with a complete clinical
picture will still be crucial in each case.
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