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Abstract: Endophytic fungi from orchid plants are reported to secrete secondary metabolites which
include bioactive antimicrobial siderophores. In this study endophytic fungi capable of secreting
siderophores were isolated from Cymbidium aloifolium, a medicinal orchid plant. The isolated
extracellular siderophores from orchidaceous fungi act as chelating agents forming soluble complexes
with Fe3+. The 60% endophytic fungi of Cymbidium aloifolium produced hydroxamate siderophore on
CAS agar. The highest siderophore percentage was 57% in Penicillium chrysogenum (CAL1), 49% in
Aspergillus sydowii (CAR12), 46% in Aspergillus terreus (CAR14) by CAS liquid assay. The optimum
culture parameters for siderophore production were 30 ◦C, pH 6.5, maltose and ammonium nitrate
and the highest resulting siderophore content was 73% in P. chrysogenum. The total protein content
of solvent-purified siderophore increased four-fold compared with crude filtrate. The percent Fe3+

scavenged was detected by atomic absorption spectra analysis and the highest scavenging value was
83% by P. chrysogenum. Thin layer chromatography of purified P. chrysogenum siderophore showed a
wine-colored spot with Rf value of 0.54. HPLC peaks with Rts of 10.5 and 12.5 min were obtained
for iron-free and iron-bound P. chrysogenum siderophore, respectively. The iron-free P. chrysogenum
siderophore revealed an exact mass-to-charge ratio (m/z) of 400.46 and iron-bound P. chrysogenum
siderophore revealed a m/z of 453.35. The solvent-extracted siderophores inhibited the virulent plant
pathogens Ralstonia solanacearum, that causes bacterial wilt in groundnut and Xanthomonas oryzae pv.
oryzae which causes bacterial blight disease in rice. Thus, bioactive siderophore-producing endophytic
P. chrysogenum can be exploited in the form of formulations for development of resistance against
other phytopathogens in crop plants.

Keywords: siderophore; endophytic fungi; orchid; CAS agar; Penicillium chrysogenum; plant
pathogens; bioformulation

1. Introduction

The plants and microbes in soil require micronutrient metals such as nickel, copper, zinc and
iron but the bio-availability of these elements is often inadequate under environmental conditions [1].
The adverse environmental conditions lead to decreased bio-accessibility of Fe (III) due to synthesis of

Biomolecules 2020, 10, 1412; doi:10.3390/biom10101412 www.mdpi.com/journal/biomolecules

http://www.mdpi.com/journal/biomolecules
http://www.mdpi.com
https://orcid.org/0000-0003-2831-651X
http://dx.doi.org/10.3390/biom10101412
http://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/2218-273X/10/10/1412?type=check_update&version=3


Biomolecules 2020, 10, 1412 2 of 18

non-soluble oxyhydroxide phases [2]. Iron deficit leads to chlorosis and reduced metabolic activity and
biomass in plants. Plants and microbial species have developed a chelation approach to stimulate metal
availability during stress situations [1,3]. The fungal species in soil and plant endophytes synthesize
hydroxamate and carboxylate type siderophores of several classes—coprogens, fusarinines and
ferrichromes [4,5]. The siderophores produced by fungi play a significant role in transporting
iron to plants, bacterial and actinomycetes members [6–8]. To date ~500 diverse siderophores have been
documented [9]. A majority of the siderophores are reported to be endophytic in nature, being found in
various microbial sources including mycorrhiza and orchidaceous fungi [8,10,11]. However, the nature
of siderophores is different among microbes, for instance the bacterial hydroxamates are made up of
hydroxylated and acylated alkylamines, while fungal hydroxamates are composed of hydroxylated
and acylated ornithine groups. Most of the hydroxamate groups of siderophores of fungal origin
consist of C (=O) N-(OH)-R, where R is either an amino acid or a derivative. The two oxygen molecules
from each hydroxamate group act as chelating agents forming hexadentate octahedral complexes with
Fe3+ that exhibit high stability constants. They also act as competitors for Fe thereby reducing the
amount of Fe available to plant pathogens. This Fe deficiency inhibits the growth of phytopathogens
by inhibiting the synthesis of nucleic acids and sporulation of the pathogens.

Siderophores are reported to have many favorable applications for mankind and Mother Nature.
They can be used for selective antibiotic delivery—a Trojan horse strategy by formation of sideromycins,
useful in treating antibiotic-resistant bacteria—or used to treat acute iron intoxications such as
haemochromatosis. They are also useful in the treatment of malaria and in the removal of transuranic
elements such as aluminium and vanadium from human body [12,13], as deodorant in cosmetics,
in cancer therapy [14], as bio-control agents against fish pathogens [15], documented bio-control
agents against bacterial and fungal phytopathogens [7,8,16], in pulp treatment [17], bioremediation of
mercury [18], to solubilize a varied array of heavy metals such as Cd, Zn, Ni, Cu, Pb and actinides like
Pu, Th and U produced in industries, nuclear power stations and mining [19,20]. Siderophores are
also reported to diminish oxidative stress in microorganisms [21]. The siderophores have prospects
as selective investigative tools and in the delivery of antifungal drugs [22]. Siderophores are also
used for the classification of microorganisms based on the type of siderophore they produce, which is
known as siderophore typing or sidero-typing [23]. In recent years, research has focused on the
identification and characterization of bioactive siderophores from endophytic fungi isolated from a
medicinal orchid plant, Cymbidium aloifolium. In most parts of southern India, this orchid plant is
traditionally used for the treatment of cut wounds or burns, low eye vision, as an anti-inflammatory
and anti-bacteria agent, and for paralysis, chronic illness and also for fevers [24], hence, the present
investigation is focused on: (i) isolation of endophytic fungi associated with different parts of C.
aloifolium, (ii) optimization of culture conditions for the production of siderophores from endohytic
fungi, (iii) detection and quantification of siderophore production from isolated endophytic fungi,
(iv) identification and purification of type of siderophores and (v) the bioactivity of the siderophores
against phytopathogens such as Ralstonia solanacearum and Xanthomonas oryzae pv. Oryzae.

2. Materials and Methods

2.1. Endophytic Fungi from Cymbidium Aloifolium

Fifteen healthy orchid plants (free from lesions) were collected from different regions covering a
distance of 270 km in the Western Ghats region of Karnataka (N 12◦45′14.2351′′, E 75◦38′38.7031′′)
at locations such as Kemmangundi, Sringeri, Shivamogga and Chikmagalur during flowering time
between March to June 2017. The plant specimens were identified as Cymbidium aloifolium by the
Regional Ayurveda Research Institute for Metabolic Disorders, Central Council for Research in
Ayurvedic Sciences, Ministry of AYUSH, Government of India. The plant specimens were labeled
with the reference number RRCBI-7148. Leaves, roots and flowers were harvested from the original
plant and surface sterilized using sodium hypochlorite (0.2%), following by three washes with sterile
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distilled water. The dried plant parts were used for isolation of endophytic fungi on Potato Dextrose
Agar (PDA) plates amended with tetracycline (50 µg/mL) and sterilized plant parts incubated on PDA
without tetracycline were used as appropriate controls as described by Zhu et al. [25] and the fungi
identified using standard manuals [26,27]. The endophytic fungi were identified by morphological
characteristics as well as using ITS region sequencing (ITS1 and ITS4 primers). The obtained sequences
were assembled and blast search for their similarity or homology by NCBI. The authenticated names
of the fungal species were submitted to the NCBI GenBank database. Two representative plants
(reference number RRCBI-7148) were also maintained in the orchidarium at the Department of Botany,
Bangalore University, Bangalore. A specimen is also maintained at the Regional Ayurveda Research
Institute for Metabolic Disorders, AYUSH, Bangalore.

2.2. Screening for Production of Siderophore by Endophytic Fungi

The siderophore production was assessed by placing 4 mm of 1-week old mycelia plugs on
Chrome Azurol S (CAS) solid media prepared by following the modified protocol (added 22 g of
PIPES/L instead of 32.24 g) of Schwyn and Neilands [28]. The fungi-inoculated plates were incubated
at 30 ◦C under dark conditions for 5–7 days and then monitored for the appearance of an orange halo
zone around the fungal disc on blue colored agar media, and the zone diameter was then measured.

2.3. Determination of Siderophore Concentration by CAS Liquid Assay

Iron deferrated Grimm-Allen liquid media [29] was used for growing fungi (106 spores/mL,
30 ◦C for 15 d) and culture filtrate was used to estimate siderophore content. The filtrate (1.5 mL)
added with 1.5 mL of CAS liquid solution, 10 µL of shuttle solution (0.2 M 5-sulfosalicylic acid,
store in dark) was incubated at room temperature for 10 min and absorbance measured at 630 nm.
The siderophore content was calculated using the following formula:

% Siderophore units = [(Ar − As)/Ar]

where Ar = Reference absorbance at 630 nm, As = Absorbance of sample at 630 nm. Blank: culture
medium; Reference: culture medium with CAS liquid solution and shuttle solution.

2.4. Detection of Siderophore Type

The fungal culture filtrates positive for siderophore production were subjected to a FeCl3 test.
Two mL of FeCl3 solution (2%) was added to 1 mL of fungal culture filtrate and scanned from 300 nm
to 600 nm using an UV-Vis spectrophotometer (UV-160A, Shimadzu, Kyoto, Japan). A peak between
420–450 nm in ferrated siderophores indicates a hydroxamate type of siderophore and a peak at 495 nm
indicates a catecholate type of siderophore [30]. For the tetrazolium test two drops of 2 N NaOH was
added to a pinch of iodonitrotetrazolium (INT) and 1 mL of culture filtrate was added and observed for
the appearance of a deep colour to determine the presence of hydroxamate siderophores [31]. Briefly,
the Csaky assay consists of 1 mL of culture filtrate hydrolyzed with 1 mL of 6 N H2SO4 in a boiling
water bath for 6 h or at 130 ◦C for 30 min. The solution was then buffered by adding 3 mL of 35%
sodium acetate solution. Further, the resultant solution was supplemented with 1 mL of sulfanilic acid
solution followed by 0.5 mL of iodine solution. Finally, 1 mL of α-naphthylamine solution was added
and the total volume was adjusted to 10 mL with sterile distilled water. The reaction solution was
incubated for 20–30 min at room temperature and monitored for changes in the reaction solution color.
In parallel culture media was used as blank [32] to detect the type of siderophore.

2.5. Optimization of Culture Parameters for Maximum Siderophore Production

The endophytic fungi exhibiting higher siderophore content were subjected to optimization
studies. An inoculum of 106 spores/mL was inoculated into 15 mL of iron deferrated media. The effect
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of growth media, incubation period, temperature, pH, carbon source, nitrogen source was determined.
The percent siderophore content produced in each parameter was determined using a CAS liquid assay.

2.6. Production and Extraction of Siderophore Produced by Endophytic Fungi

The endophytic fungi producing higher amounts of siderophore were grown in 500 mL optimized
deferrated media, incubated in the dark at 120 rpm. The siderophore-rich culture filtrate was extracted
following the modified procedure of Jalal and Helm [33].

2.7. Estimation of Total Protein Concentration in Crude and Solvent Purified Siderophore Extract

The total protein concentration in crude and solvent purified siderophore extract was estimated
by the Lowry method [34].

2.8. Agar Well Diffusion of Crude and Solvent Extracted Siderophore on CAS Agar

The crude and partially purified siderophore extract (25 µL) was detected by agar well diffusion
on CAS agar media, by detecting the development of a orange halo around the well.

2.9. Atomic Absorption Spectra (AAS) Analysis of Solvent Extracted Siderophore

Partially purified endophytic fungi siderophore samples suspended in 2% FeCl3 solution were
used as samples. FeCl3 (2%) in sterile distilled water was taken as control. The amount of dissolved
Fe3+ in each sample was evaluated using an AA240FS fast sequential atomic absorption spectrometer
(Agilent Technologies, California, USA) equipped with an iron Lumina halo cathode lamp [35].
The percent Fe3+ present in siderophore suspended sample was determined using the formula:

Total Fe3+% with siderophore treatment = % Fe3+ in Siderophore treated sample by AAS × 100% Fe in Control by AAS

The percentage of Fe3+ scavenged by fungal siderophores was determined by the formula:

% Fe3+ scavenged = 100 −% Fe3+ in siderophore sample with reference to control.

2.10. Purification and Characterization of Siderophore

An extracted siderophore sample (CAL1) exhibiting higher siderophore content with good
biological activity was purified using Amberlite XAD-400 chromatography [36]; purified siderophore
was then spotted on silica gel thin layer chromatography (TLC) plates and eluted with chloroform and
methyl alcohol (90:10 v/v). The plates were dried, sprayed with 0.1 M FeCl3 in 0.1 N HCl, allowed to
dry [37] and observed for the formation of spots.

2.11. Liquid Chromatography Election Spray Ionization-Mass Spectrometry

The profiling of the LC-ESI mass spectrum of ferrated and deferrated siderophore sample (CAL1)
was done at the Central Research Facilities, Indian Institute of Science, Bangalore [38]. The MS
system used for profiling was a maxis impact HD ESI QTOF high resolution mass spectrometer
(Bruker Daltonics, Bremen, Germany). The siderophore sample was diluted with acetonitrile and
water (1:1 v/v) with 0.5% acetic acid and filtered. The mobile phase used was acetonitrile and water
(1:1 v/v) containing 0.5% acetic acid. Mass was measured in the range from m/z 50–1200 with a flow rate
of 0.3 mL/min. The parameters used were electron spray ionization (ESI), ion trap analyzer, ion polarity
positive set nebulizer 1.8 bars, focus active capillary 3500v and dry heater 180 ◦C.

2.12. Antibacterial Activity of Siderophores Against Plant Pathogenic Bacteria

The antibacterial activity of extracted fungal siderophores was determined by a disc diffusion
assay [39]. Ampicillin (10 µg/mL) was used as positive control and 10% sterile media as negative control.
The fungal siderophores was tested against virulent plant pathogens such as Ralstonia solanacearum and
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Xanthomonas oryzae pv. oryzae. The pure cultures were obtained from the Department of Microbiology
and Biotechnology, Bangalore University, Jnana Bharathi Campus, Bangalore.

2.13. Statistical Analysis

The tests were done in triplicates and results were stated as mean ± Standard deviation.
The analysis was performed with ANOVA and Duncan Multiple Range Test (DMRT) test was
carried out using SPSS software (version 20, Tokyo, Japan). A value of p ≤ 0.05 was considered a
significant difference.

3. Results

3.1. Screening for Production of Siderophore by Endophytic Fungi

The endophytic fungi obtained from different parts of C. aloifolium like flowers, leaves and
roots were screened for siderophore production on CAS agar. Among endophytes, 60% of fungi
produced siderophores (Figure 1). Among endophytic fungi, the highest diameter of the halo zone
was 14.33 ± 2.08 mm produced by P. chrysogenum (CAL1) followed by other fungal isolates (Table 1).
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Figure 1. Endophytic fungi exhibiting an orange halo on Chrome Azurol S (CAS) agar,
indicating siderophore production.

3.2. Determination of Siderophore Concentration by CAS Liquid Assay

The percent siderophore content among endophytic fungi ranged from a high of 56.6% by
P. chrysogenum (CAL1) to a low of 10.35% by C. truncatum (CAL5). The endophytic fungi A. sydowii
(CAR12) produced 48.94% and A. terreus (CAR14) produced 46.39%, respectively (Table 2, Table S1).
The endophytic fungi producing higher siderophore content were identified at a molecular level
by subjecting them to partial ITS sequencing using ITS1 and ITS4 primers. The obtained partial
ITS sequences were submitted to GenBank with NCBI accession numbers KX553900 (Penicillium
chrysogenum, CAL1), KX553901 (Aspergillus sydowii, CAR12) and KX553902 (Aspergillus terreus, CAR14),
respectively. Further, the phylogentic dendrogram tree was plotted to determine the taxonomic status
of the isolated endophytic fungi in relation to existing fungi of NCBI database (Figure S2).

3.3. FeCl3, Tetrazolium and Csaky Test

The endophytic fungal culture filtrate with 2% FeCl3 exhibited a broad peak range between
420–450 nm indicating hydroxamate type siderophores (Figure S3a). The tetrazolium test recorded
the instant appearance of a deep colour indicating hydroxamate type siderophores (Figure S3b).



Biomolecules 2020, 10, 1412 6 of 18

The Csaky assay recorded the presence of hydroxamate type of siderophore by the development of
colour (Figure S3c). This method is sensitive and specific for hydroxamate type siderophores.

Table 1. Screening for siderophore production by endophytic fungi of Cymbidium aloifolium on Chrome
Azurol S Agar (CAS).

Sl. No Isolates Endophytic Fungi Source Yellow-Orange
Zone on CAS

Mean of Halo Diameter
in mm ± SD; n = 3

1 CAR 1 Aspergillus japonicus

Root

Positive 6.33 ± 0.57 b

2 CAR 2 Curvularia lunata Negative 0 ± 0 a

3 CAR 3 Nigrospora sp. Negative 0 ± 0 a

4 CAR 4 C. gloeosporioides Positive 9.66 ± 0.57 c

5 CAR 5 Trichoderma sp. Positive 7.33 ± 1.15 b

6 CAR 6 Xylaria sp. Positive 9.33 ± 2.08 c

7 CAR 7 Rhizoctonia sp. Negative 0 ± 0 a

8 CAR8 F. chlamydosporum Negative 0 ± 0 a

9 CAR 9 Penicilliumcitrinum Positive 9.33 ± 1.52 c

10 CAR10 Helminthosporium sp. Negative 0 ± 0 a

11 CAR 11 Curvularia sp. Positive 10 ± 1 c

12 CAR 12 Aspergillus sydowii Positive 12.33 ± 0.57 e

13 CAR 13 Cladosporium sp. Positive 7 ± 1 b

14 CAR 14 Aspergillus terreus Positive 12 ± 0 de

15 CAR 15 Alternariaalternata Positive 6.66 ± 0.57 b

16 CAR 16 Fusarium oxysporum Negative 0 ± 0 a

17 CAL1 P. chrysogenum

Leaf

Positive 14.33 ± 2.08 f

18 CAL2 Aspergillus sydowii Positive 7.66 ± 1.52 b

19 CAL3 Trichoderma sp. Negative 0 ± 0 a

20 CAL4 Rhizoctonia sp. Positive 7.33 ± 1.15 b

21 CAL5 Curvularia lunata Negative 0 ± 0 a

22 CAL6 Penicillium citrinum Negative 0 ± 0 a

23 CAL7 C.truncatum Positive 7 ± 1 b

24 CAL8 Alternaria alternata Positive 6.66 ± 0.57 b

25 CAL9 Bipolaris sp. Negative 0 ± 0 a

26 CAF1 Fusariumoxysporum

Flower

Positive 7.66 ± 0.57 b

27 CAF2 T. rotundus Negative 0 ± 0 a

28 CAF3 P. purpurogenum Positive 10.66 ± 1.52 cd

29 CAF4 Cladosporium sp. Negative 0 ± 0 a

30 CAF5 Cylindrocephalum sp. Positive 7 ± 1 b

Mean values followed by same letters (a, b, c, etc.) are not significantly different according to DMRT at p ≤ 0.05.

3.4. Optimization of Culture parameters for Maximum Siderophore Production by Endophytic Fungi

The endophytic fungal cultures C. gloeosporioides (CAR4), Xylaria sp. (CAR6), A. sydowii (CAR12),
A. terreus (CAR14) and P. chrysogenum (CAL1) were selected for optimization studies. The siderophore
production was found to be higher in Grimm Allen (GA) media in comparison to MM9 media among
all fungal endophytic cultures studied (Figure 2a).

A gradual increase in the percent siderophore content was observed on the 5th day, 10th day and
15th day in all fungal cultures but the content decreased slightly on the 20th day. The highest production
recorded was on the 15th day for all endophytic cultures (Figure 2b). The siderophore content varied
with incubation temperature, being optimum at 30 ◦C, lesser at 35 ◦C and least at 25 ◦C and no
siderophore production was observed at 20 ◦C or 40 ◦C (Figure 2c). The pH of the growth medium
plays a key role in the solubility of iron and thus its accessibility to endophytic fungi. The maximum
siderophore content was detected at pH 6.5, slightly decreased at pH 6 and pH 7; no siderophore was
detected at pH 5.5 and pH 7.5, respectively (Figure 2d). The siderophore production was detected
with three sugars—maltose, fructose and glucose. Among these, maltose exhibited a stimulatory
effect on siderophore production followed by glucose and fructose (Figure 2e). Different nitrogen
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sources influenced siderophore production and highest was detected with ammonium nitrate as the
nitrogen source, followed by sodium nitrate. The use of urea as nitrogen source resulted in decreased
siderophore production (Figure 2f).

Table 2. Estimation of siderophore content produced by endophytic fungi of Cymbidium aloifolium
using Chrome Azurol S (CAS) liquid assay.

Sl. No Fungal Isolate Endophytic Fungi % Siderophores ± SD; n = 3

1 CAR1 Aspergillus japonicus 27.02 ± 0.45 j

2 CAR4 Colletotrichum gloeosporioides 40.54 ± 0.45 l

3 CAR5 Trichoderma sp. 18.91 ± 0.45 e

4 CAR6 Xylaria sp. 40.99 ± 0.68 l

5 CAR9 Penicilliumcitrinum 25.52 ± 0.68 i

6 CAR11 Curvularia sp. 23.87 ± 0.45 h

7 CAR12 Aspergillus sydowii 48.94 ± 0.68 n

8 CAR13 Cladosporium sp. 35.73 ± 0.68 k

9 CAR14 Aspergillus terreus 46.39 ± 0.45 m

10 CAR15 Alternariaalternata 18.01 ± 0.45 de

11 CAL1 Penicillium chrysogenum 56.6 ± 0.68 o

12 CAL2 Aspergillus sydowii 13.06 ± 0.45 b

13 CAL4 Rhizoctonia sp. 10.35 ± 0.45 a

14 CAL7 Colletotrichumtruncatum 25.22 ± 0.45 i

15 CAL8 Alternaria alternata 21.77 ± 0.68 g

16 CAF1 Fusariumoxysporum 16.06 ± 0.68 c

17 CAF3 Penicillium purpurogenum 17.71 ± 0.68 d

18 CAF5 Cylindrocephalum sp. 20.41 ± 0.69 f

Mean values followed by same letters (a, b, c, etc.) are not significantly different according to DMRT at p ≤ 0.05.

3.5. Production and Extraction of Siderophore

The siderophore quantity with optimized parameters was estimated by CAS liquid assay.
The highest siderophore content was detected in P. chrysogenum (CAL1)—72.69% followed by A. sydowii
(CAR12)—65.29%, A. terreus (CAR14)—59.04%, C. gloeosporioides (CAR4)—46.52% and Xylaria sp.
(CAR6)—29.46% (Figure S4). The culture filtrates of CAL1, CAR12 and CAR14 producing the highest
siderophore content were subjected to extraction with chloroform:phenol: ether:water and purified.

3.6. Estimation of Total Protein Content

The total protein content of solvent-purified siderophore sample was found to be 3.52 mg/mL for
P. chrysogenum (CAL1) followed by 3.51 mg/mL for A. sydowii (CAR12) and 3.27 mg/mL for A. terreus
(CAR14), respectively, whereas, the total protein content of crude siderophore filtrate was much less
compared to purified samples viz., 0.79 mg/mL by CAL1, 0.735 mg/mL by CAR12 and 0.29 mg/mL by
CAR 14 (Figure 3). The four-fold increased protein content in solvent extracted siderophore sample
indicated the effectual purification of siderophore.

3.7. Agar Well Diffusion of Crude and Solvent Extracted Siderophore on CAS Agar

The purified siderophore extract from P. chrysogenum (CAL1), A. sydowii (CAR12) and A. terreus
(CAR14) produced the largest diameter and clearest orange halo zones around the well on CAS agar
media in comparison to crude extract (Figure S5).

3.8. Atomic Absorption Spectra (AAS) Analysis

The percent Fe3+ scavenged was 83.12% for P. chrysogenum (CAL1) followed by 73.34% for
A. terreus (CAR14) and 71.12% for A. sydowii (CAR12) respectively (Table 3).
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chrysogenum (CAL1). Treatment means annotated above by the same letter are not significantly 
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(CAR14) produced the largest diameter and clearest orange halo zones around the well on CAS agar 
media in comparison to crude extract (Figure S5).  

Figure 3. Total protein content in the crude and purified siderophore extract by Penicillium chrysogenum
(CAL1). Treatment means annotated above by the same letter are not significantly different according
to DMRT at p ≤ 0.05.
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Table 3. Percentage of Fe3+ scavenged by endophytic fungal siderophores.

Sl. No Fungal Siderophore Iron as Fe3+

by AAS (%)
Percentage of Fe3+ with
Reference to Control (x)

Percentage of Fe3+ Scavenged
by Siderophore: (100 − x)

1 Control (2% FeCl3) 0.45 100% -
2 A. sydowii (CAR12) 0.13 28.88% 71.12%
3 P. chrysogenum (CAL1) 0.076 16.88% 83.12%
4 A. terreus (CAR14) 0.12 26.66% 73.34%

3.9. Purification of Penicillium Chrysogenum (CAL1) Siderophore

The P. chrysogenum (CAL1) siderophore exhibited the highest Fe3+ scavenging property, hence it
was further purified using Amberlite XAD-400 chromatography and further used for TLC and
LC-ESI-MS analysis.

3.10. Thin Layer Chromatography of Purified Siderophore

The formation of a wine coloured spot with a Rf value of 0.54 indicated a hydroxamate type of
siderophore (Figure S6).

3.11. High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography Electron Spray
Ionization Mass Spectrometry (LC-ESI-MS)

HPLC peaks at a Rt of 10.5 min was recorded for iron-free and a peak with a Rt at 12.5 min
was recorded for iron-bound P. chrysogenum (CAL1) siderophore (Figure 4a,b). The iron-free
siderophore P. chrysogenum (CAL1) siderophore revealed an exact mass-to-charge ratio (m/z) of 400.46
and iron-bound P. chrysogenum (CAL1) siderophore revealed a m/z of 453.35, respectively (Figure 5a,b).
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3.12. Antibacterial Activity of Fungal Siderophores on Plant Pathogenic Bacteria Ralstonia Solanacearum and
Xanthomonas oryzae pv. Oryzae

The solvent-extracted siderophores obtained from A. sydowii (CAR12), P. chrysogenum (CAL1),
A. terreus (CAR14) inhibited different virulent R. solanacearum (Table 4) and Xanthomonas oryzae pv.
oryzae isolates (Table 5). The siderophore from P. chrysogenum (CAL1) exhibited the highest zone of
inhibition in comparison to A. sydowii (CAR12) and A. terreus (CAR14) respectively (Figure 6a,b).
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Table 4. Antimicrobial activity of fungal siderophores on Ralstonia solanacearum isolated from infected
groundnut plants.

Sl. No R. solanacearum
Isolate

Zone of Inhibition in mm ± SD; n = 3

Positive Control CAR12 CAR14 CAL1

1 APM39 9 ± 1 abc 6.66 ± 0.57 b 6.33 ± 0.57 b 8.66 ± 0.57 abc

2 APM42 11.33 ± 1.15 ef 8.66 ± 0.57 cd 7.66 ± 0.57 bcd 9.66 ± 0.57 abcde

3 APM52 19.66 ± 1.52 jk 9.66 ± 1.52 de 12.33 ± 1.52 f 16.33 ± 1.41 hijk

4 APM53 10.33 ± 1.52 bcde 8.33 ± 0.57 cd 6.66 ± 1.15 b 8 ± 1 ab

5 KAP1 10.66 ± 0.57 cde 0 a 7.33 ± 0.57 bc 8.66 ± 0.57 abc

6 KAP4 9.33 ± 0.57 abcd 0 a 0 ± 0 a 7.66 ± 0.57 a

7 KAP6 8.66 ± 0.57 ab 6.33 ± 0.57 b 7.33 ± 0.57 bc 8 ± 1 ab

8 KAP8 12.66 ± 0.57 fg 8.33 ± 0.57 cd 7.66 ± 0.57 bcd 9.33 ± 0.57 abcd

9 KAP17 8.33 ± 0.57 a 6.66 ± 1.15 b 7.66 ± 1.15 bcd 9 ± 1 abcd

10 KAP18 20 ± 1 jk 10.33 ± 0.57 ef 11.66 ± 0.57 f 17 ± 1 ijk

11 KAP19 10.66 ± 0.57 cde 9.66 ± 0.57 de 8.33 ± 0.57 cde 10.66 ± 0.57 abcdef

12 APH25 18.33 ± 0.57 ij 11.66 ± 0.57 fg 9.66 ± 0.57 e 14.66 ± 0.57 ghij

13 APH26 20.33 ± 0.57 k 14.33 ± 0.57 h 14.66 ± 0.57 g 17.33 ± 1.15 jk

14 APH28 12.66 ± 0.57 fg 9 ± 1 cde 8.66 ± 0.57 cde 11.66 ± 0.57 bcdefg

15 APH36 13.66 ± 0.57 gh 11.33 ± 0.57 fg 8.66 ± 0.57 cde 12.66 ± 0.57 defgh

16 APK9 17.66 ± 0.57 i 14 ± 1 h 14.33 ± 0.57 g 16.33 ± 0.57 hijk

17 APK10 13.66 ± 1.15 gh 11.33 ± 0.57 fg 12.33 ± 0.57 f 13.66 ± 0.57 fghij

18 APA37 18.33 ± 0.57 ij 12.33 ± 0.57 g 14.66 ± 0.57 g 16.66 ± 0.57 ijk

19 APA63 11 ± 1 def 0 a 8.33 ± 0.57 cde 8.33 ± 1.15 ab

20 APP66 22.66 ± 1.52 l 14.33 ± 1.52 h 12.33 ± 0.57 f 19.33 ± 0.57 k

21 APP69 13.66 ± 1.15 gh 9.66 ± 0.57 de 11 ± 0 f 13.33 ± 1.52 efghi

22 APP70 12.66 ± 1.52 fg 0 a 0 a 8.66 ± 1.15 abc

23 APP71 15.33 ± 0.57 h 9.33 ± 0.57 de 9 ± 1 de 11.33 ± 0.57 abcdefg

24 APP73 15.33 ± 1.52 h 7.66 ± 0.57 bc 9 ± 1 de 12.33 ± 0.57 cdefg

25 APP74 12.66 ± 0.57 fg 8.33 ± 1.15 cd 8.66 ± 1.15 cde 12.33 ± 0.57 cdefg

Mean values followed by same letters (a, b, c, etc.) are not significantly different according to DMRT at p ≤ 0.05.

Table 5. Antimicrobial activity of fungal siderophores on Xanthomonas oryzae pv. oryzae (Xoo) from
infected rice plants.

Sl. No Xoo Isolate
Zone of Inhibition in mm ± SD; n = 3

Positive Control CAR12 CAR14 CAL1

1 MBBT01 21.33±1.52 cde 13.66 ± 1.52 cdef 16.33 ± 1.52 de 18.33 ± 0.57 ef

2 MBBT02 23.66 ± 1.52 fg 18.66 ± 1.52 k 18.66 ± 1.15 fgh 21.66 ± 1.52 hi

3 MBBT03 16.33 ± 1.52 ab 12.33 ± 0.57 c 13.33 ± 1.15 bc 14.66 ± 0.57 abc

4 MBBT04 23 ± 1 efg 15.33 ± 0.57 fgh 17.33 ± 0.57 ef 20 ± 1 fgh

5 MBBT05 18 ± 1 b 12.33 ± 0.57 c 13.33 ± 0.57 bc 16.33 ± 0.57 cd

6 MBBT06 16.33 ± 1.52 ab 9.33 ± 0.57 b 11.33 ± 0.57 a 14.33 ± −0.57 ab

7 MBBT07 20.66 ± 0.57 cd 13.66 ± 1.15 cdef 14.33 ± 0.57 c 17.66 ± 1.15 de

8 MBBT08 24 ± 1 g 18.33 ± 1.52 jk 19.33 ± 0.57 gh 21.66 ± 1.52 hi

9 MBBT09 18 ± 1 b 12.66 ± 0.57 cd 13.66 ± 0.57 bc 15.33 ± 0.57 bc

10 MBBT10 23.66 ± 1.52 fg 16.66 ± 1.15 hij 20.33 ± 0.57 h 22 ± 1 i

11 MBBT11 16.33 ± 1.52 ab 9 ± 1 ab 12.33 ± 0.57 ab 14.66 ± 0.57 abc

12 MBBT12 14.66 ± 0.57 a 7.33 ± 0.57 a 12.33 ± 0.57 ab 13.33 ± 0.57 a

13 MBBT13 17.33 ± 0.57 b 8.66 ± 0.57 ab 11.33 ± 1.52 a 15.33 ± 0.57 bc

14 MBBT14 23.66 ± 1.15 fg 17 ± 1 hijk 18 ± 1.73 efg 19.66 ± 0.57 fg

15 MBBT15 24.33 ± 0.57 g 17.66 ± 2.08 jk 18.66 ± 1.15 fgh 23.66 ± 1.15 j

16 MBBT16 22.66 ± 0.57 defg 16.33 ± 1.52 ghi 17.66 ± 0.57 efg 18.66 ± 0.57 ef

17 MBBT17 22.66 ± 1.15 defg 12.33 ± 0.57 c 16.33 ± 1.52 de 20 ± 1 fgh

18 MBBT18 22.66 ± 0.57 defg 9.66 ± 0.57 b 14.66 ± 1.52 cd 18.33 ± 0.57 ef

19 MBBT19 20.66 ± 2.08 cd 14.66 ± 0.57 efg 16.33 ± 0.57 de 17.66 ± 1.52 de
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Table 5. Cont.

Sl. No Xoo Isolate
Zone of Inhibition in mm ± SD; n = 3

Positive Control CAR12 CAR14 CAL1

20 MBBT20 20.33 ± 1.52 c 13.33 ± 0.57 cde 14.66 ± 0.57 cd 17.33 ± 1.15 de

21 MBBT21 23.66 ± 0.57 fg 15.33 ± 0.57 fg 17.33 ± 057 ef 20.66 ± 0.57 ghi

22 MBBT22 21.66 ± 0.57 cdef 12.33 ± 0.57 c 13.66 ± 0.57 bc 17.33 ± 1.15 de

23 MBBT23 14.66 ± 0.57 a 7.33 ± 0.57a 12.33 ± 0.57ab 13.33 ± 0.57a

24 MBBT24 21.33 ± 1.52 cde 14.33 ± 1.52 ef 16.33 ± 1.52 de 18.66 ± 0.57 ef

25 MBBT25 23 ± 1 efg 15.33 ± 0.57 fgh 17.33 ± 0.57 ef 20 ± 1 fgh

Mean values followed by same letters (a, b, c, etc.) are not significantly different according to DMRT at p ≤ 0.05.

4. Discussion

Microbial siderophore synthesizers have been the subject of more interest because of the potential
application of these chelators in agriculture and also in clinical applications [40,41]. The siderophores
have been utilized in the initial stages of lignocellulose depolymerization of wood cell wall by fungi [42].
Hence, the present study was focused on the production, optimization, purification and characterization
of siderophores produced by endophytic fungi of C. aloifolium and their antibacterial activity against
plant pathogens. The siderophore production by endophytic fungi of C. aloifolium was detected on
CAS agar based on the greater affinity of siderophores towards ferric iron.

Among endophytes, 60% endophytic fungi showed an orange halo zone of 4 mm around mycelia
plugs, indicating their ability to produce siderophores. The findings in this study are in agreement
with Aramsirirujiwet et al. [43] who reported that 58% of the endophytic fungi isolated from healthy
tissues of Hottuynia cordata produced siderophores. In the present study, the diameter of halo zones
varied with different fungal cultures and the highest diameter was recorded by P. chrysogenum—CAL1
(14.33 mm), this is in agreement with Hordt et al. [44] who reported that P. chrysogenum isolated from
soil produced different siderophores such as fusarinines, dimerum acid, mono- and dihydroxamate
siderophores which enhanced iron uptake in cucumber and maize plants. The results were also
supported by Baakza et al. [45] who reported the production of siderophores in endophytic fungi
associated with marine and terrestrial habitats.

The percent siderophore content among fungi ranged from a highest value of 56.6% to a lowest of
10.35%. The highest siderophore percentage was observed in P. chrysogenum (CAL1) followed by other
endophytic fungi. The results obtained were directly proportional to the halo zone produced in a CAS
agar test and are in accordance with the findings of Calvente et al. [46]. On the contrary, Schwyn and
Neilands [28] reported that quantification of siderophores was possible only by CAS liquid assay as it
was not accurate to access siderophore quantity on CAS solid agar.

The fungal siderophore culture filtrate with 2% FeCl3 exhibited a broad peak between 420–450 nm
indicating a hydroxamate type of siderophore. This result agrees with Baakza et al. [45] who reported
that a peak at 425–450 nm indicated a hydroxamate type of siderophores. The instant formation of a
deep colour in the tetrazolium test indicated a hydroxamate type of siderophore. This is in agreement
with Dave et al. [47] who reported that the tetrazolium test is based on the ability of hydroxamic
acids in presence of strong alkali to reduce tetrazolium salts by hydrolysis of the hydroxamate group
resulting in appearance of a deep colour. The Csaky assay detects the presence of hydroxamate type
siderophores by the development of colour. This method is sensitive and specific for hydroxamate
type siderophores [32]. The Csaky test for hydroxylamine is thus widely used as a standard method
for the detection and assay of hydroxamic acid type siderophores; it is a modification of the Bloom
iodine oxidation method. The product of this assay is nitrite [48].

The various culture parameters influenced the production of siderophores by endophytic fungi of
C. aloifolium. The test media used for optimization studies were iron deferrated. Volker and Wolf [49]
have previously reported that siderophore production takes place only under iron-limited conditions
to scavenge ferric ions. The fungal growth media significantly influenced siderophore production;
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among Grimm Allen (GA) and MM9 media tested, the fungi grown in GA media produced a greater
amount of siderophores. Similar results were documented by Grimm and Allen [29] who reported
that fungi belonging to the Ascomycota and Basidiomycota produced siderophores when grown in
Grimm Allen media. The incubation period and temperature considerably influenced siderophore
production; these findings are in accordance with Dave and Dube [50] who have reported that
maximum siderophore production by fungal cultures occurred at 30◦ C with an incubation period
of 15 days. The pH of the growth medium has an important role in the solubility of iron and thus
its availability to the fungi. The maximum siderophore content was detected at pH 6.5, and slightly
decreased at pH 6 and pH 7 for all the endophytic fungi tested, but Dave and Dube [50] have reported
maximum siderophore production by fungi at pH 7.

The siderophore production was detected with maltose, fructose and glucose as carbon sources;
maltose demonstrated a stimulatory effect on siderophore production when compared to glucose and
fructose. This result correlates with Roy et al. [51] who reported that the carbon source influences
siderophore production. The previous findings of Mahmoud and Alla [52] have shown a higher
siderophore production with glucose as carbon source but Sistorm and Michilis [53] reported fructose
as the best utilized carbon for siderophore production. The nitrogen sources considerably influenced
siderophore production. The use of ammonium nitrate as nitrogen source enhanced siderophore
production, followed by sodium nitrate, whereas urea resulted in reduced siderophore production
although Tailor and Joshi [54] have reported urea as the best nitrogen source for siderophore production
by Pseudomonas fluorescens, which was not in accord with our observation in endophytic fungi.

The results obtained in our study correlate with the findings of Aziz et al. [55] who have reported
that the production of fungal siderophores in vitro is significant influenced by abiotic factors such as
temperature, pH, culture media, carbon and nitrogen sources.

The siderophore production was enhanced when endophytic fungi were grown in iron- deficient
media under dark conditions with shaking at 120 rpm. P. chrysogenum (CAL1) produced a greater
siderophore content, followed by A. sydowii (CA12) and A. terreus (CAR14). The endophytic fungal
culture filtrates containing siderophores were further subjected to extraction and purification by
chloroform:phenol:ether:water extraction. Pidacks et al. [56] have reported that chloroform: phenol
solution is a better solvent for extraction of siderophores in comparison to benzyl alcohol as the transfer
of siderophores to the organic phase was easier with this solvent mixture. The P. chrysogenum (CAL1)
siderophore sample was further purified using an Amberlite XAD-400 column as it recorded the greater
siderophore production.

The best solvent system for detection of P. chrysogenum (CAL1) siderophore on TLC was chloroform
and methanol (90:10 v/v). The spraying with 0.1 M FeCl3 in 0.1 N HCl developing solution resulted in
the appearance of a wine coloured spot with an Rf value of 0.54, confirming the hydroxamate type of
the siderophores. The siderophore Rf value obtained in this study closely matched the Rf value (0.52)
of bisucaberin as reported by Yoshiro et al. [57]. The molecules are separated based on their polarity as
the solvent moves up the gel plate; polar compounds bind strongly with silica gel and hence move
slower when compared to non-polar compounds [58].

A HPLC peak at a Rt of 10.5 min was obtained for iron-free and a peak at a Rt of 12.5 min was
obtained for iron-containing P. chrysogenum (CAL1) siderophore. The iron-free P. chrysogenum (CAL1)
siderophore revealed an exact mass-to-charge ratio (m/z) of 400.46 and iron-bound P. chrysogenum
(CAL1) siderophore revealed a m/z of 453.35. The mass of siderophore obtained in the present findings
was compared with a list of sixty previously reported siderophores compiled in a review article by
Pluhacek et al. [59]. The mass of P. chrysogenum (CAL1) closely matched with mass of 454.1509 reported
for iron-bound bisucaberin (C18H33N4O6) which was previously reported in Vibrio alginolyticus B522,
Shewanella algae B516 and Vibrio salmonicida [60,61]. In this study, the relative mass error of iron-bound
bisucaberin was 0.8 ppm in comparison with the findings of Bottcher and Clardy [60]. The bisucaberin
siderophore has also been previously reported from a marine bacterium Alteromonas haloplanktis [62].
The molecular constituents of bisucaberin are identical with other siderophores such as trihydroxamate
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ferrioxamine E, ferrioxamine G, ferrioxamine B, ferrioxamine D1 [63]. Bisucaberin is also structurally
related to alcaligin from Alcaligenes xylosoxidans, Bordetella pertussis and B. bronchiseptica [64,65].
The bisucaberin siderophore obtained from Alteromonas haloplanktis has been previously reported to
sensitize tumor cells to macrophage-mediated cytolysis thus proving a potential in cancer treatment [66].

The total protein content in solvent-purified siderophore extract was significantly (five-fold)
higher compared to crude siderophore extract. The present findings are in accordance with
Saxena et al. [67] who have reported that iron binding proteins are produced under iron-deficient
conditions. The siderophore content in crude and purified siderophore extract was detected on CAS
agar media. The purified siderophore extract of P. chrysogenum (CAL1), A. sydowii (CAR12) and
A. terreus (CAR14) produced clear orange halo zones around the wells when compared to crude extract.
This result agrees with Calvente et al. [46] who have reported that the intensity of halo zone production
was proportional to the siderophore concentration.

The percent Fe3+ scavenged was determined by atomic absorption spectrometry (AAS); 83.12% of
Fe3+ was scavenged by P. chrysogenum (CAL1), 73.34% by A. terreus (CAR14) and 71.12% by A. sydowii.
The reduction in the percent Fe3+ in siderophore treated 2% FeCl3 solution indicated a high affinity
of the fungal siderophores for ferric ions. The present finding agrees with Haas [4] who reported
siderophores synthesized by fungi help in the uptake of iron and also its storage. The present
studies also agree with the findings of Miethke and Marahiel [14] who reported siderophore- based
high-affinity iron acquisition by bacteria and fungi. These results are also in agreement with Hider and
Kong [3] and Saha et al. [68] who reported siderophores produced by microbes have extraordinarily
high affinity for ferric ions and tend to use negatively charged oxygens as coordinating, donor atoms.
Microbial siderophore producers have received greater consideration because of significant utilization
of these chelators in agriculture and also clinical applications [40,41]. Chua et al. [69] reported
siderophores are used for removal of non-transferrin bound iron in serum which is an outcome of
chemotherapy during cancer treatment. The findings of Miethke and Marahiel [14] have reported that
siderophores can potentially be used as iron chelators in cancer treatment, e.g., in drugs like -trensox,
tachpyridine, dexrazoxane and desferrithiocin desferriexochelins.

The siderophores produced by endophytic fungi—P. chrysogenum (CAL1), A. terreus (CAR14) and
A. sydowii (CAR12)—exhibited antibacterial activity against the potent plant pathogens R. solanacearum,
a causative agent of bacterial wilt in groundnut and Xanthomonas oryzae pv. oryzae, a causative agent
of bacterial wilt in rice. The siderophore produced by P. chrysogenum recorded a higher zone of
inhibition against the plant pathogens tested. The present finding proves that fungal siderophores
are potent agents which can be used against plant pathogens [70]. These results suggest that
siderophores are produced by microorganisms during iron-limiting conditions sequester iron (III), thus
making it unavailable to the pathogen [71–73]. The external application of siderophores utilizes iron,
thereby depleting availability of iron to the pathogen, hence enabling killing of plant pathogens [14,74].
Earlier findings have reported the use of siderophores in controlling few pathogenic fungi such as
Pythium ultimum, Sclerotinia sclerotiorum and Phytophthora parasitica causing diseases in plants [75,76].

5. Conclusions

Taken together, the present study focuses on the comparative analysis of siderophore production
from various endophytic fungi isolated from C. aloifolium. The hydroxamate type siderophore isolated
from P. crysogenum exhibited strong antibacterial properties against major virulent phytopathogens,
thereby protecting groundnut and rice. Further, the bioactive siderophore producing endophytes can be
exploited in the form of formulations for the development of resistance against other phytopathogens
in crop plants.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/10/1412/s1,
Figure S1. Estimation of siderophores by Chrome Azurol S liquid medium. Figure S2. Phylogenetic tree based on
Neighbour-joining of 18S rDNA sequences showing the position endophytic fungi, (a). Penicillium chrysogenum
(CAL1)—KX553900, (b). Aspergillus sydowii (CAR12)–KX553901 and (c) Aspergillus sydowii (CAR12)—KX553901
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with related fungal taxa (numbers in the parenthesis are boot strap values). Figure S3. Detection of Chemical
nature of siderophores. Figure S4. Optimization of siderophore production using various culture conditions.
Figure S5. Agar well diffusion of crude and purified siderophore extract by P. chrysogenum (CAL1) expressing clear
orange halo zone on Chrome Azurol S agar medium. Figure S6. Purified siderophore extracted by P. chrysogenum
(CAL1) showing formation of wine coloured spot on thin layer chromatography.
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