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Abstract

Background: Leptospirosis is a global zoonosis affecting millions of people annually. Transcriptional changes in response to
temperature were previously investigated using microarrays to identify genes potentially expressed upon host entry. Past
studies found that various leptospiral outer membrane proteins are differentially expressed at different temperatures.
However, our microarray studies highlighted a divergence between protein abundance and transcript levels for some
proteins. Given the abundance of post-transcriptional expression control mechanisms, this finding highlighted the
importance of global protein analysis systems.

Methodology/Principal Findings: To complement our previous transcription study, we evaluated differences in the
proteins of the leptospiral outer membrane fraction in response to temperature upshift. Outer membrane protein-enriched
fractions from Leptospira interrogans grown at 30uC or overnight upshift to 37uC were isolated and the relative abundance
of each protein was determined by iTRAQ analysis coupled with two-dimensional liquid chromatography and tandem mass
spectrometry (2-DLC/MS-MS). We identified 1026 proteins with 99% confidence; 27 and 66 were present at elevated and
reduced abundance respectively. Protein abundance changes were compared with transcriptional differences determined
from the microarray studies. While there was some correlation between the microarray and iTRAQ data, a subset of genes
that showed no differential expression by microarray was found to encode temperature-regulated proteins. This set of
genes is of particular interest as it is likely that regulation of their expression occurs post-transcriptionally, providing an
opportunity to develop hypotheses about the molecular dynamics of the outer membrane of Leptospira in response to
changing environments.

Conclusions/Significance: This is the first study to compare transcriptional and translational responses to temperature shift
in L. interrogans. The results thus provide an insight into the mechanisms used by L. interrogans to adapt to conditions
encountered in the host and to cause disease. Our results suggest down-regulation of protein expression in response to
temperature, and decreased expression of outer membrane proteins may facilitate minimal interaction with host immune
mechanisms.
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Introduction

Leptospirosis is a widespread zoonotic disease caused by

spirochetes of the genus Leptospira, which can persist for

prolonged periods in the environment and cause human

infection via contact with infected animals or contaminated

soil/water [1]. The organism has a broad host range and

maintenance hosts harbor pathogenic Leptospira spp. in their

proximal renal tubules, commonly resulting in shedding of

bacteria in the urine and subsequently the environment,

thereby providing a potential source of infection. An exception

to this cycle is L. borgpetersenii serovar Hardjo which does not

survive well in the environment and generally appears to

require direct host-to-host transmission, likely due to its

smaller genome and loss of genes required for environmental

survival [2]. In tropical countries, large outbreaks of human

leptospirosis have occurred following severe floods, while in

developed countries cases usually occur through occupational

contact or recreational activities [3,4]. Human leptospirosis is

extremely variable in its clinical manifestations, ranging from

mild flu-like symptoms through to rapidly fatal forms involving

multiple organ failure, with death occurring in 5–25% of

severe cases [5,6]. Currently, little is known about pathogenesis

mechanisms or transcriptional regulation in Leptospira spp.
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Temperature is an environmental factor known to affect

leptospiral protein expression, and is a key trigger used by many

bacteria to sense changes in environmental conditions, including

entry from the environment into the host. Leptospira spp. can grow

in artificial media at a range of temperatures that reflect the

conditions found in the environment and the mammalian host.

Therefore, we had previously investigated transcriptional changes

between cultures grown at 20uC, 30uC, 37uC or 39uC reflecting

ambient temperatures in the environment, growth under labora-

tory conditions (Leptospira spp. are routinely cultured at 30uC), and

temperatures in healthy and febrile hosts respectively [7].

Additionally, cultures grown at 30uC then shifted overnight to

37uC were compared with those grown long-term at 30uC and

37uC to identify genes potentially expressed in the early stages of

infection or during transition from the environment into the host.

Comparison of data sets provided novel insights into possible

transcriptional changes at different stages of infection. However,

our microarray data did not correlate completely with findings

from previous studies which showed that expression of some

proteins is temperature-regulated, namely LipL36 [8,9] and Qlp42

(or LipL45) [10]. Given the abundance of post-transcriptional

expression control mechanisms, for example, translational regula-

tion by small RNAs [11,12], this finding highlighted the

importance of global protein analysis systems.

Proteomic advances such as the development of multidimen-

sional protein identification technology (MudPIT) [13,14] and

isobaric tags such as the iTRAQ reagents [15] have enabled large

scale identification and determination of relative protein abun-

dance between different samples simultaneously. The technology

has been applied to studying global proteomic changes in response

to environmental cues in various prokaryotic organisms such as

Escherichia coli, Methanosarcina acetivorans, Desulfovibrio vulgaris, and

Nostoc sp. [16–20].

Expression of various leptospiral outer membrane proteins has

previously been shown to be temperature-regulated. For example,

LipL45 and Hsp15 were up-regulated [10,21] while LipL36 was

down-regulated with temperature increase [8,22]. Therefore, to

complement the transcription study, we evaluated the changes in

the protein constituents of the leptospiral outer membrane fraction

in response to temperature upshift, as proteins which are up-

regulated in response to temperature may be important upon host

entry and establishing infection. To our knowledge, the study

presented here is the first to compare transcriptional and

translational responses to temperature shift in L. interrogans.

Materials and Methods

Culture conditions
L. interrogans serovar Lai was grown in EMJH medium [23] at

30uC until mid-log phase of growth (,56108 cells/ml) before

harvesting for outer membrane extraction. For the overnight

upshift to 37uC, cultures were grown to 2.56108 cells/ml at 30uC
then incubated at 37uC for 16–20 h before harvesting. Cell count

was determined as described previously [24]. At the time of

harvest, the cell 30uC and 37uC upshift cultures were enumerated

at 3.46108 and 3.66108 cells/ml respectively.

Extraction of leptospiral outer membranes
L. interrogans outer membrane samples were prepared by Triton

X-114 extraction as described previously [25,26]. Briefly,

leptospires were washed three times in phosphate-buffered

saline-5 mM MgCl2 by centrifugation at 9,0006g for 10 min.

Outer membrane material was then extracted using 1% protein-

grade Triton X-114 (Calbiochem) in 150 mM NaCl-10 mM Tris

(pH 8)-1 mM EDTA at 4uC. Insoluble material was removed by

centrifugation at 17,0006g for 10 min, then CaCl2 to a final

concentration of 20 mM was added to the supernatant which was

subsequently passed through a 0.22 mm filter. Phase separation

was achieved by warming the supernatant to 37uC, which was

then subjected to centrifugation at 1,0006g for 10 min. The

detergent phase was collected and proteins were purified by

methanol/chloroform extraction. TX-114 preparations were

checked for enrichment of OMPs and minimal contamination

with inner membrane or cytoplasmic proteins by western

immunoblot using antisera against OM, inner membrane and

cytoplasmic markers (anti-LipL48, anti-ImpL63 and anti-GroEL

respectively).

Methanol/chloroform extraction of proteins
Detergent was removed from the protein samples by methanol/

chloroform extraction as described previously [27]. To 0.1 ml of

protein sample, 0.4 ml of methanol was added. The sample was

then mixed and centrifuged at 90006g for 10 s before adding

another 0.1 ml of chloroform. The sample was again mixed,

centrifuged at 90006g for 10 s then 0.3 ml of water was added.

The sample was again mixed vigorously and centrifuged at

90006g for 1 min then the upper phase was removed. This was

repeated twice before 0.3 ml of methanol was added to the

remaining lower phase and the interphase containing precipitated

proteins. After mixing, the sample was centrifuged at 90006g for

2 min to pellet the protein which was then dried. Water was then

added to each pellet to make a suspension and 10 ml was removed

for determination of protein concentration using the bichincho-

ninic acid (BCA) protein assay according to the manufacturer’s

instructions (Pierce). The volume of sample containing 100 mg of

each protein mixture was then taken from the suspension, dried

and subjected to iTRAQ analysis.

Isobaric peptide (iTRAQ) labeling
For each sample, 100 mg of protein were dissolved in 75 ml of

200mM triethylammonium bicarbonate buffer (TEAB) at pH 8.0

and 25 ml of 2% SDS, sonicated, reduced, blocked, digested, then

labeled with the isobaric iTRAQ reagents as per the manufactur-

er’s instructions (Applied Biosystems). For quantifying the effects of

Author Summary

Leptospirosis, caused by Leptospira spp., is a disease of
worldwide significance affecting millions of people annu-
ally. Bacteria of this species are spread by various carrier
animals, including rodents and domestic livestock, which
shed the leptospires via their urine into the environment.
Humans become infected through direct contact with
carrier animals or indirectly via contaminated water or soil.
Temperature is a key trigger used by many bacteria to
sense changes in environmental conditions, including
entry from the environment into the host. This study was
the first comprehensive research into changes occurring in
the outer membrane of Leptospira in response to
temperature and how these changes correlate with gene
expression changes. An understanding of the regulation
and function of these proteins is important as they may
provide an adaptation and survival advantage for the
microorganism which may enhance its ability to infect
hosts and cause disease. Our data suggest regulation of
proteins in the outer membrane which may possibly be a
mechanism to minimise interactions with the host immune
response.
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temperature upshift on abundance of outer membrane proteins

from L. interrogans serovar Lai, two replicates of the 30uC and 37uC
upshift samples were compared in the one experiment; the 30uC
samples were labeled with tag114 and tag115 while the 37uC upshift

samples were labeled with tag116 and tag117.

Strong-cation exchange liquid chromatography (HPLC)
An Agilent 1100 quaternary HPLC pump (Agilent) with a

PolyLC PolySulfoethyl A pre-packed column with a 5 mm particle

size and column dimension of 20062.1mm, 200 Å pore size was

used for strong cation exchange chromatography (SCX). Buffer A

was a solution with 5 mM KH2PO4 and 25% acetonitrile, pH 2.7

and buffer B was 5 mM KH2PO4 350 mM KCl 25% acetonitrile,

pH 2.7. The dried iTRAQ labeled samples were resuspended in

buffer A and loaded onto the column. After sample loading and

equilibrating with buffer A, buffer B concentration was increased

to 10% then 10% to 45% over 70 minutes and finally increased to

100% and held at 100% for 10 minutes with a flow rate of 300 ml/

min. The eluent of SCX was collected every 2 min at the

beginning of the gradient and at 4 min intervals later.

Reverse phase liquid chromatography/tandem MS (LC/
MS-MS)

An Agilent 1100 nanoLC system (Agilent) coupled to an

Applied Biosystems QSTAR XL mass spectrometer was used for

separation and identification of peptides. The SCX fractions were

resuspended in 100 ml of loading/desalting solution (0.1%

trifluoroacetic acid and 2% acetonitrile 97.9% water) of which

39 ml were loaded on a reverse phase peptide Captrap (Michrom

Bioresources) and desalted with the desalting solution at 10 ml/min

for 13 min. After desalting, the trap was switched on line with a

150 mm610 cm C18 3 mm 300 Å ProteCol column (SGE). The

buffer B (90% acetonitrile, 0.1% formic acid) concentration was

increased from 5% to 90% over 120 min in three linear gradient

steps to elute peptides. After peptide elution, the column was

cleaned with 100% buffer B for 15 min and then equilibrated with

buffer A (0.1% formic acid) for 30 min before the next sample

injection. The reverse phase nanoLC eluent was subject to positive

ion nanoflow electrospray analysis in an information dependant

acquisition mode (IDA). In IDA mode a TOF-MS survey scan was

acquired (m/z 370–1600, 0.5 s), with the three most intense

multiply charged ions (counts .70) in the survey scan sequentially

subjected to MS/MS analysis. MS/MS spectra were accumulated

for 2 s in the mass range m/z 100–1600.

Tandem mass spectra analysis and protein identification
The experimental nanoLC ESI MS/MS data were submitted to

ProteinPilot (Applied Biosystems, trial version 1.0) for data

processing. To identify the proteins present, the results were

matched with our revised annotation of the L. interrogans serovar

Lai strain 56601 genome accessible at http://vbc.med.monash.

edu.au/genomes [2]. The Paragon method was used in a thorough

ID search. The software correction factors provided in the iTRAQ

kit were entered in the iTRAQ Isotope Correction Factors table.

The detected protein threshold (unused ProtScore) was set at a

score of at least 2 (better than 99% confidence). The ProtScore is

the sum of the peptide match score calculated as 2log10[(100-

% confidence)/100]. An Unused ProtScore for an identified

protein of greater than 2 signifies that there are at least two unique

peptides in the data set which match this protein and the

confidence for the ID is more than 99%. Detected proteins

without quantity ratios were excluded from analysis. Proteins

which had an abundance difference of at least 1.5-fold with 95%

confidence between the two temperature conditions were

considered to be differentially expressed, provided that there was

no differential expression between replicates at the same

temperature.

Results and Discussion

Previous studies have found that various leptospiral outer

membrane proteins are differentially expressed at different

temperatures [8–10]. However, our microarray studies did not

show any differential expression of some of the corresponding

genes at the transcriptional level [7]. Therefore, to complement

and enhance the transcriptional study, we evaluated the changes in

the protein constituents of the leptospiral outer membrane in

response to temperature upshift.

Proteomic analysis
Outer membranes (OMs) were extracted using TX-114 from L.

interrogans grown long-term at 30uC or grown to mid-log phase

then shifted to 37uC overnight. Extraction with TX-114 is a

validated method of enrichment for leptospiral outer membrane

proteins (OMPs) [8,25,26,28]. Immunoblot analysis of the TX-114

preparations failed to detect ImpL63 (inner membrane marker)

while the highly abundant cytoplasmic protein, GroEL (cytoplas-

mic marker), was present in much lower abundance than in whole

cell lysate. The OM marker LipL48 was present in high

abundance in the TX-114 fraction (Figure 1). This finding

indicated that cytoplasmic and inner membrane contamination

was minimal in terms of the overall abundance of proteins,

although the number subsequently identified by mass spectrom-

etry was large due to high sensitivity of this technique.

Analysis of the output from ProteinPilot revealed a total of 1026

proteins which were identified with 99% confidence (28.4% of

proteins predicted in the L. interrogans serovar Lai genome). Using

the prediction scheme outlined by Bulach et al. (2006) [2], 80 of

these proteins were predicted or known to be OM located and/or

lipoproteins (Table 1). The proportion of proteins identified

according to predicted or known location is shown in Figure 2. A

total of 256 proteins encoded by the serovar Lai genome has been

Figure 1. Western immunoblots showing whole cell lysate
(WCL) from L. interrogans serovar Lai and TX-114 preparations
from L. interrogans serovar Lai grown at 30uC or upshift to 37uC
probed with antisera against GroEL, ImpL63 or LipL48. WCL
samples were adjusted for equal protein loading.
doi:10.1371/journal.pntd.0000560.g001

Effect of Temperature on Leptospiral OMPs

www.plosntds.org 3 December 2009 | Volume 3 | Issue 12 | e560



predicted to be OM located and/or are lipoproteins. Therefore,

26% and 34% of predicted OMPs and lipoproteins respectively

were identified in this study. OMPs and lipoproteins comprised

only 7.8% of the total proteins identified, a relatively small

proportion of the total protein from the sample. Therefore, it

appears that while many OMPs were detected, due to the high

sensitivity of the 2-DLC/MS-MS analysis method, many other

very low abundance proteins from contaminating fractions were

also identified, which may not necessarily be detectable by SDS-

PAGE, two-dimensional gel electrophoresis (2-DE) or western

immunoblot analysis.

Recently, it was shown that the TX-114 extraction method is

limited in that complete fractionation into the TX-114 detergent

phase may not occur for transmembrane proteins and additional

localization techniques are required to obtain a comprehensive

dataset [29]. Using only the TX-114 extraction method, we

identified 31% of predicted OMPs and lipoproteins in this study. A

similar study of Campylobacter jejuni OMPs using this method

identified 87% of predicted membrane proteins [30]. In L.

interrogans serovar Lai, other predicted OMPs and lipoproteins may

not be expressed or present in the membrane under the in vitro

conditions used. Proteins may be lost during sample processing,

not amenable to identification by MS and/or may be expressed at

levels below detection limits. For example, the Lk73.5/Sph2

sphingomyelinase (LA1029) protein has been shown to be

expressed only under in vivo conditions and was not detected in

samples from leptospiral cultures grown at 30uC or 37uC [31]. We

could likewise not detect this protein. However, it has also been

demonstrated that the levels of Sph2 drop considerably at cell

densities above 26108 cells/ml [32] and therefore, the cell density

of our samples at time of harvest (3.46108 and 3.66108 cells/ml)

may have contributed to this effect. LA0695 (LfhA or Lsa24 and

recently renamed LenA), a protein which binds factor-H, laminin,

collagen IV and fibronectin, was likewise not detected in our study

and is known to be expressed during mammalian infections

[33–35]. Sequence analysis and prediction of tryptic fragments

(data not shown) revealed that this 25 kDa protein generates

mostly either very large or small peptides, with only 2 predicted in

the mass range assayed in this study. LigB, a large OMP (.200 kDa)

with immunoglobulin-like domains and associated with virulence

[36], was also not detected in our samples. However, LigB is known

to be lost upon repeated subculture which is concurrent with loss of

virulence [36], although it was recently shown that disruption of ligB

does not affect virulence of L. interrogans in hamsters or rats [37]. The

strain of serovar Lai is high passage and no longer virulent in

hamsters, which may account for the lack of LigB expression.

Alternatively, temperature upshift alone may be insufficient for

induction of expression. LigB was likewise not detected in TX-114

preparations in previous studies [8,9] and is also only partially soluble

in TX-100, indicating that it is likely to be distributed between the

inner and outer membrane [36]. It is possible that LigB is not soluble

in TX-114 and therefore, may be lost during sample processing.

Loa22 (LA0222) which has been shown to be a surface-exposed

lipoprotein and an essential virulence factor [38,39] was also not

detected in our samples.

Of the identified proteins (Table S1), nine have previously been

shown to be surface exposed and located or associated with the

outer membrane, namely OmpL1 (LA3138), LipL21 (LA0011),

LipL32 (LA2637), LipL36 (LA0492), p31LipL45/Qlp42 or LipL45

(LA2295), LipL48 (LA3240), LipL41 (LA0616), LipL46 (LA2024),

Table 1. Number of leptospiral proteins identified in the 37uC vs 30uC samples per predicted location. The number of differentially
expressed proteins in each location is shown.

Known or predicted location Number of proteins identified Downa Upb No change

Cytoplasmic 754 37 19 698

Periplasmic 15 5 0 10

Inner membrane 38 1 1 36

Outer membrane 22 2 1 19

Non-cytoplasmic 97 12 3 82

Secreted 1 0 0 1

Unknown 7 1 0 6

Ribosomal 34 1 0 33

Lipoproteins 58 7 3 48

Total 1026 66 27 933

a$1.5-fold reduced expression.
b$1.5-fold increased expression.
doi:10.1371/journal.pntd.0000560.t001

Figure 2. Percentage of leptospiral proteins identified in TX-
114 OMP enriched fractions according to location.
doi:10.1371/journal.pntd.0000560.g002
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and LhbpA (LB191) [8,21,22,26,40,41,42,43,44,45]. LipL71/

LruA (LA3097) and LruB (LA3469) were also identified in our

study. These proteins have been shown to be present mainly in the

inner membrane of L. interrogans serovar Pomona [46], although

LipL71/LruA has been identified in OM preparations from in vivo

cultivated L. interrogans serovar Copenhageni [47]. LruB (pL50) was

also identified in OM preparations from L. interrogans serovar Lai

[8].

Many cytoplasmic enzymes and components of the flagellum

were also identified; flagella have previously been detected in outer

membrane vesicles of L. interrogans [48]. Some proteins may also be

transiently located in the outer membrane or complexed with

outer membrane proteins and therefore, strict single location may

not be the case for a number of proteins. Chaperones in particular

are predominantly located in the cytoplasm, but under certain

conditions can be membrane-associated in order to assist folding of

soluble and membrane proteins. GroEL, GrpE, HtpG, Hsp70

(DnaK) and many other chaperones or heat shock proteins which

have been annotated as cytoplasmic proteins were detected in our

samples. Notably, GroEL has been shown to be located on the

surface of lipid bilayers [49]. Small heat shock proteins together

with GroEL may function as a ‘membrane stabilizing factor’ as

well as part of a multi-chaperone protein-folding network during

thermal stress [50].

Effects of temperature upshift on protein expression
The relative abundance of each of the proteins between the

different temperature conditions (but not different proteins within

the same sample) was measured by iTRAQ analysis. Proteins with

an expression difference of at least 1.5-fold (50% change in

abundance) with 95% confidence between the two temperature

conditions were considered to be up- or down-regulated. Of the

1026 proteins identified in our samples, the majority (91%)

exhibited no statistically significant change in abundance, while 27

were up-regulated and 66 were down-regulated upon 37uC upshift

(Tables 2 and 3 respectively). Consistent with the high proportion

of uncharacterized genes in Leptospira (50% of coding sequences in

the serovar Lai genome), 44% of the differentially expressed

proteins currently have no predicted function. This finding is also

consistent with comparative genome analyses which suggest that

the majority of pathogen-specific genes in Leptospira have no

ascribed function and the hypothesis that pathogenic Leptospira

possess unique virulence factors [51,52]. Since the majority of

identified proteins did not exhibit altered abundance at the two

temperature conditions, these served as key internal controls for

changes in protein expression as well as extraction efficiency

between samples. Our data also correlate with expression profiles

of previously characterized leptospiral proteins (see below), lending

additional confidence to our results and conclusions. Interestingly,

recent advances in proteomic analysis have enabled comparisons

of the average absolute abundance values of different proteins

across samples, and using this approach, it was found that while

genes encoding hypothetical proteins comprise more than 40% of

the L. interrogans genome, the proteins constitute only 12.7% of the

total cellular proteins expressed in vitro [53].

Cell surface and membrane-associated proteins
More OMPs, liproproteins and non-cytoplasmic proteins were

down-regulated than up-regulated (Table 1). It is feasible that L.

interrogans may need to reduce the number of surface proteins at

host temperature, perhaps as a strategy for evasion of the host

immune response. This possibility is supported by studies showing

that expression of various OMPs was reduced in leptospires

recovered from guinea pigs [47]. Additionally, in western

immunoblot studies of L. interrogans excreted in the urine of

chronically infected rats compared with in vitro grown cultures,

serum from infected rats reacted with fewer antigens in Leptospira

purified from rat urine, suggesting down-regulation of many

proteins [54]. In comparative global proteome analyses of L.

interrogans shifted to 37uC in low-iron medium supplemented with

serum, an overall trend was observed towards down-regulation of

proteins, especially those involved in energy production, metab-

olism, regulation and protein synthesis [55]. Up- and down-

regulated proteins identified in the present study are listed in

Tables 2 and 3 respectively and grouped according to clusters of

orthologous groupings (COGs) [56]. Our study correlated with

previous findings which showed that LipL36 and LruB are down-

regulated, while LipL45 is up-regulated at higher temperatures.

LipL36 is an outer membrane lipoprotein which is down-regulated

during late-log-phase growth and infection [22,57] and at

temperatures above 30uC [8,9]. It is also down-regulated under

iron-depleted conditions [8]. Therefore, it is likely that LipL36 is

involved in survival outside the host. The iron-regulated

lipoprotein LruB did not appear to be differentially expressed at

30uC and 37uC in L. interrogans serovar Pomona [46] but was found

to be down-regulated in L. interrogans serovar Lai at 37uC or under

iron-limiting conditions in another study (where the protein was

identified as pL50) [8]. Our study also found LruB to be down-

regulated in L. interrogans serovar Lai, thus indicating potential

variation in temperature-regulated proteins between different

serovars. The peripheral membrane protein LipL45 has been

shown to be up-regulated upon upshift to 37uC for 5–7 days [10],

while another study found that the protein was up-regulated

during late-log-phase growth [21]. There are 11 paralogs of

LipL45 encoded by the serovar Lai genome, two of which were

also up-regulated with temperature shift (LA2936 and LB242).

Another two homologs were not differentially expressed and the

remainder were not detected in our samples. It is possible that with

11 paralogs, different proteins are expressed under different

environmental conditions or stages of infection, and/or are subject

to different regulatory mechanisms. Expression of the surface

proteins LipL21, LipL32 and LipL41 was not temperature

regulated, consistent with previous studies [8,9,26]. Cullen et al

[43] also found that the abundance of surface proteins did not alter

under different temperature conditions. In contrast, Q8F8Q0

(LA0505) was slightly down-regulated (1.5-fold) upon temperature-

upshift in our experiment, possibly due to differences in culture

conditions and cell density at harvest. Interestingly, Nally et al [47]

found that expression of LipL21 and LipL41 was reduced in L.

interrogans recovered from infected guinea pigs and therefore, their

expression is likely to be regulated by signals other than

temperature.

Two predicted peptidylprolyl isomerases (PPIases), LA2194 and

LA2535, were down-regulated upon overnight upshift to 37uC.

PPIases are thought to contribute to virulence in various bacterial

pathogens. For example, the surface-exposed lipoprotein SlrA of

Streptococcus pneumoniae, is involved in colonization of the nasophar-

ynx, while Mip, a collagen-binding protein in Legionella pneumophila,

promotes binding and spread of the bacteria through the lungs and

spleen [58,59]. LA2194 and LA2535 may likewise play a similar

role in assisting host colonization during leptospiral infection but

perhaps are expressed later in the infection process rather than

initial establishment of disease, or require additional signals other

than temperature for expression.

Cellular processes and signalling
Several heat stress proteins were up-regulated upon overnight

upshift to 37uC, namely small heat shock proteins IbpA-1 and

Effect of Temperature on Leptospiral OMPs
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IbpA-2, and the chaperones DnaK (Hsp70), GroEL and GrpE. A

previous study found that there was no difference in DnaK or

GroEL expression upon upshift to 37uC in L. interrogans serovar

Pomona, but in that report the cultures were maintained at 37uC
for 5–7 days [9]. We found IbpA-2 (LA1563), with a 7.3-fold

change, to be the most highly up-regulated protein upon 37uC
overnight upshift, while IbpA-1 (LA1564), located immediately

downstream of ibpA-2, was the second most highly up-regulated

protein (6.1-fold). IbpA-2 (or Hsp15) has also been shown in

another study to be up-regulated in the early stages of temperature

upshift [10] and therefore, may be important in the early stages of

infection or adaptation to the host environment. ClpA which

performs the ATP-dependent chaperone function of DnaK and

DnaJ [60] was also up-regulated 2.8-fold. While these proteins

have been predicted to be located in the cytoplasm, membrane

association may aid in preserving the structural and functional

integrity of the membrane as a short-term mechanism to protect

membranes from thermal damage. The chaperones Hsp60 and

Hsp70 of Borrelia burgdorferi are involved in the molecular

processing of flagellin. Their subcellular distribution has been

found to be temperature dependent, with relative amounts of

membrane-associated protein varying with growth temperatures

[61]. DnaK (Hsp70), DnaJ and GrpE have also been shown to be

required for the synthesis of flagella in E. coli [62] and DnaK is a

regulator of flagellar operon expression in Salmonella enterica serovar

Typhimurium [63].

Table 2. Proteins which were at least 1.5-fold up-regulated at 37uC upshift compared to 30uC grouped by COG category. The
clusters of orthologous groupingsa (COGs) [47] are shown for each protein. The change in transcription at 37uC upshift versus 30uC
is shown for comparison with the proteomic data.

Locus
tag

Mean fold
change SD

Transcriptional
change effectb COG

Predicted
locationc Gene Description of gene product

LA1957 2.58 0.28 q - NON-CYT Hypothetical protein

LA2936 2.41 0.35 q - NON-CYT LipL45-related lipoprotein

LA2136 2.04 0.19 - NON-CYT hypothetical protein

LB242 2.01 0.19 - NON-CYT LipL45-related lipoprotein

LA1956 1.95 0.18 - CYT Conserved hypothetical protein

LA3807 3.70 0.42 E CYT glnK Nitrogen regulatory protein PII

LA2515 2.24 0.26 E CYT hisD Histidinol dehydrogenase

LA2790 2.19 0.28 K CYT Transcriptional regulator, AcrR-family

LA2483 1.67 0.04 L CYT xerD Site-specific recombinase XerD

LA1563 7.32 0.43 q O CYT ibpA-2 Small heat shock protein (molecular chaperone)

LA1564 6.13 0.37 O CYT ibpA-1 Small heat shock protein (molecular chaperone)

LA1879 2.84 0.09 q O CYT clpA-1 Endopeptidase Clp, ATP-dependent proteolytic subunit

LA3356 2.24 0.09 q O CYT gst-1 glutathione transferase

LA3705 2.22 0.02 O CYT dnaK Chaperone protein, Hsp70

LA2312 2.17 0.06 O NON-CYT Thiol-disulfide isomerase or thioredoxin

LA2655 2.05 0.28 O CYT groEL GroEL chaperone

LA3704 1.93 0.11 q O CYT grpE Chaperone protein, GrpE

LA2809 1.60 0.03 O CYT ahpC Peroxiredoxin

LA1859 3.76 0.06 q P CYT katE Catalase

LA3598 2.50 0.17 q P CYT dps DNA-binding ferritin-like protein

LA3242 1.52 0.02 P OM TonB-dependent receptor

LA3214 2.18 0.31 q S CYT Conserved hypothetical protein

LA2295 1.68 0.02 S IM lipL45 Lipoprotein LipL45

LA3104 2.18 0.15 q T CYT Signal transduction protein

LB035 2.14 0.13 T CYT wzb Protein-tyrosine-phosphatase

LA1526 1.69 0.07 T CYT Signal transduction protein containing cAMP-binding and CBS
domains

LA3244 1.82 0.02 U IM tolQ Transport protein, TolQ-like

aClusters of orthologous groupings are as follows: Information storage and processing (11.2% of coding sequences in L. interrogans serovar Lai genome) (includes J,
translation; K, transcription; L, replication, recombination and repair); Cellular processes and signalling (19% of coding sequences in the serovar Lai genome) (includes
D, cell cycle control, cell division, chromosome partitioning; V, defence mechanisms; T, signal transduction mechanisms; M, cell wall, membrane or envelope
biogenesis; N, cell motility; U, intracellular trafficking, secretion and vesicular transport; O, post-translational modification, protein turnover, chaperones); Metabolism
(18.9% of coding sequences in the serovar Lai genome) (includes C, energy production and conversion; G, carbohydrate transport and metabolism; E, amino acid
transport and metabolism; F, nucleotide transport and metabolism; H, coenzyme transport and metabolism; I, lipid transport and metabolism; P, inorganic ion transport
and metabolism; Q, secondary metabolites biosynthesis, transport and catabolism); Poorly characterized (51% of coding sequences in the serovar Lai genome) (includes
R, general function prediction only; S, function unknown; and –, not in COGs).
bTranscriptional change at 37uC upshift compared with 30uC [7].
cCYT = cytoplasmic; IM = inner membrane; NON-CYT = non-cytoplasmic; OM = outer membrane; PER = periplasmic; UNK = unknown.
doi:10.1371/journal.pntd.0000560.t002
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Table 3. Proteins which were at least 1.5-fold down-regulated at 37uC upshift compared to 30uC grouped by COG category. The
COG category is shown for each protein. The change in transcription at 37uC upshift versus 30uC is shown for comparison with the
proteomic data.

Locus tag
Mean
fold ratio SD

Mean fold
changea

Transcriptional
change effectb COGc

Predicted
locationc Gene Description of gene product

LA1402 0.06 0.02 215.8 Q - NON-CYT Conserved hypothetical protein

LA0715 0.10 0.04 210.4 - NON-CYT hypothetical lipoprotein

LA0858 0.15 0.03 26.5 - NON-CYT Conserved hypothetical lipoprotein

LA1118 0.17 0.02 25.9 - NON-CYT hypothetical protein

LA3814 0.22 0.01 24.6 - CYT Conserved hypothetical protein

LA0419 0.23 0.02 24.3 - NON-CYT hypothetical lipoprotein

LA3769 0.24 0.01 24.1 - CYT hypothetical protein

LA2020 0.25 0.01 24.0 Q - NON-CYT hypothetical protein

LA4198 0.26 0.01 23.9 Q - CYT hypothetical protein

LA3379 0.30 0.02 23.4 - PER flaA-1 Endoflagellar filament sheath protein

LA2066 0.31 0.04 23.2 - NON-CYT Hypothetical protein

LA3380 0.33 0.01 23.0 - PER flaA-2 Endoflagellar filament sheath protein

LA0986 0.34 0.05 22.9 q - CYT Conserved hypothetical protein

LA0492 0.35 0.02 22.9 - OM lipL36 LipL36, outer membrane lipoprotein

LA1086 0.38 0.01 22.6 - NON-CYT TPR-repeat lipoprotein

LA4208 0.41 0.07 22.4 - NON-CYT Conserved hypothetical protein

LB289 0.42 0.13 22.4 - CYT Hypothetical protein

LA3316 0.42 0.01 22.4 - CYT hypothetical protein

LA4209 0.47 0.05 22.1 - NON-CYT Conserved hypothetical protein

LA3961 0.52 0.05 21.9 - NON-CYT hypothetical protein

LA0117 0.54 0.04 21.9 - OM Conserved hypothetical protein

LA1841 0.55 0.03 21.8 - CYT hypothetical protein

LA1915 0.55 0.06 21.8 - OM TPR-repeat-containing protein

LA1135 0.56 0.06 21.8 - CYT hypothetical protein

LB248 0.57 0.04 21.8 Q - NON-CYT Conserved hypothetical protein

LA1039 0.58 0.03 21.7 - CYT hypothetical protein

LA0547 0.59 0.03 21.7 - CYT Hypothetical protein

LA2250 0.64 0.01 21.6 Q - CYT Nuclease S1

LA4224 0.40 0.02 22.5 C NON-CYT FAD-dependent oxidoreductase

LA3470 0.60 0.02 21.7 C NON-CYT Thiol oxidoreductase

LA2197 0.66 0.01 21.5 C CYT fadH 2,4-dienoyl-CoA reductase [NADPH]

LA2980 0.36 0.02 22.7 D NON-CYT Conserved hypothetical lipoprotein

LA2570 0.36 0.10 22.8 E CYT Thiamine pyrophosphate-requiring
enzyme

LA2145 0.52 0.02 21.9 Q E CYT serB Phosphoserine phosphatase

LA2360 0.43 0.05 22.3 F CYT nrdA Ribonucleoside-triphosphate
reductase, alpha subunit

LA2087 0.54 0.03 21.8 F CYT guaA-2 GMP synthase (glutamine-
hydrolyzing)

LA0786 0.58 0.04 21.7 Q G CYT Glycosyltransferase

LA3366 0.23 0.06 24.4 I CYT caiD-1 Enoyl-CoA hydratase/carnithine
racemase

LA1173 0.57 0.05 21.8 I CYT Acetyl-CoA synthetase

LA0762 0.62 0.03 21.6 J CYT rpsM 30S Ribosomal protein S13

LA0258 0.39 0.07 22.5 L CYT dnaE DNA-directed DNA polymerase, alpha
subunit

LA2691 0.58 0.03 21.7 Q L CYT N6-adenine-specific DNA methylase

LA4326 0.48 0.07 22.1 M CYT lpxD-1 UDP-3-O-[3-hydroxymyristoyl]
glucosamine N-acyltransferase
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DnaK is a positive regulator for the expression of all the flagellar

regulon genes in S. enterica. In L. interrogans serovar Lai, the flagellar

proteins were down-regulated (the endoflagellar filament core

proteins FlaB and filament sheath proteins FlaA). Since some

flagellar proteins were down-regulated, but DnaK was up-

regulated, the regulatory pathway(s) for leptospiral flagellar

synthesis are thus clearly different from those described for S.

enterica. No other proteins involved in the structure of or synthesis

of flagella were differentially expressed. Considerable cellular

resources would be needed to synthesize flagella and for motility.

Flagellin expression and motility have been found to be switched

off in other motile pathogens such as Yersinia enterocolitica, Listeria

monocytogenes and Bordetella bronchiseptica upon upshift to 37uC or

host entry [64–66]. However, while the endoflagellar sheath and

filament core proteins were significantly down-regulated in L.

interrogans serovar Lai upon temperature upshift, we did not

observe significant loss of motility. In contrast, Eshghi et al [55]

found that proteins involved in motility were up-regulated when

leptospires were shifted to low-iron medium supplemented with

serum at 37uC. It is likely that L. interrogans needs to modulate its

motility depending on its environment, during the course of

infection and at different host sites.

An enoyl-CoA hydratase (LA3366), involved in fatty acid

metabolism, was down-regulated. Lipid metabolism and ultimately

lipid composition of the membrane may therefore be altered upon

temperature upshift. LpxD-1 (LA4326) was down-regulated 2-fold

and interestingly, it has previously been reported that the LPS O

antigen (Oag) content of L. interrogans recovered from guinea pigs

was markedly reduced compared with leptospires cultured in vitro

[67]. L. interrogans possesses a complete set of Lpx proteins which

catalyze the biosynthesis of the lipid A anchor of LPS [68,69].

There was no change in expression of LpxC (LA2306) or LpxD-2

(LA0512), while LpxA (LA3949), LpxB (LA1096) and LpxK

(LA3695) were not detected in our samples. However, the genes

encoding these proteins are not clustered and therefore not linked

transcriptionally. Temperature-regulation of LpxD-1 may there-

fore be a mechanism for the regulation of LPS synthesis; down-

regulation of lipid A synthesis would be a rate-limiting step in Oag

synthesis, thus resulting in reduced Oag content during in vivo

growth.

Stress-related proteins, including Dps (LA3598) (a DNA-binding

ferritin-like protein) [70], catalase, glutathione transferase and

peroxiredoxin, were up-regulated indicating oxidative stress.

Transcriptional regulation and signal transduction
Although we did not set out to investigate cytoplasmic

regulatory proteins, we found several proteins involved in

transcriptional regulation and signal transduction to be differen-

tially regulated upon upshift to 37uC. Pathogens need to be able to

detect and respond to different environmental cues. In particular,

Table 3. Cont.

Locus tag
Mean
fold ratio SD

Mean fold
changea

Transcriptional
change effectb COGc

Predicted
locationc Gene Description of gene product

LA1044 0.55 0.02 21.8 M CYT Conserved hypothetical protein

LA2017 0.39 0.02 22.6 N PER flaB1 Endoflagellar filament core protein

LA2418 0.39 0.07 22.6 N PER flaB-1 Endoflagellar filament core protein

LA2019 0.57 0.03 21.8 N PER flaB-2 Endoflagellar filament core protein

LA1619 0.28 0.00 23.6 O CYT Carbamoyl transferase

LA2194 0.29 0.01 23.4 O CYT slpA Peptidylprolyl isomerase

LA2535 0.44 0.03 22.3 O CYT ppiB-1 Peptidylprolyl isomerase

LA3492 0.50 0.05 22.0 O NON-CYT Protease

LA3469 0.37 0.01 22.7 P OM lruB Iron-regulated lipoprotein

LA4016 0.49 0.08 22.0 Q CYT Conserved hypothetical protein

LA3758 0.14 0.02 27.4 Q R CYT RNA-binding protein

LA2505 0.46 0.05 22.2 R CYT Hydrolase or acyltransferase

LA4300 0.49 0.08 22.0 R CYT ThiJ/PfpI family intracellular protease

LA1671 0.50 0.09 22.0 R CYT Ankyrin repeat protein

LA3028 0.22 0.01 24.6 S UNK Leucine-rich repeat containing protein

LA0985 0.54 0.05 21.9 q S CYT Conserved hypothetical protein

LA1983 0.27 0.13 23.7 Q T CYT Signal transduction protein

LA0599 0.35 0.01 22.8 T CYT Signal transduction protein

LA0049 0.36 0.04 22.7 Q T IM Methyl-accepting chemotaxis protein

LA0565 0.39 0.04 22.6 Q T CYT adenylate cyclase

LA2930 0.43 0.03 22.3 T CYT GGDEF domain protein

LB136 0.57 0.03 21.7 Q T CYT Anti-sigma factor antagonist

LA2267 0.50 0.02 22.0 U NON-CYT conserved hypothetical protein with
tetratricopeptide repeat domains

aThe mean fold change was calculated as the negative inverse of the mean fold ratio.
bTranscriptional change at 37uC upshift compared with 30uC [7].
cCOGs and predicted locations as per Table 2.
doi:10.1371/journal.pntd.0000560.t003
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L. interrogans is able to survive under different environmental

conditions and encounters many different host environments and

defence mechanisms while establishing and maintaining infection.

L. interrogans has at least 79 two-component regulatory systems, 11

extracytoplasmic function (ECF) sigma factors, 9 anti-sigma

factors, 19 anti-sigma factor antagonists, and at least 79 genes

involved in motility and chemotaxis [68,71], thus demonstrating

the capability of L. interrogans to respond and adapt to a wide range

of environmental signals.

Several proteins predicted to be involved in transcriptional

regulation, including a protein-tyrosine-phosphatase (LB035), a

transcriptional regulator of the AcrR-family (LA2790) and other

signal transduction proteins (LA3104 and LA1526) were up-

regulated, while other predicted signal transduction proteins

(LA0599 and LA1983), a GGDEF domain protein (LA2930),

and an anti-sigma factor antagonist (LB136) were down-regulated.

Protein-tyrosine-phosphatases are involved in regulating the

phosphorylation state of many important signalling molecules,

while transcriptional regulators of the AcrR family are transcrip-

tional repressors which respond to stress conditions in E. coli [72].

Since several putative transcriptional regulators were identified as

being temperature-regulated, these may be involved in the

modulation of various signalling pathways leading to expression

of virulence or virulence-associated proteins.

Comparison of proteomic and microarray results
Expression of the 1026 proteins identified was compared to the

mRNA expression levels from our previous study [7] (Figure 3). Of

the 1026 proteins identified, 93 (9%) were differentially expressed

(Tables 2 and 3). Only 25% of the differentially expressed proteins

were also differentially expressed (at least 1.5-fold difference) at the

mRNA level (R2 = 0.12). Conflicting evidence of correlation

between mRNA and protein abundance levels has been reported

in other studies and in concordance with previous studies of this

nature, we also found little correlation between mRNA and

protein differential expression [15,73–75]. The heat shock

response in the cyanobacterium Synechocystis has been investigated

by transcriptomic and proteomic approaches and it was found that

while there was correlation between the different data sets for

major chaperonins and proteases during heat shock, there were

areas with no correlation [74]. There remains the very slight

possibility that the lack of correlation may partially be the result of

having performed protein and transcriptional analyses on different

cultures and at different times. However, we believe that is not the

reason for our observations, because even in studies where the

same cultures have been used for mRNA and protein expression

analyses, correlation is still relatively low [73,74,76].

The majority of genes/proteins showed no difference in

expression at either the transcriptional or translational levels upon

overnight temperature upshift (Figure 3). Of the proteins which

were significantly differentially expressed (at least 1.5-fold up- or

down-regulated with 95% confidence), there were 10 genes/

proteins which were up-regulated at both transcriptional and

translational levels, 13 which were down-regulated at both

transcriptional and translational levels, and 2 where the expression

behaviour at mRNA and protein levels were reversed (Figure 3

and Table 4). The small heat shock protein LA1563 was the most

highly up-regulated protein upon temperature upshift and was also

up-regulated 2-fold at the mRNA level.

Genes/proteins that were up-regulated at both the mRNA and

protein levels reflect the stress that the organism is likely

undergoing upon temperature upshift with an overrepresentation

of genes encoding heat-stress (grpE, clp and chaperone genes) and

oxidative stress (glutathione transferase and catalase) proteins

(Table 4). Other heat shock proteins, DnaK and GroEL were also

up-regulated upon temperature upshift but there was no difference

in expression at the mRNA level. While transcriptional changes

may be rapid and transient, the finding that some proteins are up-

regulated with no concurrent change in transcript level suggests

longer half-life or greater stability of these transcripts. Interesting-

ly, two genes predicted to encode hypothetical proteins (LA1402

and LA2020) were found to be down-regulated upon temperature

upshift at the transcriptional and translational levels, but were

found to be two of the most strongly up-regulated transcripts at

Figure 3. Comparison of protein expression with mRNA expression. Lines indicate 1.5-fold up- or down-regulation at either the mRNA or
protein level.
doi:10.1371/journal.pntd.0000560.g003
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physiological osmolarity compared with low osmolarity conditions

[77]. It was speculated that these genes are most highly expressed

during exit from the host in urine into a lower temperature

environment [77].

Our temperature microarray studies showed up-regulation of

the gene encoding the Lk73.5 sphingomyelinase (LA1029).

However, this protein was not detected in our samples in the

current study. It is therefore likely that the expression of this and

other proteins is regulated at post-transcriptional level. We

identified a putative protease, LA3492, which was down-regulated

2-fold upon temperature upshift (Table 3). LA3492 showed

similarity to proteases of the prohibitin homology domain family

which in mitochondria have been proposed to have a membrane

chaperone function [78]. The QmcA protein of E. coli, also a

prohibitin homology domain family protein, has been proposed to

play a role as a membrane chaperone and possibly regulates FtsH,

a membrane-bound protease likely to be involved in quality

control of membrane proteins [79]. LA3492 may play a similar

role in regulation of membrane protein synthesis and folding, and

it is feasible that the down-regulation of this putative protease may

have been responsible for proteins which showed no change in

transcription levels but an increase in protein expression. The lack

of correlation between transcript and protein levels of known

temperature-regulated proteins LipL36, LruB and LipL45 as well

as others, may be due to activities of small non-coding RNAs

(sRNAs). Bacteria encode many sRNAs and while most are

currently of unknown function, several have been found to

modulate post-transcriptional expression of OMPs [11,12]. There

is currently no information on regulatory sRNAs in Leptospira spp.

Transcript and protein abundance is likely to be affected by

many cellular and physical processes, leading to conflicts in

correlation. A study on Desulfovibrio vulgaris showed that mRNA

abundance alone can explain only 20–28% of the total variation in

protein abundance [76]. Other factors include presence of

proteases, stability of mRNA, protein translation rates and

stability/turnover of proteins. Further studies are needed on

transcriptional and translational responses to different environ-

mental signals before we can fully understand the dynamics and

interplay of cellular responses.

Concluding remarks
More OMPs, liproproteins and non-cytoplasmic proteins were

down-regulated than up-regulated, suggesting that L. interrogans

may need to reduce the number of surface proteins at host

Table 4. Comparison of proteins and transcripts which were differentially expressed.

Locus tag COGa Predicted locationa Description of gene product

Protein up, mRNA up

LA1563 O CYT Small heat shock protein (molecular chaperone)

LA1859 P CYT Catalase

LA1879 O CYT Endopeptidase Clp, ATP-dependent proteolytic subunit

LA1957 - NON-CYT Hypothetical protein

LA2936 - NON-CYT LipL45-related lipoprotein

LA3104 T CYT Signal transduction protein

LA3214 S CYT Conserved hypothetical protein

LA3356 O CYT glutathione transferase

LA3598 P CYT DNA-binding ferritin-like protein

LA3704 O CYT Chaperone protein, GrpE

Protein down, mRNA down

LA0049 T IM Methyl-accepting chemotaxis protein

LA0565 T CYT adenylate cyclase

LA0786 G CYT Glycosyltransferase

LA1402 - NON-CYT Conserved hypothetical protein

LA1983 T CYT Signal transduction protein

LA2020 - NON-CYT hypothetical protein

LA2145 E CYT Phosphoserine phosphatase

LA2250 - CYT Nuclease S1

LA2691 L CYT N6-adenine-specific DNA methylase

LA3758 R CYT RNA-binding protein

LA4198 - CYT hypothetical protein

LB136 T CYT Anti-sigma factor antagonist

LB248 - NON-CYT Conserved hypothetical protein

Protein down, mRNA up

LA0985 S CYT Conserved hypothetical protein

LA0986 - CYT Conserved hypothetical protein

aCOG categories and predicted locations as in Table 2.
doi:10.1371/journal.pntd.0000560.t004
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temperature, perhaps as a host immunity evasion mechanism. The

low level of correlation between transcription and translation is

intriguing and our data provide a potential basis for further

understanding of leptospiral regulatory mechanisms in response to

environmental stimuli. Proteomic approaches identify the end

stage of gene expression which cannot be determined by mRNA

profiling procedures alone. Accordingly, comparative studies on

changes in protein expression and changes in transcription on a

global basis provide a multidimensional view of the regulation of

protein expression in bacteria. Our study provides insight into the

changes in protein expression of Leptospira during temperature

upshift, thus demonstrating the feasibility of this approach, and

provides a basis for further comprehensive studies of gene and

protein expression changes in response to other conditions such as

increase in osmolarity, presence of serum or different iron sources.

In this study, the identification of temperature-regulated proteins

correlated with studies on previously characterized proteins.

However, as with other studies comparing mRNA and protein,

we also found low correlation between transcription and

translation, indicating that there are many regulatory processes

which remain undefined. It is therefore clear that both data sets

need to be determined to draw conclusions about changes in

protein expression. In the case of Leptospira, data are now available

on transcriptional changes under different temperature and

osmolarity conditions. As data accumulate on transcript and

protein expression changes, further comparison and analysis of

datasets will yield more knowledge on specific regulatory pathways

and cellular events resulting in expression of virulence factors and/

or virulence related proteins.

Supporting Information

Table S1 Supplementary table of all proteins identified.

Found at: doi:10.1371/journal.pntd.0000560.s001 (1.99 MB

DOC)
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