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Abstract: Parkinson’s disease is caused due to the progressive loss of dopaminergic neurons in the
substantia nigra pars compacta (SNc). Presently, with the exponential growth of the aging population
across the world the number of people being affected by the disease is also increasing and it imposes
a huge economic burden on the governments. However, to date, no therapy or treatment has been
found that can completely eradicate the disease. Therefore, early detection of Parkinson’s disease is
very important so that the progressive loss of dopaminergic neurons can be controlled to provide the
patients with a better life. In this study, 3T T1-MRI scans were collected from 906 subjects, out of
which, 203 are control subjects, 66 are prodromal subjects and 637 are Parkinson’s disease patients.
To analyze the MRI scans for the detection of neurodegeneration and Parkinson’s disease, eight
subcortical structures were segmented from the acquired MRI scans using atlas based segmentation.
Further, on the extracted eight subcortical structures, feature extraction was performed to extract
textural, morphological and statistical features, respectively. After the feature extraction process,
an exhaustive set of 107 features were generated for each MRI scan. Therefore, a two-level feature
extraction process was implemented for finding the best possible feature set for the detection of
Parkinson’s disease. The two-level feature extraction procedure leveraged correlation analysis and
recursive feature elimination, which at the end provided us with 20 best performing features out of
the extracted 107 features. Further, all the features were trained using machine learning algorithms
and a comparative analysis was performed between four different machine learning algorithms based
on the selected performance metrics. And at the end, it was observed that artificial neural network
(multi-layer perceptron) performed the best by providing an overall accuracy of 95.3%, overall recall
of 95.41%, overall precision of 97.28% and f1-score of 94%, respectively.
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1. Introduction

Parkinson’s disease (PD) is the second most common neurological disorder among elderly people
with ages above 65 years. This disease affects the brain cells, which in turn creates cognitive disorders
as well as movement disorders in healthy human beings. As the disease is progressive in nature, early
detection and monitoring can save a huge amount of healthcare costs. As the population of old age
people is increasing and also in the future, it will increase exponentially, therefore it is necessary to find
suitable methods for the detection of neurodegenerative diseases at a very early stage [1–3]. One of
the widely used diagnostic tools, known as Magnetic Resonance Imaging (MRI), has been known for
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providing anatomical details of brain tissues that could be used for early detection of PD. Although
MRI provides a lot of important details, it is really difficult for the human eye to detect the intrinsic
details and the heterogeneous properties of certain tissues of the region of interests (ROI’s) [4]. With
the advancement of technology, computer-aided diagnostic tools have been considered very effective
for the detection and diagnosis of diseases as it provides morphological details about different tissues
of the ROIs.

The researchers in the past found that texture analysis of tissue and cellular images can be used
for the detection and diagnosis of multiple diseases. Its application is huge starting from segmentation
of the identified anatomical structures at the ROIs to the classification of tissues. The quantification of
grey-level patterns and pixel inter-relationship within an image, which can measure the heterogeneities
in the tissues can also be performed using texture analysis using a variety of techniques. It has
been found that the textual patterns are different for different image areas, which are sometimes
unnoticeable to the human eyes [5]. In the past researchers have used texture analysis for segmentation
and classifications of lesions and tissues which are widely used for diagnosis of critical diseases.
In recent years the texture analysis has been widely used in neurological applications [6]. Some of
the applications of texture analysis in neurological disorders include differentiation between different
types of tumors, classification of diseases like Alzheimer’s, Friedreich’s ataxia, etc. [7–10].

Traditionally 2D textural analysis is most commonly used for any application, but in the recent years
3D textural analysis also received a lot of attention because 3D analysis provides more discriminative
information compared to 2D analysis. In 2D texture analysis, the individual pixel of interest (POI)
has eight neighbor pixels that can be analyzed in four directions that are independent of each other.
Whereas in 3D texture analysis, the individual voxel of interest has 26 neighbor voxels that can be
analyzed in the 13 directions that are independent of each other [11]. In recent years machine learning
and deep learning techniques have been widely used for medical applications especially to improve the
clinical practice [12]. Machine learning and deep learning techniques are widely used for improving
the efficiency in the radiological practices and assisting the doctors to take decisions in a faster way [13].
Therefore, the proposed study puts forward a 3D Texture, morphological and statistical analysis of the
Voxel of Interests for the detection of Parkinson’s disease using machine learning algorithms.

The structure of the paper is organized as follows: Section 2 describes the related work of the
study and the past works that have an alignment with the present study. Section 3 puts forward the
specification of the data that was collected from the Parkinson’s Progression Markers Initiative (PPMI)
database and the atlases that were used for the preprocessing of the acquired MRI scans followed
by atlas-based segmentation of eight subcortical structures of the basal ganglia which are prone to
neuron degeneration. Section 4 describes the methodology of the complete work and also extensively
discusses the feature extraction, feature engineering, and feature selection process. Moreover, Section 4
also puts forward the hypothesis for the development of machine learning algorithms and also gives a
complete overview of the learning process and comparative analysis. Section 5, plots the results of the
complete study and Section 6 discusses the overall implication and usefulness of the study. Finally,
the paper is concluded in Section 7.

2. Related Work

In the past, texture analysis has been applied to medical imaging and has already shown its
potential as a biomarker for discriminating diseases based on healthy tissue and damaged tissues in
the ROI. Feng et al. proposed a method that used texture analysis and shapes analysis to model the
hippocampus region based on the structural MRI to distinguish mild cognitive impairment (MCI) from
Alzheimer’s disease. They have found that their model is performing well by comparing with the state
of art models [14]. Martinez-Murcia et al. proposed a method that used texture analysis to find out
the structural changes occurred in the different regions of the brain when a person is suffered from
Alzheimer’s disease (AD).
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In this research, they have focused only on cortical and subcortical parts of the brain and they
found that this method could able to provide accuracy up to 81.3% to detect the changes in AD [15].
Sikio et al. proposed a method using texture analysis to detect the structural changes in the brain in
PD patients. They have monitored the patient for two years and compared the structural changes
with the MRI baseline i.e., taken at the beginning of diagnosis to the MRI after 2 years. They have
observed that texture analysis can discriminate against the changes that occurred in the brain and it
was significantly related to clinical scores with respect to the severity of the diseases [16]. Betrouni et al.
proposed a method that used textural analysis for discrimination PD patients from healthy controls.
They have considered six regions of the brain and extracted first-order and second-order features as
a part of the textural analysis and their correlation related to cognitive function. They found that
these textual features could able to distinguish PD and also help in the diagnosis of PD [17]. Li et al.
performed an extensive study regarding the 3D texture analysis of substantia nigra of Parkinson’s
disease patients on quantitative susceptibility maps (QSM) and R2* maps. The primary objective of the
study was to discriminate PD patients from health control (HC). Therefore, the authors obtained the
QSM and R2* maps from the 3T MRI scans from 28 PD and 28 HC using 3D multi-echo gradient-echo
sequence. Further, first and second order textural features were obtained from the QSM and R2* maps
for discriminating the PD and HC using two tailed t-test. And it was found that first and second order
QSM textual features accurately distinguished PD from HC [18].

Zhang et al. proposed a method that used 3D textural analysis for distinguishing AD patients and
healthy normal controls by extracting features from the entorhinal cortex and hippocampus regions.
They found that 3D features could able to find the difference in the texture of AD patients and normal
patients and this proposed method could be helpful for the diagnosis of AD [19]. Lee et al. proposed a
method that could predict the progression from the stage mild cognitive impairment (MCI) to AD
at the early stage based on the features extracted from the hippocampus, precuneus, and posterior
cingulate cortex regions. It was found that the extracted textures from the mentioned three regions
could able to predict MCI to AD at an early stage [20]. Li et al. proposed a method that can distinguish
AD, MCI, and normal control based on the 3D textural features obtained from the hippocampus region.
They found that the pathological changes that occurred in the hippocampus region of the patients
could be analyzed using 3D textural analysis and this method could help to diagnose the patients at
the early stage of AD [21].

Xiao et al. proposed a method that can classify AD from McEwan normal controls using a
multi-feature technique and fused it together by taking the 2D and 3D information of the brains. They
have used feature selection techniques to extract optimal feature combinations and that produces better
classification performances. They found that the proposed method could help to identify different
classes without apparent symptoms [22]. Maani et al. proposed a texture analysis method that used
the extracted features on a voxel by voxel basis for the classification of AD and control groups. It was
found that the artificial effects of AD and the control group have been detected with high accuracy
using this proposed method. The accuracy of the result provided enough support to extend it for other
diseases such as cerebral pathology in neurological diseases [23]. Ta et al. mentioned that 3D texture
analysis has the potential for the detection of cerebral degeneration which is not easily noticeable for
the naked eye. They have found that 3D texture analysis has shown potential and enough reliability
that it can be used for longitudinal studies [24].

The above-mentioned literature confirms the success of the analysis of MRI scans for the detection
of Neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Moreover, texture, morphological
and statistical analysis of ROI for Alzheimer’s disease have been pathbreaking. Therefore the findings
of the above-described studies motivated us to design the proposed study for the analysis of the
textural, morphological and statistical features of the eight subcortical structures prone to neuron
degeneration and responsible for Parkinson’s disease.
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3. Data Collection and Preprocessing

3.1. Data Collection

The data for the study was obtained from the Parkinson’s Progression Markers Initiative (PPMI)
database (www.ppmi-info.org/data). PPMI is a landmark, international and multicenter study to
determine Parkinson’s progressions biomarkers. All the MRI scans that were selected for the study
were performed at the baseline visit. All the scans that were considered for the study were acquired
from a similar type of scanner (SIEMENS, Munich, Germany) and also all the MRI scans were based on
Magnetization Prepared—Rapid Gradient Echo (MP-RAGE) sequence. The scans were acquired in a
time range of 20–30 min and the field of view (FOV) of all the images included vertex, cerebellum, and
pons. Moreover, all the scans were further chosen using some specific criteria as mentioned in Table 1.

Table 1. Parameters for choosing MRI Scans from the PPMI Study.

Imaging Protocol Values

Modality MRI
Research Group Control, Prodromal and PD

Visit Baseline
Acquisition Plane Sagittal
Acquisition Type 3D

Field Strength 3.0 Tesla
Flip Angle 9 Degree

Scanner Manufacturing Siemens (MPRAGE)
Pixel Spacing 0.9 mm–1.5 mm (X &Y)

Slice Thickness 1.0 mm
Weighting T1

After applying the filters based on the imaging protocol mentioned in Table 1, a total of 906 MRI
scans where chosen from the baseline visit of 906 patients. Out of the 906 patients, 306 were female and
600 were male. The age of all the enrolled subjects was 62.64 ± 9.944. Moreover, the scans were acquired
from primarily three groups, namely control, prodromal and Parkinson’s disease. The distribution of all
the scans distributed into the research groups as 203 control, 66 prodromal and 637 Parkinson’s disease.
For considering a subject to a particular research group certain eligibility criterion was considered
which are mentioned in Table 2.

Table 2. Eligibility Criteria for the Subject to be included in a Research Group.

Research Group Criteria

Parkinson’s Disease

• Patients must have at least two: resting tremor, bradykinesia,
rigidity, asymmetric resting tremor, asymmetric bradykinesia.

• Diagnosis of Parkinson’s Disease for 2 years.
• Hoehn and Yahr stage I or II
• Male or Female age 30 Years or Older.

Control Subjects
• Male or Female age 30 Years or Older.
• Not First degree relative to Parkinson’s patient

Prodromal

• Male or female age 60 years or older
• No active clinically significant neurological disorder.
• Clinical diagnosis of Parkinson’s disease as determined by

the investigator.

www.ppmi-info.org/data
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Figure 1 below plots out the sample MRI Image scans belonging to each research group which
was acquired from the PPMI database and Table 3 describes the specifications and the metadata of the
acquired MRI scans.
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Figure 1. Sample images extracted from the PPMI repository. (a) MRI scan of a subject belonging to the
control group. (b) MRI scan of a subject belonging to the prodromal group. (c) MRI scan of a subject
belonging to the Parkinson’s disease group.

Table 3. Specification of the acquired scans from PPMI.

Image Parameters Values

Dimensions 256 × 256 × 170–200 pixels
Interslice Gap 0.0 mm

Slice Thickness 1.0 mm
Spacing 1.0 × 1.0 × 1.0 mm

Plane Sagittal

3.2. Data Preprocessing

The dataset that was acquired from the PPMI database was collected from multiple study centers
across the globe and the scans from different centers had multiple temporal differences. Therefore to
maintain a constant spatial tendency between all the scans and also to bring the scans to the same space
such as Montreal Neurological Institute (MNI) or Individual Brain Atlases using Statistical Parametric
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Mapping (IBASPM) [25], an image registration procedure was performed. Image registration is a
process that mutates upon a fixed image to find the correct alignment parameters so that an unknown
or unseen image can be aligned similarly to the fixed image. In the simplest form, it can be stated
that it is a process of aligning two images where one acts as the target image and the other acts as a
source image, and the source image is transformed to match the target image. In the present context,
the acquired image from the PPMI database is considered as the source image and the target image is
an atlas such as MNI or IBASPM.

The registration of the acquired scans from the PPMI database was performed using the
MNIPD25-T1MPRAGE-1 mm atlas developed by Xiao et al. [26–28]. Table 4 below describes the
specification of the atlas that has been used for the registration. For the registration of the scans,
ANTsPy [29] was leveraged which is used for extracting information from complex imaging datasets
and is considered to be one of the most effective tools for performing preprocessing on MRI, fMRI, and
SPECT scans. The process of registration leveraged a symmetric normalization which performed an
affine and deformable transformation on the acquired MRI scans. Figure 2 below shows the scan of a
particular image before and after the registration respectively.

Table 4. Specification of the acquired scans from MNIPD25-T1MPRAGE-1 mm atlas.

Image Parameters Values

Dimensions 193 × 229 × 193 pixels
Interslice Gap 0.0 mm

Slice Thickness 1.0 mm
Spacing 1.0 × 1.0 × 1.0 mm

Plane Sagittal
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Figure 2. Sample scan pre and post-registration. (a) MRI scan before registration (b) MRI scan
after registration.

4. Materials and Methods

The primary proposition of the complete study plots the method of detecting and classifying MRI
scans of subjects as control (healthy subjects), Prodromal (stage where the patients do not fulfill the



Healthcare 2020, 8, 34 7 of 19

diagnostic criteria for Parkinson’s disease such as bradykinesia or display any motor symptoms but
demonstrate signs and symptoms of developing motor symptoms in future) and Parkinson’s disease
using textural features. Figure 3 plotted below shows the complete methodology of the performed
study and shows the process of leveraging textural features from MRI scans to classify the images as
either control, prodromal or Parkinson’s disease.Healthcare 2020, 8, x 7 of 19 
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Figure 3. Complete process flow of the study.

In the above figure, the complete process for the 3D texture analysis of eight subcortical ROI’s of
an MRI scan for the detection of Parkinson’s disease is been demonstrated. The complete process is
divided into seven different stages. The first two stages of the process, that is MRI acquisition from
the PPMI Database and data preprocessing, registration and transformation, have been described
thoroughly in Section 3. The next four stages of the process that are atlas-based segmentation, ROI-
based feature engineering, feature selection, machine learning classifier development and performance
evaluation of the classifier are described in the following sections.

4.1. Atlas Based ROI Segmentation

The study focused on deriving textural features, morphological features and statistical features
from the MRI scan for the detection of Parkinson’s disease. The detection of Parkinson’s disease
has been studied in previous works [30–33] where it is shown that anatomical changes occur in the
structures of basal ganglia and its adjacent structures due to neurodegeneration which is the primary
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cause of Parkinson’s disease. The basal ganglia constitute a set of structures that are found at the
innermost part of the cerebral hemisphere. The structures that constitute the basal ganglia are the
caudate-putamen, global pallidum, substantia nigra and the subthalamic nucleus. Therefore, for
fetching the ROIs from the MRI images that are responsible for Parkinson’s disease, atlas-based ROI
segmentation was performed on the MRI images acquired in the study. The atlas that was selected for
the ROI-based segmentation was MNIPD25-Subcortical-1 mm [26–28]. The atlas was developed by
manually segmenting eight subcortical structures, namely, caudate nucleus, putamen, globus pallidus
internus and externus (GPi & GPe), thalamus, STN, substantia nigra (SN), and red nucleus (RN).
Figure 4 below depicts the 3D structure of the eight subcortical structures of the basal ganglia and its
adjacent regions. Figure 5 presents the ROIs on the MNI space by plotting it on the MNI-ICBM-152
template [34–36] and on a sample MRI scan acquired from the PPMI database.
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The labels of the ROIs of the MNIPD25-Subcortical-1 mm atlas were used for segmenting the
acquired MRI scans. The labels with the definition of each label are further described in Table 5.
For the segmentation procedure, the voxel indices from the MNIPD25-Subcortical-1 mm atlas were
calculated by maintaining the spacing, orientation and slice thickness of the slices. Further, the same
indices from the registered and transformed acquired MRI were extracted by similarly maintaining
the spacing, orientation and slice thickness of the slice. By following this particular method all the 16
volumetric ROI’s from eight subcortical structures were extracted. Figure 6 below shows a scan which
only contains the voxel of interest after performing the segmentation.

Table 5. Labels of each subcortical structure of the MNUPD25-Subcortical-1 mm atlas.

Label Structure

1 Left red nucleus
3 Left substantia nigra
5 Left subthalamic nucleus
7 Left caudate
9 Left putamen

11 Left globus pallidus external
13 Left globus pallidus internal
15 Left thalamus
2 Right red nucleus
4 Right Substantia nigra
6 Right subthalamic nucleus
8 Right caudate

10 Right putamen
12 Right globus pallidus external
14 Right globus pallidus internal
16 Right thalamus
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4.2. ROI Based Feature Engineering

The feature engineering for the study was performed on the segmented 3D voxels from the MRI
scans acquired from the PPMI database. The features that were extracted from the segmented 3D
voxels were textural, morphological and statistical features [37]. In total 107 features were extracted
from the segmented voxels. For the calculation of features, initially, all the 107 features were calculated
for each of the 16 subcortical structures/labels mentioned in Table 5. Further, the feature values of a
particular feature from all the 16 subcortical structures were aggregated using statistical techniques
such a mean, mode and sum to create one feature value for all 16 subcortical structures for each image.
In this study, it can be observed that an exhaustive set of features has been computed as compared to
the previous studies because we also aim to identify the best features in terms of MRI scans for the
prediction of Parkinson’s disease. Table 6 below provides the details of the types of features that were
calculated for the feature engineering.
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Table 6. Types of Features calculated from the segmented 3D Voxels of Interest.

Feature Type Number of Features

First Order Statistical Features 17 Features
Shape-Based (2D) 10 Features
Shape-Based (3D) 10 Features

Gray Level Cooccurrence Matrix 24 Features
Gray Level Run Length Matrix 12 Features
Gray Level Size Zone Matrix 12 Features

Neighbouring Gray Tone Difference Matrix 12 Features
Gray Level Dependence Matrix 10 Features

Exhaustive set of Features (Total) 107 Features

4.3. Feature Selection and Machine Learning Classifier Development

In this study, an exhaustive list of features was calculated based on the texture, morphology,
and statistics of the 3D voxels of the segmented subcortical structures, but the wide list of features
contained a lot of correlation. Moreover, as mentioned previously that choosing the appropriate feature
set is also a proposition of the study. Therefore for choosing the right set of features for the machine
learning model, a two-level feature selection method was used by leveraging a filter method (Pearson’s
correlation coefficient) and a recursive feature elimination method.

After performing correlation analysis on the features, 42 features were rejected based on a Pearson’s
correlation coefficient of more than 90%. Further, the remaining 65 features were extracted from the
exhaustive feature set for performing the second level feature selection using the recursive feature
elimination [39] method. Recursive feature elimination is a greedy optimization algorithm which aims
to find the best performing feature subset. It repeatedly creates baseline models and keeps aside the
best or the worst performing feature at each iteration until all the features are exhausted. It then ranks
the features based on the order of their elimination. Therefore, for our study, a logistic regression
model was used for creating the baseline model and for initiating the recursive feature elimination
process. Moreover, the recursive feature elimination was also initiated with an argument of fetching 20
best features based on optimum performance of the baseline model in the detection of prodromal and
Parkinson’s disease cases, respectively. Moreover, a recursion was also for selecting 10, 30 and 40 best
features, respectively, but it was found that selecting 20 best features using recursive feature elimination
gave the best result. Table 7 above provides information about the feature that was derived by running
the recursive feature elimination and has been arranged in descending order of feature importance.

As the features have been generated and the optimum number of features have been selected
from the exhaustive feature set, therefore now the primary motive of the study is the development of
the machine learning models for the classification of the MRI scans into three classes namely, control,
prodromal, and Parkinson’s disease. The development of machine learning models are very essential
for the development of such an automated system for the classification of textural, morphological
and statistical features of brain MRI scans for the detection of Parkinson’s disease. Therefore, for the
development of the machine learning model, four different machine learning algorithms were used
for classification purposes. Also, the usage of four machine learning algorithms for the classification
purpose is only required for performing a comparative analysis between the performances of the
classifiers. Moreover, for the development of machine learning algorithms, the first this that needs to
be determined is the hypothesis of the problem that needs to be solved, so the primary hypothesis that
was devised for developing of the machine learning algorithms are as follows:
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Table 7. Best set of derived features after applying filter methods and recursive feature elimination.

Feature Name Description Equation

Skewness It measures the asymmetry of the distribution of
values about the Mean value.

Skew =
µ3
σ3

=
1

Np

∑Np
i=1(X(i)−X)

3

(√
1

Np

∑Np
i=1(X(i)−X)

2
)3

Entropy It measures the uncertainty or randomness in the
image values.

Entropy =

−
∑Ng

i=1 p(i)log2(p(i)+ ∈)

Total Energy It is the measure of the magnitude of voxel values
in an image.

Total Energy =

Vvoxel
∑Np

i=1(X(i) + c)2

Interquartile Range It measures the percentile of image data present
between 25th percent to 75th percent. IQR = P75 − P25

Mesh Volume [38] It measures the Volume of ROI.
Vi =

Oai ·(Obi× Oci )
6

V =
N f∑
i=1

Vi

Surface Area It measures the extrinsic surface are of the ROI
Ai =

1
2 |aibi × aici|

A =
N f∑
i=1

Ai

Major Axis Length
It measures the largest axis length of the ROI
enclosing ellipsoid using the largest principal

component.
Major axis = 4

√
λmajor

Minor Axis Length
It measures the second- largest axis length of the

ROI enclosing ellipsoid using the largest
principal component.

Minor axis = 4
√
λminor

Autocorrelation It measures the magnitude of the fineness and
coarseness of texture. Auto_corr =

∑Ng

i=1
∑Ng

j=1 p(i, j)i

Cluster Prominence It measures the skewness and asymmetry of the
Gray Level Co-occurrence Matrix.

CP =∑Ng

i=1
∑Ng

j=1

(
i + j− µx − µy

)4
p(i, j)

Difference Entropy It is a measure of the randomness/variability in
neighborhood intensity value differences.

DE =∑Ng−1
k=0 px−y(k)log2(px−y(k)+ ∈)

Inverse Difference Moment IDM measures the local homogeneity of an image. IDM =
∑Ng−1

k=0
px−y(k)
1+k2

Small Area High Gray Level
Emphasis (SAHGLE)

It measures the proportion in the image of the
joint distribution of smaller size zones with

higher gray level values
SAHGLE =

∑Ng
i=1

∑Ns
j=1

P(i, j)i2

j2

Nz

Gray Level Non-Uniformity [16]

It measures the similarity of gray level intensity
values in the images, where a lower GLN value
correlates with a greater similarity in intensity

values
GLN =

∑Ng
i=1

(∑Nr
j=1 P(i, j

∣∣∣∣θ))2

Nr(θ)

Gray Level Variance It measures the variance in gray level intensity
for the runs GLV =

∑Ng

i=1
∑Nr

j=1 p(i, j
∣∣∣θ)(i− µ)2

Run Entropy It measures the randomness in the distribution of
run length and gray levels.

RE =∑Ng

i=1
∑Nr

j=1 p(i, j
∣∣∣θ) log2

(
p(i, j

∣∣∣θ)+ ∈)
Long Run High Gray Level

Emphasis (LRHGLE)
It measures the joint distribution of long-run

lengths with higher gray-level values. LRHGLRE =

∑Ng
i=1

∑Nr
j=1 P(i, j|θ)i2 j2

Nr(θ)

Coarseness
It measures the average difference between the

center voxel and its neighborhood and is an
indication of the spatial rate of change

Coarseness = 1∑Ng
i=1 pisi

Small Dependence Emphasis
It measures the small dependencies, with a

greater value indicative of smaller dependence
and less homogeneous textures.

SDE =

∑Ng
i=1

∑Nd
j=1

P(i, j)
i2

Nz

Dependence Non-Uniformity

It measures the similarity of dependence
throughout the image, with a lower value

indicating more homogeneity among
dependencies in the image.

DN =

∑Nd
j=1

(∑Ng
i=1 P(i, j)

)2

Nz

(1) The recall of Parkinson’s disease class must be 100% and there should not be any mispredictions
of the samples belonging to Parkinson’s disease class to any of the other two classes.
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(2) For the prodromal class, there must not be any mispredictions of samples belonging to the
Prodromal class to the Control class.

(3) The recall of the control class must be more than 85%.

Therefore based upon the above-mentioned hypothesis, the machine learning models were
developed. For checking the performance of the machine learning models five different classification
performance metrics were leveraged namely, accuracy, recall, precision, f1 score, and confusion matrix.
Also, for checking the generalizability of the developed machine learning model 5 split cross-validation
was performed. The details about the performance of the cross-validation are described properly in the
Results section. Table 8 below provides the information regarding the machine learning algorithms used
and also the hyperparameters that was used for the development of the machine learning algorithms.

Table 8. Classifier Hyperparameters.

Classifier Specification

Artificial Neural Network (MLP)

Layers: 5, Neurons in each Layer: 20, 10, 128, 256, 64, 16, 3,
Loss: Categorical Cross-Entropy, Optimizer: AdaDelta,

Learning Rate: Start: 1.0—Auto Reduce on Plateau Fraction:
0.8 at 2 simultaneous non decline of validation loss

XgBoost n_estimators: 600, max_depth = 9, booster: gbtree

Random Forest n_estimators: 1000, criterion = ‘gini’, max_depth:7,
min_samples_split = 20, min_samples_leaf = 10

Support Vector Machine Kernel = ‘rbf’, degree = 3, gamma = 0.0001
C = 1.0, tol = 0.001, cache_size = 200

Moreover as mentioned in the data collection section, the distribution of the MRI scan samples was
203 control, 66 prodromal and 637 Parkinson’s disease, which is considered to be highly imbalanced in
nature. The presence of imbalanced data highly affects the performance of the learning models [40–44].
Therefore, presently there are multiple techniques that have been developed to tackle such problems
such as the undersampling of the data, the oversampling of the data, synthetic minority oversampling
technique (SMOTE) [45], but in the present study, such methods of increasing or decreasing the
cardinality of the dataset were not used rather a class weight-based method was utilized [46]. The class
weights were basically calculated for each class based upon the number of samples it possesses in the
dataset with respect to the total number of samples in the dataset. This method was utilized to create a
weighting mechanism for the calculation of the loss function and the class with minority samples are
weighted more during the training process. For determining the class weights a specific technique was
used which is given as follows:

weight_o f _particular_class =

∣∣∣∣∣∣log
(

tuning_parameter ∗ number_o f _total_samples
number_o f _samples_o f _particular_class

)∣∣∣∣∣∣
where the tuning_parameter is a constant value that needs to be iteratively tuned and for the study, it
was chosen as 0.5. Table 9 below shows the class weights that were chosen for each class.

Table 9. Class Weights.

Classifier Specification

Control 0.3486
Prodromal 0.8365

Parkinson’s Disease 0.14
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5. Results

The developed machine learning algorithms uncovered pretty astounding and effective results for
the detection of Parkinson’s disease from 3D MRI scans. Table 10 below shows the comparative analysis
between the four different classifiers that were used for learning the textural, morphological and
statistical features of the ROI’s of MRI scans and plots the results of the five split cross-validation which
were used for determining the generalizability of the model. The scores mentioned in Table 10 are
based on the validation set of each cross-validation split. From the comparative analysis, it was found
that the artificial neural network in the second spit outperformed all the other classifiers by giving an
overall accuracy, precision, recall and F1 score of 95.3%, 0.9728, 0.9541, and 0.94 respectively. Moreover,
having artificial neural networks in the production environment and real-time implementation is also
beneficial as it provides support for incremental learning.

Table 10. Comparative analysis of the performance of machine learning classifiers and cross-validation
results of the classifiers.

Metrics Test Set Artificial Neural
Network XgBoost Random Forest

Classifier
Support Vector

Machine

Accuracy

Split 1

94.74% 88.23% 85.26% 79.15%
Precision 0.952 0.9025 0.8715 0.8025

Recall 0.9125 0.8947 0.8352 0.7744
F1-Score 0.9655 0.9133 0.8549 0.80

Accuracy

Split 2

95.3% 90.52% 87.32% 81.74%
Precision 0.9728 0.9154 0.9047 0.8241

Recall 0.9541 0.8922 0.8678 0.8071
F1-Score 0.94 0.9257 0.88 0.8178

Accuracy

Split 3

92.8% 87.1% 82.13% 78.83%
Precision 0.9133 0.9068 0.8536 0.8057

Recall 0.9052 0.8534 0.7954 0.772
F1-Score 0.9418 0.8724 0.8204 0.8196

Accuracy

Split 4

93.26% 89.43% 83.6% 80.91%
Precision 0.9145 0.9025 0.8572 0.8133

Recall 0.9254 0.8741 0.8246 0.7924
F1-Score 0.9388 0.8835 0.8391 0.8037

Accuracy

Split 5

89.44% 85.36% 80.44% 76.59%
Precision 0.8832 0.8679 0.8278 0.7964

Recall 0.8728 0.8321 0.7945 0.7512
F1-Score 0.890 0.8522 0.8127 0.7739

Figure 7 demonstrates the confusion matrix that was generated based upon the results received
from the best performing classifier that is artificial neural network (multi-layer perceptron). Also, from
the confusion matrix it can be evidently observed that the results completely align with the initial
hypothesis which states the recall of the samples belonging to the Parkinson’s disease class needs to
be 100%, in prodromal class, there should be no mispredictions in the control class and recall of the
healthy class should be more than 85%.
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For the study as we can see above that four different machine learning algorithms were developed
for the detection of Parkinson’s disease from 3D MRI scans, but as we can see there remains some
inconsistency among the performance of the different machine learning models as the artificial neural
network (multi-layer perceptron) model performs the best and the support vector machine performs
the worst. Therefore, apart from analyzing just the predictive performance of the machine learning
models, uncertainty and prediction confidence analysis also need to be performed for determining the
best model. Figures 8–10 depicted below shows the quantile-quantile plot (QQ plot) of the prediction
probabilities of each class for artificial neural network. In the below-plotted figures, the straight line
depicted shows the true probabilistic value (i.e. always 1.0) of a particular sample belonging to a
particular class, whereas the red markers show the prediction confidence a particular sample of a
particular class.
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6. Discussion

In this work, a process was developed for classification of the textural, morphological and statistical
features derived from 3D voxels of interests of MRI scans for the detection of Parkinson’s disease. In this
study, MRI scans were collected from the PPMI database from three different research groups namely,
control, prodromal and Parkinson’s disease. The first stage of the work was to identify the ROI’s that
are responsible for Parkinson’s disease and are affected during the process of neurodegeneration in
older adults. Therefore eight subcortical structures from the MRI scan were chosen for the specific
task. The eight subcortical structures are the caudate nucleus, putamen, globus pallidus internus
and externus (GPi and GPe), thalamus, STN, substantia nigra (SN), and red nucleus (RN). For the
segmentation of the eight subcortical structures from the MRI scans, an atlas-based segmentation
was used for extracting the voxels of interest from the MRI scans. The voxels of the acquired MRI
scans were registered into the MNI space using affine and symmetric registration to generalize all the
acquired MRI scans into a particular space. Further, the MRI scans are subjected to a segmentation
routine to fetch only the voxels from the MRI scans which are from the eight subcortical surfaces. Post
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extraction of the voxels of interest from the ROI regions, the primary motive is to extract the features
from voxels of interest.

For the feature engineering process a multitude of features belonging to textural, morphological
and statistical domains. The features that were engineered from the 3D arrays of the voxels of interest
were first order statistical features, shape-based (2D & 3D) features, gray level cooccurrence matrix
features, gray level run length matrix features, gray level size zone matrix features, neighbouring gray
tone difference matrix features and gray level dependence matrix features. In total 107 exhaustive
features were calculated from the extracted voxels. Now as there were such a huge number of
features in the exhaustive list and multiple features were highly correlated with each other. Therefore,
the implementation of a feature selection technique for selecting the best features came in as a
requirement. For the feature selection process, a two-level selection paradigm was used which
consisted of correlation analysis using the filter method (Pearson’s correlation coefficient) followed by
recursive feature elimination. In the process of correlation analysis of the features, 42 features were
rejected out of 107 exhaustive features and 65 features were selected. The exclusion principle of the
features based upon the correlation analysis was performed by considering a correlation coefficient
of >90%. After correlation analysis, a routine of recursive feature elimination was performed on the
remaining 65 features and the top 20 features were selected based upon the feature importance.

The final segment of the study was concerned about the development of learning algorithms for
identifying control, prodromal and Parkinson’s disease from the MRI scans. For the development of
the algorithms, a comparative analysis was performed by training four different machine learning
algorithms with extracted features. The four different algorithms that were used are artificial
neural network, XgBoost, random forest classifier, and support vector machine. Moreover, a 5-split
cross-validation was performed across all the classifiers to check the generalizability of the model.
From the results, it was observed that the artificial neural network performed the best and gave an
overall accuracy of 95.3%, overall recall of 95.41%, the overall precision of 97.28% and f1-score of 94%
respectively. Moreover, the artificial neural network model performed robustly by classifying all the
samples belonging to Parkinson’s disease correctly with a confidence of 91.9%. Therefore, in the end,
the best performing classifier was selected as the final machine learning model for the study.

7. Conclusions

In this proposed study, a 3D MRI analysis was performed by leveraging textural, morphological
and statistical features from the voxels of interest for the detection of Parkinson’s disease. The study
performed an atlas-based segmentation on 3D MRI images to extract eight subcortical structures
namely the caudate nucleus, putamen, Globus pallidus internus and externus (GPi and GPe), thalamus,
STN, substantia nigra (SN), and red nucleus (RN) and perform feature engineering on the extracted
voxels of interest. The engineered features were also subjected to a feature selection method using
correlation analysis and recursive feature elimination to fetch the best performing features. Post feature
extraction the study also performed a comparative analysis on learning algorithms by leveraging
four machine learning algorithms and determine the best performing model using the classification
performance metrics. After the development of the learning model it was found that the artificial
neural networks performed the best in terms of classifying Parkinson’s disease and also aligned with
the initial hypothesis that was developed before initiating the machine learning model development
The developed artificial neural network performed the best by plotting an overall accuracy of 95.3%,
overall recall of 95.41%, the overall precision of 97.28% and F1-score of 94% respectively.

To conclude, the outcome of the proposed study is very motivating. However, there is still a huge
scope of untouched study when it comes to the analysis of the voxels of interest or MRI scans for the
detection of Parkinson’s disease. Moreover, this study was purely based on the principles and the scope
of 1st generation artificial intelligence where the ground knowledge of the researcher or the developer
is used for feature engineering and then the development of the learning model, but with the advent
of 2nd generation artificial intelligence which consists of deep learning, reinforcement learning, etc.,
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now the algorithms have the capability to learn the fetch feature representations from the data to map
them with a particular outcome. Therefore, in upcoming studies, it is very much recommended that
more research should be performed on a particular topic to understand the capability of the artificial
intelligence in whole to detect Parkinson’s disease.
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