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The formation of self-organized patterns is key to the morpho-
genesis of multicellular organisms, although a comprehensive
theory of biological pattern formation is still lacking. Here, we
propose a minimal model combining tissue mechanics with mor-
phogen turnover and transport to explore routes to patterning.
Our active description couples morphogen reaction and diffusion,
which impact cell differentiation and tissue mechanics, to a two-
phase poroelastic rheology, where one tissue phase consists of
a poroelastic cell network and the other one of a permeating
extracellular fluid, which provides a feedback by actively trans-
porting morphogens. While this model encompasses previous
theories approximating tissues to inert monophasic media, such
as Turing’s reaction–diffusion model, it overcomes some of their
key limitations permitting pattern formation via any two-species
biochemical kinetics due to mechanically induced cross-diffusion
flows. Moreover, we describe a qualitatively different advection-
driven Keller–Segel instability which allows for the formation of
patterns with a single morphogen and whose fundamental mode
pattern robustly scales with tissue size. We discuss the potential
relevance of these findings for tissue morphogenesis.

morphogenesis | pattern formation | morphogen transport |
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How symmetry is broken in the early embryo to give rise to
a complex organism is a central question in developmental

biology. To address this question, Alan Turing proposed an ele-
gant mathematical model where two reactants can spontaneously
form periodic spatial patterns through an instability driven by
their difference in diffusivity (1). Molecular evidence of such a
reaction–diffusion scheme in vivo remained long elusive, until
pairs of activator–inhibitor morphogens were proposed to be
responsible for pattern formation in various embryonic tissues (2–
9). Interestingly, these studies also highlight some theoretical and
practical limitations of existing reaction–diffusion models, includ-
ing the fact that Turing patterns require the inhibitor to diffuse at
least one order of magnitude faster than the activator (DI /DA>
10) (3), although most morphogens are small proteins of similar
molecular weights, implying that DI /DA≈ 1. As a consequence,
the formation of Turing patterns in vivo should result from other
properties of the system such as selective morphogen immobiliza-
tion (10–12) or active transport (13) as demonstrated in synthetic
systems. Moreover, reaction–diffusion models of pattern forma-
tion entail a number of restrictions regarding the number and
interactions of morphogens and pattern scaling with respect to
the tissue size, which have been all limiting their quantitative
applicability in vivo. While the genetic and biochemical aspects
of developmental pattern formation have been the focus of most
investigations, the interplay between mechanics and biochemical
processes in morphogenesis started to unfold following some pio-
neering contributions (14). The crucial role played by multiphasic
tissue organization and active cell behaviors in biological pattern
formation is now an active field of research (15–18).

In this article, we derive a general mathematical formula-
tion of tissues as active biphasic media coupled with reaction–

diffusion processes, where morphogen turnover inside cells,
import/export at the cell membrane, and active mechanical trans-
port in the extracellular fluid are coupled together through tis-
sue mechanics. While encompassing classical reaction–diffusion
results (1–4), for instance allowing import–export mechanisms to
rescale diffusion coefficients and to form patterns with equally
diffusing morphogens (11), this theory provides multiple routes
to robust pattern formation. In particular, assuming a generic
coupling between intracellular morphogen concentration and
poroelastic tissue mechanics, we demonstrate the existence of
two fundamentally different non-Turing patterning instabilities,
respectively assisted and driven by advective extracellular fluid
flows, explaining pattern formation with only a single morphogen
with robust scaling properties and how patterning can be inde-
pendent of underlying morphogen reaction schemes. Finally, we
discuss the biological relevance of such a model and in particular
its detailed predictions that could be verified in vivo.

Results
Derivation of the Model. As sketched in Fig. 1A, we model mul-
ticellular tissues as continuum biphasic porous media of typical
length l , with a first phase consisting of a poroelastic network
made of adhesive cells of arbitrary shape and typical size lc
(with local volume fraction φ) and a second phase of aqueous
extracellular fluid permeating in between cells in gaps of a char-
acteristic size li . These two internal length scales disappear in
the coarse-graining averaging over a representative volume ele-
ment of typical length scale lr satisfying li,c� lr� l . Both phases
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Fig. 1. Model for pattern formation in active biphasic tissues. (A) Schematic of the model. (Left) Cells form a poroelastic network, permeated by extracellular
fluid, where three natural length scales can be defined: the interstitial space size (li), the characteristic cell size (lc), and the tissue size (l). (Right) Biochemical
interactions between morphogens, A and I, take place inside the cell and are described by their respective turnover rate functions f(A, I) and g(A, I). A
and I are exported across the cell membrane at rates λA,I and imported at rates γA,I, respectively. In the extracellular space, both A and I spread freely
by diffusion at the same rate D or can be advected by the fluid at velocity ve. (B) Evolution of the effective diffusion coefficient as a function of time
and space scales. At shorter distances and times, diffusive behavior of morphogens is described by a molecular diffusion coefficient, DFick. At intermediate
scales, the diffusive motion of morphogens starts to be hindered by cells and the global diffusion coefficient, D, depends of the tissue spatial organization
through φ∗. At larger scales, morphogen diffusion is controlled by dynamic interactions with cells (import/export, adsorption/desorption,) and an effective
coefficient DKA,I (9).

are separated by cell membranes, actively regulating the interfa-
cial exchange of water and other molecules due to genetically
controlled transport mechanisms (19, 20). At the boundary of
the domain, no-flux boundary conditions are imposed such that
the system is considered in isolation. We present below the main
steps of the model derivation, which are detailed in SI Appendix.
Intracellular morphogen dynamics. Morphogens enable cell–cell
communication across the tissue and determine cell fate deci-
sions. Importantly, most known morphogens cannot directly
react together and, as such, have to interact “through” cells (or
cell membranes) where they are produced and degraded (20).
Concentration fields of two morphogens, Ai,e(~r , t) and Ii,e(~r , t),
are thus defined separately in each phase of the system, with
indexes (i , e) denoting intra- and extracellular phases, respec-
tively. The conservation laws of the intracellular phase, which
cannot be transported, read

∂t(φAi) = f (Ai , Ii) + γAAe −λAAi

∂t(φIi) = g(Ai , Ii) + γI Ie −λI Ii ,
[1]

where ∂t denotes the partial derivative with respect to time
and γA,I (resp. λA,I ) the import (resp. export) rates of mor-
phogens (which can also describe immobilization rates at the
cell membrane). We also introduce f and g , the nonlinear mor-
phogen turnover rates describing their production and degrada-
tion by cells, with a single stable equilibrium solution f (A∗i , I ∗i ) =
g(A∗i , I ∗i ) = 0. Finally, we introduce the transmembrane trans-
port equilibrium constants by KA =λA/γA and KI =λI /γI .
Although the import/export coefficients KA,I could in princi-
ple depend on morphogen concentrations, this constitutes a
nonlinear effect that we ignore in our linear theory.
Extracellular fluid dynamics. Next, we write a mass conservation
equation for the incompressible fluid contained in the tissue
interstitial space between cells,

∂tφ−∇ · ((1−φ)ve) = φh (Ai ,Ii )−φ
τ

, [2]

where ve is the velocity of the extracellular fluid. The right-hand
side of this equation describes the fact that cells actively regulate
their relative volume fraction to a homeostatic value φh(Ai , Ii) at
a time scale τ (21). Note that Eq. 2 with ve 6= 0 implies a recircula-
tion of internal fluid, via gap junctions (22) (SI Appendix, section
1.A.3).

As detailed below, we assume that local cellular morphogen
concentrations have an influence on the volume fraction φ which
couples tissue mechanics to local morphogens concentration

in our theory. At linear order, this coupling generically reads
φh(Ai , Ii) =φ∗+χA(Ai −A∗i )/A∗i +χI (Ii − I ∗i )/I ∗i , where we
denote φ∗=φh(A∗i , I ∗i ) the equilibrium cell volume fraction, and
the χA,I terms account for the sensitivity of cell volume to intra-
cellular morphogen concentrations. Such a mechanochemical
effect on the tissue packing fraction, φ, can occur either via the
active control of individual cell volume (21) or through the active
balance between cell proliferation and loss (SI Appendix, section
1.A.4), with χA,I > 0 for morphogens acting as growth factors
and χA,I < 0 for morphogens working as growth inhibitors. This
is a reasonable assumption, as a number of morphogens involved
in cell fate decisions can act as growth factor/inhibitors (23, 24),
and in vitro experiments have shown that cells, upon exposure to
factors such as FGF or EGF, elicit a series of signaling-mediated
responses involving an increase in transmembrane ion flux, cell
volume changes (21), and subsequent cell growth/division (25).
Moreover, during digits pattern formation in the limb bud, which
has been proposed to rely on a Turing instability, morphogens
such as BMP participate in both the reaction–diffusion scheme
(8) and morphogenetic events such as cell condensation (26),
with skeletal formation being associated with large cell volume
fraction changes (27). The cell volume fraction is thus highly
modulated in space and time, concomitantly with morphogen
pattern formation (26), advocating for the need of a global
mechanochemical theory taking into account both effects.
Extracellular morphogen dynamics. Morphogens, once secreted
by cells, are transported by diffusion and advection in the
extracellular fluid,

∂t((1−φ)Ae) +∇· ((1−φ)Aeve −D∇Ae) = − γAAe +λAAi

∂t((1−φ)Ie) +∇· ((1−φ)Ieve −D∇Ie) = − γI Ie +λI Ii ,
[3]

where D is the global Fickian diffusion coefficient of both mor-
phogens, depending on tissue packing and tortuosity (9, 28,
29). As we are interested in a linear theory, we consider here
D =D(φ∗) as a constant. We neglect here, for the sake of sim-
plicity, phenomena such as extracellular morphogen degradation
or the influence of extracellular morphogen concentrations on
reaction terms, as they do not modify qualitatively the dynam-
ics (SI Appendix, section 1.C). Note that one could also take into
account, at the mesoscopic level, some effective nonlocal inter-
actions such as cell–cell communication via long-ranged cellular
protrusions (30). This may require one to consider spatial terms
in Eq. 1 to introduce an additional characteristic length scale
from nonlocal cell–cell transport.
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Mechanical behavior of the cellular phase. To complete our
description, we need to specify a relation linking cell volume
fraction to interstitial fluid velocity. For this, we use a poroe-
lastic framework, whose applicability to describe the mechanical
response of biological tissues has been thoroughly investigated
in various contexts (31, 32). Taking a homogeneous tissue as a
reference state, poroelastic properties imply that a local change
of the cell volume fraction creates elastic stresses in the cellular
phase which translate to gradients of extracellular fluid pressure
p. Such gradients of pressure in turn drive extracellular fluid
flows, which can advect morphogens, and we show (SI Appendix,
section 1.A.7) that this effects results in a simple Darcy’s law
between cell volume fraction and fluid flow (29):

(1−φ)ve =−κ
η
∇p =Dm∇φ. [4]

This relation introduces the hydrodynamic diffusion coefficient
of the extracellular fluid, Dm =Kκ/η, a key mechanical param-
eter of the model which feeds back on the reaction–diffusion
dynamics in Eq. 3, with κ the tissue permeability, K the elastic
drained bulk modulus, and η the fluid viscosity. The hydro-
dynamic length scale lm =

√
Dmτ is associated to such fluid

movement. Importantly, we explore here only the simplest tissue
rheology for the sake of simplicity and concision. Nevertheless,
we also investigate (SI Appendix, section 1.H) the role of growth
and plastic cell rearrangements and show that they can be readily
incorporated in our model, leading to different types of pat-
terning instabilities. However, we highlight here that the results
presented thereafter are all robust to small to intermediate levels
of tissue rearrangements.

Model of an Active Biphasic Tissue. Eqs. 1–4 define a full set of
equations describing the chemo-mechanical behavior of an active
biphasic multicellular tissue (SI Appendix, section 1.B). To pro-
vide clear insights on the biophysical behavior of the system, we
focus on a limit case where γA,I �λA,I � f , g such that KA,I �
1. This corresponds to an ubiquitous biological situation where
rates of membrane transport are orders of magnitude faster than
transcriptionally controlled morphogen turnover rates and where
endocytosis occurs at a much faster rate than exocytosis. In that
case, the relationsAe 'KAAi and Ie 'KI Ii always hold and even
if a significant fraction of morphogens is immobilized inside the
cells (9), the import/export terms cannot be neglected as γA,I are
very large, so that γA(Ae −KAAi) and γI (Ie −KI Ii) are inde-
terminate quantities (SI Appendix, section 1.C). Summing both
internal Eq. 1 and external Eq. 3 conservation laws, we obtain a
simplified description of the system (SI Appendix, section 1.C):

∂t(φAi) +∇· (AiKADm∇φ−KAD∇Ai) = f (Ai , Ii)
∂t(φIi) +∇· (IiKIDm∇φ−KID∇Ii) = g(Ai , Ii)

−l2m∆φ+φ=φh(Ai , Ii).
[5]

Nondimensionalizing times with τA associated with the degra-
dation of Ai in the morphogen turnover functions f and g and
lengths with lA =

√
KADτA, we find that Eq. 5 is controlled by

a few nondimensional parameters: KI /KA describes the mis-
match of morphogen membrane transport, Dm/D compares the
global hydrodynamic and Fickian diffusion of the morphogens,
τ/(KAτA) compares the response time of cell volume fraction to
the effective morphogen turnover rate, andχA andχI account for
the sensitivity of φ to morphogen levels. Using this restricted set
of parameters encapsulating the behavior of the model, we inves-
tigate several of its biologically relevant limits, demonstrating that
they provide independent routes toward tissue patterning.

Orders of Magnitude on Morphogen Transport. In the simplest limit
of the model, the cell fraction remains constant, φ=φ∗, which is
valid if the effect of the morphogens on φ is very small compared

with the restoring mechanical forces (i.e., χA,I = 0). The model
then reduces to Turing’s original system, with diffusion coeffi-
cients being renormalized by morphogen transmembrane trans-
port equilibrium constants, KA,ID , similar to results obtained in
refs. 9 and 11. This implies that even species with similar D can
exhibit effective diffusion coefficients widely differing from each
other on longer time scales and produce Turing patterns when
KI �KA (SI Appendix, section 1.F).

In Fig. 1B, we depict scaling arguments for the changes in
effective diffusion coefficient at various time/length scales, asso-
ciated with both tissue structure and import/export kinetics (11).
At small time scales, diffusion is characterized by a local Fickian
diffusion coefficient, theoretically expected to be of the order of
DFick≈ 10−11 m2·s−1, in line with fluorescence correlation spec-
troscopy (FCS) measurements (7, 9, 20). This occurs across a
typical cell-to-cell distance of li ≈ 10−7−10−9 m (33), so that
this regime is valid for time scales below l2i /DFick≈ 10−2−10−6

s, which is much faster than the typical import/export kinet-
ics of 1/γA,I ≈ 101−102 s (34). At intermediate timescales, the
diffusion coefficient needs to be corrected for volume exclu-
sion effects due to the porous nature of the tissue, an effect
which can be very large for cell volume fraction close to one
(35). An upper bound (Hashin–Shtrikman) for global diffu-
sion can be computed, irrespective of the microscopic details
of tissue geometry, as D(φ∗)≤DFick(1−φ∗)/(1 +φ∗/2) (28),
which would suggest, in the case of φ∗≈ 0.8−0.9, that it should
be around an order of magnitude smaller than local diffu-
sion, D(φ∗)≈ 10−12 m2·s−1. Finally, at the time scales larger
than 1/γA,I described by the present model, the diffusion is
decreased further by a factor KA,I , i.e., by the relative concentra-
tions of morphogens “trapped” cellularly (i.e., a 1:10 ratio) such
that D(φ∗)KA,I ≈ 10−12− 10−13 m2·s−1. This is consistent with
effective diffusion coefficients measured from tissue-wide fluo-
rescence recovery after photobleaching (FRAP) over minutes
to hours time scales (7, 9, 20, 35). Note here that the respec-
tive contributions of volume exclusion and import/export effects
on FRAP-measured diffusion coefficients are nontrivial and are
detailed in SI Appendix, section 1.H.

Overall, although our model in its simplest limit (φ=φ∗)
relaxes the classical Turing condition DI �DA, it still implies
quite stringent conditions on the ratio of intracellular and extra-
cellular morphogens (Ie/Ii�Ae/Ai). Exploring further the
effect of a variable cell volume fraction φ, we demonstrate that
coupling morphogen dynamics and tissue mechanics suppresses
this limitation via active transport of morphogens.

Turing–Keller–Segel Instabilities. To assess the regions in parame-
ter space where stable patterns can form in our mechanochem-
ical framework, we perform a linear stability analysis on Eq.
5. Here, we consider a classical Gierer–Meinhardt activator–
inhibitor scheme (2), f (A, I ) = ρA2/I −A/τA and g(A, I ) =
ρA2− I /τI , where ρ is the rate of activation and inhibition and
τA,I are the time scales of degradation of A and I (2) and the
particular case of a single morphogen capable of increasing φh

(χA> 0,χI = 0).
In the phase diagram in Fig. 2A, we show that two dis-

tinct instabilities can be captured by this simplified theory.
The first instability, identified here as “Turing patterns,” corre-
sponds to a classical Turing instability, where diffusive transport
of morphogens dominates over their advection by interstitial
fluid (Dm�D) and with instability threshold given by KI τI −
KAτA> 2

√
τAτIKAKI for lA/l� 1(dashed red line in Fig. 2A)

which, as expected, is always true regardless of the value of
τA,I if KI �KA. However, another generic pattern forming
instability driven by active transport phenomena is present in
the phase diagram, labeled “Keller–Segel patterns” in Fig. 2A
(36). The physical origin of the resulting pattern is here similar
to active fluid instabilities (15, 17, 37–40): If stochastic local
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Fig. 2. Linear stability analysis and numerical simulations of pattern formation in active biphasic tissues. (A) Phase diagram of Eq. 5 in the (KI/KA, Dm/D)
parameter space for τ/(KAτA) = 0.01 and τ/(KAτA) = 0.1 (Inset). The red and blue dashed lines correspond to analytical thresholds of instability (given in
the text) for Turing and Keller–Segel patterns, respectively. The black dashed line is the analytical phase boundary between both regimes in the limit KI�KA

given by χA = D/Dm + τ/(τAKA). This limit is shifted up when the ratio τ/τAKA is increased, while a pronounced notch appears in the “Keller–Segel patterns”
domain (Inset). Other parameters are set to χA = 0.25, χI = 0, τI/(KAτA) = 0.2, KAτAρ= 1, φ∗ = 0.85, and large tissue size (lA/l� 1). (B) One-dimensional
numerical simulations of Eq. 5 with random initial conditions for several choices of parameters identified by letters A, B, C, and D. lA/l = 0.1.

changes in morphogen concentration result in an increase in
cell volume fraction, fluid must be pumped inside cells. This
causes local elastic deformations in the tissue which generate
large-scale extracellular fluid flows from regions of low to high
morphogen concentration, resulting in a positive feedback loop
of morphogen enrichment (Fig. 3A) and steady-state patterns.
Interestingly, such an instability can occur even for a single mor-
phogen. In this limit, patterning occurs if

√
χA>

√
D/Dm +√

τ/(τAKA) when lA/l� 1 so that the volume fraction sensitiv-
ity χA is above a critical value (dashed blue line in Fig. 2A, which
captures well the phase boundary in the limit KA�KI , although
the instability occurs generically for any value of KA,I ). The num-
ber of patterns displayed by the profiles shown in Fig. 2B can be
predicted by linear analysis (SI Appendix, section 1.D) because
they are chosen close to the onset of instability.

Thus, coupling tissue mechanical behavior to morphogen
reaction–diffusion provides, via the generation of advective fluid
flows, a route to stable pattern formation with a single morphogen.
Moreover, this instability has two remarkable features. First, it
requires only the presence of a single morphogen (SI Appendix,
section 1.G) which could correspond to many practical situations
where an activator/inhibitor pair has not been clearly identified,
for instance the role of Wnt in the antero-posterior pattern of
planarians (41). Second, it possesses spatial scaling properties
regarding to its fundamental mode, compared with a Turing insta-
bility. Indeed, when morphogen turnover rate is small compared
with its effective hydrodynamic and Fickian diffusion (f → 0), the
fundamental mode, i.e., a single two-zones pattern, is the most
unstable in a robust manner, given that morphogen turnover f sta-
bilizes specifically this mode (SI Appendix, section 1.G.2), whereas
in the case of a Turing instability, this would require fine-tuning
and marginally stable reaction kinetics. We illustrate such a scal-
ing property in Fig. 3. This mechanism could potentially apply to
situations where a binary spatial pattern is independent of system
size such as dorso-ventral or left–right patterns in early vertebrate
embryos (7, 9) or planarian antero-posterior patterns (41, 42). If
so, it could provide a simpler alternative to previously proposed
mechanisms involving additional species or complex biochemical
signaling pathways (7, 42).

Importantly, simple estimates can be used to demonstrate the
biological plausibility of such mechanical effects during mor-
phogenetic patterning. A key parameter driving Keller–Segel

instabilities is the hydrodynamic diffusion coefficient Dm , which
can be estimated from values of the drained bulk modulus K ≈
104 Pa (31) and the tissue permeability upper bound (28) κ≈
l2i (1−φ∗)/(1 +φ∗/2) with li ≈ 10−7−10−9 m and φ∗≈ 0.85 as
above. Using η≈ 10−3 Pa·s (water viscosity), we obtain Dm ≈
10−12−10−8 m2·s−1, showing that the hydrodynamic diffusion
can be similar to or even much larger than Fickian diffusion. In
agreement with typical time scales involved in regulatory volume
increase or decrease of cells following an osmotic perturbation
(21), we estimate that τ ≈ 102 s, while the morphogen turnover

A

B C

Fig. 3. Scaling properties of the Keller–Segel instability with one mor-
phogen. (A) Schematic of the Keller–Segel instability in a 1D tissue.
Morphogen gradients generate cell volume fraction gradients (via local
fluid exchanges, blue arrows in Inset), which in return cause mechanically
induced self-amplifying extracellular flows that advect morphogens from
morphogen-poor to morphogen-rich regions (green arrow). (B) Normalized
pattern size as a function of system size in the single-morphogen case with
f = 0. (C) Morphogen concentration and cell packing fraction (Inset) profiles
remain quasi-stationary as system size increases. Parameters are χA = 0.25,
Dm/D = 10, and φ∗ = 0.85.
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A B

Fig. 4. Pattern formation for cross-diffusion Turing instabilities. (A) Phase
diagram of Eq. 5 in the (χA,χI) space obtained by numerical linear sta-
bility analysis. Parameters are τ/(KAτA) = 0.01, Dm/D = 10, KI/KA = 10,
τI/(KAτA) = 0.9, φ∗ = 0.85, and lA/l� 1. (B) One-dimensional numerical
simulation of Eq. 5 using a simple inhibitor–inhibitor reaction scheme (SI
Appendix, section 1.B).

time scale has been measured as τA≈ 104−105 s (9). With
KA≈ 0.1 as above, we obtain τ/(KAτA)≈ 0.01−0.1, which is
used in Fig. 2 and displays broad regions of instability, although
parameters like sensitivities χA,I would need to be better
assessed in vivo in future works.

Cross-Diffusion Turing Instabilities. Finally, we investigate the
behavior of our model (Eq. 5), when cell fraction sensitivity to
morphogen concentration is negative (χA,I < 0), eliminating the
possibility of uphill morphogen diffusion at the origin of the
Keller–Segel instability. We also consider that f and g do not
necessarily follow activator–inhibitor kinetics, but any possible
interaction scheme between two morphogens. For mathemati-
cal clarity on the physical nature of the instability studied here,
we make the simplifying assumptions that τ = 0 and χA,I � 1,
with D ∼DmχA,I in Eq. 5. This relates to a realistic biolog-
ical situation, where cell volume fraction relaxes rapidly after
perturbation and depends weakly on morphogen levels, yielding

φ∗∂tAi +∇· (AiKADm∇φh −KAD∇Ai) = f (Ai , Ii)
φ∗∂tIi +∇· (IiKIDm∇φh −KID∇Ii) = g(Ai , Ii).

[6]

In this limit, the conditions for linear stability of the homoge-
neous solution are exactly the ones of a classical Turing system
but with cross-diffusion terms (SI Appendix, section 1.E). Such
a scenario has been studied in the framework of monopha-
sic reaction–diffusion systems with ad hoc cross-diffusion terms
(43), which arise generically in various chemical and biological
systems (44). Our work thus provides a particular biophysical
interpretation of these terms in multicellular tissues, which we
show to originate from intrinsically mechanochemical feedbacks
between morphogen dynamics and tissue mechanics.

As shown in ref. 43, such cross-diffusion terms result in a
dramatic broadening of the phase space for patterns. In par-
ticular, any two-morphogen reaction scheme can now generate
spatial patterns and not just the classical activator–inhibitor
schemes. For instance, it becomes possible to obtain patterns
with activator–activator or inhibitor–inhibitor kinetics similar
to those observed in numerous gene regulatory networks or
signaling pathways involved in cell fate decisions (45). We illus-
trate this result by considering an inhibitor–inhibitor kinetic
scheme, which cannot yield patterns in the classical Turing
framework, and demonstrate analytically and numerically the
existence of a region of stable patterns (from Eq. 5), where a
cross-diffusion–driven Turing instability can develop (Fig. 4).

Discussion
In this paper, we have introduced a generalization of Tu-
ring’s work on pattern formation in biological tissues by cou-
pling equations describing the structure and mechanical prop-

erties of multicellular tissues with a classical reaction–diffusion
scheme. In particular, our work highlights two important fea-
tures of multicellular tissues, as of yet largely unexplored in this
context: their biphasic nature, i.e., the fact that morphogen pro-
duction/degradation is controlled by cells while transport takes
place extracellularly requiring active membrane exchanges [effec-
tively rescaling diffusion (9, 11)], and the possibility for active
large-scale flows to develop within the tissue interstitial space.
We demonstrate that coupling tissue cell volume fraction to local
morphogen levels [based on the dual role of morphogens in pat-
terning and cell growth/volume regulation (23, 24)] provides a bio-
physically realistic route toward two qualitatively different modes
of patterning instability. Extracellular fluid flows can have two
important consequences on patterning. First, as the Turing insta-
bility is rooted in the cross-effects between a stable chemical reac-
tion of two morphogens and their diffusion, the conditions of such
instability are deeply affected by active hydrodynamic transport
which can create cross terms in the effective diffusion matrix. This
causes a drastic widening of the phase space of Turing patterning,
rendering it robust and only weakly dependent on the morphogen
reaction scheme. Second, extracellular fluid flows can also cre-
ate an instability of a different nature (Keller–Segel), when these
flows have an antidiffusive structure, spontaneously creating mor-
phogen gradients. Here, chemical reactions between morphogens
are setting only the number of patterns, and if such reactions
are sufficiently slow, the spatial pattern of the morphogen always
coarsens to the fundamental mode of instability and has robust
scaling properties compared with conventional Turing models.
This could have interesting implications concerning recent exper-
imental evidence for robust scaling of the Nodal/Lefty pattern in
the early zebrafish embryo (46).

In this respect, our approach, which has the advantage of
parsimony, taking into account the manifest biphasic nature of
multicellular tissues, is complementary to others which have
been proposed to solve limitations of Turing’s model by introduc-
ing additional morphogen regulators (42, 47) and also displays
connections with recent developments in the mechanochemi-
cal descriptions of active fluids such as the cell cytoskeleton
(15, 16). Nevertheless, although our hypothesis of cell volume
fraction gradients driving large-scale flows is generic to bipha-
sic tissues, further quantitative experiments would be needed
to test the relationship between morphogen concentration and
cell volume fraction, as well as probe the role of transmembrane
import/export kinetics or similar phenomena such as transmem-
brane signaling (11), morphogen adsorption/desorption on the
cell surface (9), and long-distance cellular protrusions (30),
on effective morphogen diffusion rates. Systems such as dig-
its patterning, where the cell volume fraction spatial pattern
appears concomitant to morphogen patterns (26), or planarian
antero-posterior patterning, where activator/inhibitor pairs have
not been clearly identified (41), provide possible testing grounds
for our model. Interestingly, large-scale extracellular fluid flows
have been increasingly observed during embryo development,
not only in the classical case of cilia-driven flows (48), but also
due to mechanical forces arising from cellular contractions as
well as osmotic and poro-viscous effects (49, 50), calling for
a more systematic understanding of passive vs. active trans-
port mechanisms during embryonic pattern formation. Whether
biological examples of Turing patterning instabilities, such as
left–right or dorso-ventral patterning, digits pattern formation,
or skin appendage patterns, are causally associated with con-
comitant changes in cell volume and/or cell packing remains a
result to be experimentally investigated.

Methods
Linear stability analysis was performed numerically using Mathematica,
while numerical integrations of the model equations were performed using
a custom-made Matlab code.
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