MITOGENOME ANNOUNCEMENT

OPEN ACCESS Check for updates

Taylor & Francis

Taylor & Francis Group

The complete mitochondrial genome of Odorrana grahami (Anura: Ranidae)

Yang Wen^a (), Chunqing Li^b () and Heng Xiao^b ()

^aSchool of Life Sciences, Yunnan University, Kunming, P. R. China; ^bSchool of Ecology and Environmental Sciences, Yunnan University, Kunming, P. R. China

ABSTRACT

The mitochondrial genome of the Disckless-fingered Odorous Frog, *Odorrana grahami* (Anura: Ranidae), was sequenced using high-throughput sequencing technology. The genome length was 17864 bp, including 22 tRNA genes, 13 protein-coding genes, 2 rRNA genes and 1 control region (D-loop). The AT content of the mitochondrial genome was 55.9%. The composition of mitochondrial genome of *O. grahami* is similar to that of other species of the genus *Odorrana*. Phylogenetic analysis of the mitochondrial genomes of six congeners shows that *O. grahami* is sister to *O. margaretae*, but the analysis using 16S rRNA gene of additional congeners do not resolve their relationships.

ARTICLE HISTORY Received 21 March 2021 Accepted 10 May 2021

KEYWORDS Odorrana grahami; mitochondrial genome; fulllength sequence

Odorrana grahami (Boulenger. 1917) is part of an ancestral species group of the genus Odorrana (Anura: Ranidae; Chen et al. 2013), and it is diagnosed by most congeners by the lack of obvious adhesive pads at the end of the fingers (Boulenger. 1917). The species lives in small and mediumsized mountain streams at an altitude of 1720-3200 m, and it is mainly distributed in Sichuan, Yunnan, Guizhou, Shanxi, and Hunan Provinces of China (Fei et al. 2009, 2012; Chen et al. 2013). With the development of integrative taxonomic methods that utilize molecular genetic data, the taxonomy of Chinese amphibians has gone through major changes in the past decades (Wang et al. 2020), particularly of the genus Odorrana (Liu et al. 2021; Zhang et al. 2021), and the molecular genetic studies have revealed hidden evolutionary histories that were previously undetected (Qiao et al. 2018). However, the phylogenetic relationships among congeners remain unresolved in many cases (Liu et al. 2021), which is partly due to the lack of comparative genetic data and the limitation on the available genes. Here, we firstly reported the complete mitochondrial genome of O. grahami, which would better our understanding of the mitochondrial genome of the genus, help with the primers designs of mitochondrial genes of the genus Odorrana, and eventually facilitate the taxonomic and evolutionary researches of the group in the future.

We collected a sample of *O. grahami* (specimen SWFU 003918) from Daweishan National Nature Reserve, Pingbian Miao Autonomous County, Yunnan Province, China (N103°70', E22°91'). The liver tissue was stored with 95% ethanol at -20°C in the herbarium of Southwest Forestry University, Kunming, China (contact with Yang Wen, wengyang_wy@163.com). Genomic DNA of *O. grahami* was

extracted using the DNAsecure Plant Kit (TIANGEN, Beijing, China). We used an Illumina HiSeg 2500 to perform pairedend sequencing of the sample DNA. After obtaining the sequencing data, the sequencing quality was first observed by FastQC tool (http://www.bioinformatics.babraham.ac.uk/ projects/fastqc/) and NGSQC (Dai et al. 2010) software was used to guality control the sequencing data according to the observed sequencing quality. Then, using the SPAdes (version 3.9.0) software with the default parameter and no cut-off parameter, we splice all the scaffolds we could put together in clean data. This software mainly constructs contig based on DBG algorithm, interrupts read into Kmers, and splices multiple Kmers. Then, Price and Mitobim were used for extended merge stitching, and the number of iterations was selected to be 50. Finally, the mitochondrial genome was annotated by MITOS (http://mitos.bioinf.uni-leipzig.de/index.py) software (Bernt et al. 2013) and then submitted to GenBank (accession number MW551527).

The mitochondrial genome of *O. grahami* is a circular genome with a length of 17,864 bp. Including 22 tRNA genes (trnH-GTG, trnE-TTC, trnS-GCT, trnR-TCG, trnG-TCC, trnK-TTT, trnD-GTC, trnS-TGA, trnY-GTA, trnC-GCA, trnN-GTT, trnA-TGC, trnW-TCA, trnM-CAT, trnQ-TTG, trnI-GAT, trnL-TAA, trnV-TAC, trnF-GAA, trnP-TGG, trnT-TGT, and trnL-TAG), 2 rRNA genes (rrnL and rrnS), 13 protein-coding genes (PCGs) (CYTB, ND6, ND5, ND4, ND4L, ND3, COX3, ATP6, ATP8, COX2, COX1, ND2, and ND1) and 1 control region (D-loop) (Table 1). The composition of the mitochondrial genome of the *O. grahami* is similar to that of other species of the genus Odorrana, such as Odorrana wuchuanensis (Huang et al. 2016) and Odorrana graminea (Jin et al. 2020).

CONTACT Heng Xiao 🔯 xiaoheng@ynu.edu.cn 💽 School of Ecology and Environmental Sciences, Yunnan University, Chenggong University Town, Kunming, Yunnan 650500, P. R. China.

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Table 1. The mitochondrial genome organization of O. grahami.

Gene	Strand	Start	End	Length (bp)	Spacer (+), Overlap (–)	Start codon	Stop codon
trnH-GTG	Н	195	263	69			
D-loop	L	264	2483	2220			
CYTB	Н	2484	3629	1146		ATG	TAG
trnE-TTC	L	3632	3700	69	+2		
ND6	L	3702	4202	501	+1	ATG	AGG
ND5	Н	4259	6052	1794	+56	ATG	TAG
trnS-GCT	Н	6085	6148	64	+32		
ND4	Н	6167	7534	1368	+18	ATG	TAA
ND4L	Н	7528	7812	285	-5	ATG	TAG
trnR-TCG	Н	7813	7881	69			
ND3	Н	7883	8221	339	+1	ATG	А
trnG-TCC	Н	8222	8290	69			
СОХЗ	Н	8292	9074	783	+1	ATG	Т
ATP6	Н	9079	9750	672	+4	ATA	Т
ATP8	Н	9747	9914	168	-2	ATG	TAA
trnK-TTT	Н	9915	9983	69			
COX2	Н	9976	10,671	696	-6	ATG	AGA
trnD-GTC	Н	10,672	10,740	69			
trnS-TGA	L	10,742	10,812	71	+1		
COX1	Н	10,804	12,357	1554	-7	GTG	AGG
trnY-GTA	L	12,359	12,425	67	+1		
trnC-GCA	L	12,426	12,489	64			
trnN-GTT	L	12,518	12,590	73	+28		
trnA-TGC	L	12,591	12,660	70			
trnW-TCA	Н	12,661	12,728	68			
ND2	Н	12,730	13,761	1032	+1	ATT	TAG
trnM-CAT	Н	13,762	13,830	69			
trnQ-TTG	L	13,830	13,900	71			
trnl-GAT	Н	13,901	13,971	71			
ND1	Н	13,972	14,917	946		ATG	Т
trnL-TAA	Н	14,919	14,992	74	+1		
rrnL	Н	14,995	16,576	1582	+2		
trnV-TAC	Н	16,577	16,645	69			
rrnS	Н	16,646	17,580	935			
trnF-GAA	Н	17,581	17,650	70			
trnP-TGG	L	17,652	17,720	69	+1		
trnT-TGT	Н	17,721	17,789	69			
trnL-TAG	Н	17,793	17,864	72	+3		

The AT content of the mitochondrial genome was 55.9%, and the base contents were: A 28.3%, C 15.5%, G 28.6%, T 27.6%, respectively. In addition to *ND6*, D-loop, and 8 tRNA genes (*trnE-TTC*, *trnS-TGA*, *trnY-GTA*, *trnC-GCA*, *trnN-GTT*, *trnA-TGC*, *trnQ-TTG*, and *trnP-TGG*), most of the genes in the mtDNA of *O. grahami* were distributed in the heavy (H) strand. Among the 13 PCGs in the mitochondrial genome, 10 genes (*CYTB*, *ND6*, *ND5*, *ND4*, *ND4L*, *ND3*, *COX3*

, ATP8, COX2, and ND1) have the start codon ATG, while the start codon of ATP6, COX1, and ND2 genes are ATA, GTG, and ATT, respectively. In addition, 4 of the 13 PCGs (CYTB, ND5, ND4L, and ND2) used TAG as the stop codon, 2 genes (ND6 and COX1) used AGG as the stop codon, 2 genes (ND4 and ATP8) used TAA as the stop codon, and COX2 used AGA as the stop codon. The ND3 gene was terminated by an incomplete stop codon (single stop nucleotide A), and the other 3 genes (COX3, ATP6, and ND1) were terminated by single stop nucleotide T. Among the 13 PCGs, the shortest gene was ATP8 (168 bp), and the longest gene was ND5 (1794 bp). The length of 22 tRNA genes varied from 64 to 74 bp. The lengths of *rrnS*, *rrnl*, and D-loop were 935 bp, 1582 bp, and 2220 bp, respectively. The establishment of the complete mitochondrial genome of *O. grahami* will provide reliable genetic data for the further study of genetic evolution, phylogeographic structure, and molecular evolution of this species.

Mitochondrial genomes of seven species of Ranidae and mitochondrial 16S rRNA genes of eight species of *Odorrana* were downloaded from NCBI and used for phylogenetic analyses. *Rana omeimontis* and *Amolops wuyiensis* were used as the outgroups for mitochondrial genomes phylogenetic analysis, while *O. anlungensis* and *O. lungshengensis* were used as the outgroups for 16S rRNA phylogenetic analysis. Phylogenetic relationships were reconstructed using the maximum likelihood (ML) analysis based on the above two sets of genetic data, using RAxML (Stamatakis et al. 2008). Genetic data were partitioned by genes, and jModelTest 0.1.1 (Darriba et al. 2012) was used to calculate the optimal replacement model for each partition in the two sets of sequences respectively, which was GTR + G.

The resulting phylogenetic trees based on the mitochondrial genome suggest that *O. grahami* sister to *O. margaretae* (Figure 1(a)). Similar to previous studies (Liu et al. 2021), the results based on 16S rRNA gene sequences do not resolve the phylogenetic relationship of *O. grahami* with respect to *O. kuangwuensis*, *O. margaretae*, *O. andersonii*, *O. jingdongensis*, *O. wuchuanensis*, and *O. dulongensis* (Figure 1(b)).

Figure 1. (a) Phylogenetic relationships of six *Odorrana* species based on available mitochondrial genomes using ML analysis. The values above branches represent bootstrap support values. The scale bar represents 0.05 nucleotide substitutions per site. *Rana omeimontis* (MK483118) and *Amolops wuyiensis* (KJ933509) were used as outgroups. (b) Phylogenetic relationships with an expended taxa sampling among closely related species of *O. grahami* inferred from 16S rRNA gene tree using ML analysis. The values above branches represent bootstrap support values. The scale bar represents 0.008 nucleotide substitutions per site. *Oodorrana lungshengensis* (KF185054) and *O. anlungensis* (KF185049) were used as outgroups.

Disclosure statement

The authors report no conflicts of interest. The authors are responsible for the content and alone writing of this paper.

Funding

This work was supported by the Leading Talents Program of Ten-Thousand Plan of Nation [W01050092].

ORCID

Yang Wen (D) http://orcid.org/0000-0001-7902-5216

Chunqing Li (b) http://orcid.org/0000-0002-6265-6596 Heng Xiao (b) http://orcid.org/0000-0001-7434-5536

Data availability statement

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at (https://www.ncbi.nlm.nih.gov/) under the accession no. MW551527.

References

Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 69(2): 313–319.

- Boulenger GAL. 1917. Descriptions of new frogs of the genus *Rana*. J Nat Hist. 20(120):413–418.
- Chen XH, Chen Z, Jiang JP, Qiao L, Lu YQ, Zhou K, Zheng GM, Zhai XF, Liu JX. 2013. Molecular phylogeny and systematics of the genus *Odorrana* (Amphibia, Anura, Ranidae) inferred from two mitochondrial genes. Mol Phylogenet Evol. 69(3):1196–1202.
- Dai M, Thompson RC, Maher C, Galindo RC, Kaplan MH, Markovitz DM, Omenn G, Meng F. 2010. NGSQC: cross-platform quality analysis pipeline for deep sequencing data. BMC Genom. 11(4):S7–S9.
- Darriba D, Taboada GL, Doallo R, Posada D. 2012. JMODELTEST 2: more models, new heuristics and parallel computing. Nat Methods. 9(8):772.
- Fei L, Hu SQ, Ye CY, Huang YZ. 2009. Fauna sinica (amphibia): anura. Beijing (China): Science Press.
- Fei L, Ye CY, Jiang JP. 2012. Colored atlas of Chinese amphibians and their distributions. Chengdu (China): Sichuan Publishing House of Science and Technology.
- Huang YJ, Zhao W, Bao XK, Lin YH, Ran JC. 2016. Sequence and analysis of the complete mitochondrial genome of the Wuchuan odorous frog

Odorrana wuchuanensis (Anura: Ranidae). Mitochondrial DNA Part B-Resour. 1(1):757–758.

- Jin XX, Li WY, Hu SJ, Li WM, Yang LC. 2020. The complete mitochondrial genome of large odorous frog, *Odorrana graminea* (Amphibia: Ranidae) and phylogenetic analysis. Mitochondrial DNA Part B-Resour. 5(3):3139–3140.
- Liu XL, He YH, Wang YF, Beukema W, Hou SB, Li YC, Che J, Yuan ZY. 2021. A new frog species of the genus *Odorrana* (Anura: Ranidae) from Yunnan, China. Zootaxa. 4908(2):263–275.
- Qiao L, Wen GN, Qi Y, Lu B, Hu JH, Song ZB, Fu JZ. 2018. Evolutionary melting pots and reproductive isolation: a ring-shaped diversification of an odorous frog (*Odorrana margaratea*) around the Sichuan Basin. Mol Ecol. 27(23):4888–4900.
- Stamatakis AP, Hoover J., Rougemont 2008. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol. 57(5):758–771.
- Wang K, Ren JL, Chen HM, Lyu ZT, Guo XG, Jiang K, Chen JM, Li JT, Guo P, Wang YY, et al. 2020. The updated checklists of amphibians and reptiles of China. Biodiv Sci. 28(2):189–218.
- Zhang B, Li Y, Hu K, Li PP, Gu ZR, Xiao NW, Yang DD. 2021. A new species of *Odorrana* (Anura, Ranidae) from Hunan Province. ZooKeys. 1024:91–115.