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Abstract The mammalian brain is a complex network of
anatomically interconnected regions. Animal studies allow
for an invasive measurement of the connections of these
networks at the macroscale level by means of neuronal
tracing of axonal projections, providing a unique oppor-
tunity for the formation of detailed ‘connectome maps’.
Here we analyzed the macroscale connectome of the rat
brain, including detailed information on the macroscale
interregional pathways between 67 cortical and subcortical
regions as provided by the high-quality, open-access
BAMS-II database on rat brain anatomical projections,
focusing in particular on the non-uniform distribution of
projection strength across pathways. First, network analysis
confirmed a small-world, modular and rich club organiza-
tion of the rat connectome; findings in clear support of
previous studies on connectome organization in other
mammalian species. More importantly, analyzing network
properties of different connection weight classes, we ex-
tend previous observations by showing that pathways with
different topological roles have significantly different
levels of connectivity strength. Among other findings, in-
tramodular connections are shown to display a higher
connectivity strength than intermodular connections and
hub-to-hub rich club connections are shown to include
significantly stronger pathways than connections spanning
between peripheral nodes. Furthermore, we show evidence
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indicating that edges of different weight classes display
different topological structures, potentially suggesting
varying roles and origins of pathways in the mammalian
brain network.
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Introduction

Neural systems include a complex network of structurally
and functionally linked elements. Studies examining the
architecture of the neural networks of mammalian and non-
mammalian species -including the macroscale network of
the human, macaque and cat brain, but also the microscale
neural systems of lower order nematode species- have
shown ample evidence that the wiring diagram of organ-
isms, their ‘connectome’, shows several features of an ef-
ficient communication network (Sporns et al. 2005;
Bullmore and Sporns 2009; van den Heuvel and Hulshoff
Pol 2010a; Sporns 2011). A fundamental attribute of an
organism’s connectome appears to be its combined ability
to process specialized information and to efficiently inte-
grate neural information across different domains (Sporns
2012). It has been hypothesized that the formation of local
densely clustered communities may ensure segregation of
information and local specialization, while the presence of
global shortcuts may provide an infrastructure for global
communication between remote regions (Bullmore and
Sporns 2009). Indeed, embracing network science as a
theoretical framework to examine the wiring of neural
networks, computational studies have consistently shown
brain networks to display cost-effective wiring and a small-
world modular organization with high levels of local
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clustering and pronounced modular structure, combined
with short communication pathways ensuring efficient
global communication (Hagmann et al. 2008; Bassett and
Bullmore 2006; van den Heuvel et al. 2008c). An important
role in the formation of short communication routes has
been suggested to be occupied by a relatively small number
of highly connected hub nodes. As a set of densely inter-
linked regions, hub nodes have been noted to form a central
‘rich club’ or ‘core’, constructing a spatially diffuse, but
topologically central system, suggested to be important for
global neural communication and thus integration of in-
formation between otherwise segregated functional sys-
tems (Tomasi and Volkow 2010; van den Heuvel and
Sporns 2013b; Cole et al. 2010; de Reus and van den
Heuvel 2014).

In humans, most of the connectome work is based on
in vivo neuroimaging data, with macroscale pathways and
indirect measures of anatomical connectivity strength
derived from diffusion-weighted imaging (e.g. Hagmann
et al. 2008; van den Heuvel et al. 2008b). In contrast,
animal studies allow for a detailed reconstruction of
macroscale white matter pathways by means of neural
tracing of axonal projections (e.g. Scannell et al. 1995;
Goldman-Rakic 1988). By collecting data across a large
number of tract-tracing studies, detailed reconstructions of
the connectomes of (among other species) the macaque,
cat, rat and mouse have been made (e.g. Oh et al. 2014;
Scannell et al. 1995; Stephan et al. 2001; Markov et al.
2011; Bota and Swanson 2007), and examinations of the
topology of these networks have shown ample evidence of
global organizational principles similar to those observed
in the human brain (e.g. Sporns et al. 2007; Harriger et al.
2012; Li et al. 2013; Hagmann et al. 2008; Goulas et al.
2014). An advantage of tract-tracing data is that it allows
for assessment of the directionality of the brain’s white
matter projections, providing important information that is
out of the scope of current in vivo imaging-based recon-
structions of the human connectome. Moreover, in case of
animal connectomes, some reconstructions provide de-
tailed information on the connectivity strength of axonal
projections, allowing the examination of the effect of the
presence of weaker and stronger pathways on global
network properties. Here, analyzing the directed and
weighted macroscale connectome reconstruction of the rat
brain as provided by the BAMS-II project (Bota and
Swanson 2007)—arguably one of the most detailed data-
sets on mammalian connectome wiring with information
on the connectivity of cortical and subcortical regions,
including direction, as well as connectivity strength of
pathways- we provide new insights into the architectural
attributes of the mammalian connectome. We first show
(part I) that the rat connectome has similar topological
attributes as previously shown for the human, macaque,
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cat and mouse connectome, including a modular structure,
short communication pathways, and a dense central rich
club. Next, extending previous observations (part II), we
show distinct network organizations of weak versus strong
network connections, suggesting varying network roles of
edges of different connectivity strength in the rat
connectome.

Materials and methods
Connectome reconstruction
Database and parcellation scheme

Data on macroscale white matter pathways of the rat brain
was taken from the open-access BAMS-II connectivity
database (http://brancusil.usc.edu/connectome/; Bota and
Swanson 2007), involving a comprehensive dataset of
tract-tracing experiments of the nervous system of the rat.
The BAMS-II database includes information on white
matter pathways between 71 non-overlapping regions
covering one hemisphere of the rat cerebrum, including a
number of subcortical regions, together providing a
relatively detailed parcellation of the rat brain (see Sup-
plemental Table S1 for regions and abbreviations). The
BAMS-II database is a highly detailed database of mac-
roscale rat brain connectivity, used and described in several
studies (French and Pavlidis 2011; Leergaard et al. 2012;
Wolf et al. 2011) and with one of the most recent releases
described in detail here (Bota et al. 2012; Bota and
Swanson 2007).

Binary connectivity

The BAMS-II database includes information on the pres-
ence of 1,424 directed connections between the 71 cortical
and subcortical regions, and experimental reports of the
absence of an anatomical projection between another 1,955
region pairs. This level of coverage is comparable to pre-
vious studies examining connectome reconstructions of the
macaque (Modha and Singh 2010) and cat cortex (Scannell
et al. 1995). Four regions (AOB (accessory olfactory bulb),
DG (hippocampal region, dentate gyrus), IG (hippocampal
region, induseum griseum) and FC (hippocampal region,
fasciola cinerea)) were found to have no connections or to
show only connections amongst each other and were dis-
carded from the graph theoretical analysis. Based on this
information, a directed binary adjacency matrix A of size
N x N (N = 67) was constructed (Fig. 1, Table S1), ex-
pressing the presence of an anatomical projection between
two regions with a 1 and absent and/or non-reported con-
nections as a 0. This matrix corresponded to a graph
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Fig. 1 Connectivity matrix of

the BAMS-II RAT connectome

dataset. Edges reflect the report

of an anatomical projection o
between brain regions, with the o
level of connectivity strength of a
edges varying between very orev
weak (edge strength 1) and very e -

strong (edge strength 7) wos o

G = (V, E) with V being the total collection of 67 nodes,
reflecting the cortical and subcortical regions, and E the
collection of 1,397 directed edges reflecting the directed
anatomical pathways between regions.

Connectivity strength

Besides information on the absence or presence of con-
nection pathways between regions of the rat brain, the
BAMS-II database provides detailed information on the
strength of the white matter pathways as derived directly
from the tract-tracing experiments. Connections are
categorized in 7 strength classes, ranging from 1 (very
weak) to 7 (very strong). Data on projection strength was
available for 1,337 connections (95.7 % of all reported
binary connections). In this study, the 64 connections of
which the projection strength was unknown were excluded
from analyses in which weight information was examined
(i.e. in binary analyses these connections were included).
Information on the weights of the projections was col-
lected in the directed weighted connectivity matrix W,
with information on the connectivity strength of a white
matter pathway projecting from region j to region i ap-
pearing as entry Wj. Figure 1 depicts the weighted
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directed connectivity matrix as derived from the BAMS-II
database.

Graph theoretical analysis
Standard network metrics

Graph theoretical analysis of the rat connectome included the
examination of the network’s nodal degrees and degree
distribution, expressing the number of efferent and afferent
connections of brain regions, clustering coefficient, indica-
tive of the level of local connectedness of the network, the
network’s characteristic path length, indicative of the global
communication capacity of the network and betweenness
centrality, indicating the importance of a node in simple
communication paths in the network. All network metrics
were computed on the basis of the binary directed network.
Brief descriptions of the examined metrics are given below
(more formal descriptions and formulas are given in (Rubi-
nov and Sporns 2010; van den Heuvel and Sporns 2011))

Degree The degree of a node i is equal to the total

number of connections attached to i. In a similar fashion,
the in-degree of node i is equal to the total number of
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afferent connections of i and the out-degree is equal to the
total number of efferent connections of node i.

Clustering coefficient ~ The binary clustering coefficient
C; of node i is equal to the ratio between the existing
number of connections between neighbors of node i and the
total number of possible connections between node i’s
neighbors. The global clustering coefficient C was taken to
be the average over C; for all nodes i in the network.

Path length  The binary path length L; of node i is equal to
the average number of edges traversed when traveling from
node i to all other nodes in the network (i.e. the average of
all topological distances between node i and node j, for all
nodes j # i in the network). The characteristic (i.e. global)
path length L of the network is the average over L; for all
nodes i in the network.

Betweenness centrality The betweenness centrality B; of
node i equals the normalized number of times node i is
passed when walking along the shortest paths between all
node pairs in the network, with nodes with the highest B;
being among the most central nodes in the network.

Normalized metrics and small-worldness C and L were
compared to the clustering coefficient Ciyngom and path
length L ,,q0m Of @ set of randomly wired graphs [1,000
random networks examined, formed by randomly rewiring
the edges of the rat connectome while preserving the de-
gree sequence (Maslov and Sneppen 2002)]. The normal-
ized clustering coefficient y is given by the ratio between
C and Ci,p40m, the normalized path length A is given by the
ratio between L and L, qom- A small-world organization is
said to be present when the ratio y/A, known as the small-
world index, exceeds 1.

Modular organization

Modular organization of the rat connectome was deter-
mined by means of Newman’s modularity algorithm
(Newman 2006). The level of modularity Q measures
whether nodes that appear in the same module are more
often connected than in comparable randomly wired net-
works, with higher levels of Q indicating a more modular
structure. This modularity algorithm assigns each node to a
unique module (Newman 20006).

Participation coefficient The between-module participa-
tion coefficient P; provides information about to what ex-
tent the connections of node i are evenly distributed across
the different modules of the network (Guimera and Nunes
Amaral 2005), with nodes with a high P; reflecting regions
with a high intermodular character.
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Hubs and rich club organization

Hub nodes are nodes that play a central role in the overall
network structure (van den Heuvel and Sporns 2013b). Hub
nodes were selected on the basis of a cumulative hub-score
(van den Heuvel et al. 2010; Bassett et al. 2008) given by
the number of times a node scored among the top 33 % of
highest ranking nodes on in-degree, out-degree, between-
ness centrality and participation coefficient P;, and among
the top 33 % of nodes showing the shortest path length L;.
The cumulative hub-score could vary from O -representing
completely non-central nodes- to 5 -representing the most
centrally situated nodes in the network. The subset H of
nodes showing a cumulative hub-score of 4 or more where
classified as hub nodes, all other nodes were classified as
peripheral non-hub nodes.

Rich club organization of a network describes the phe-
nomenon of the high degree nodes of a network to share a
high level of mutual connectivity, being more densely
connected amongst each other than expected on the basis of
their individual degree alone (Colizza et al. 2006). Previous
studies have noted rich club organization for the human
(van den Heuvel and Sporns 2011; Grayson et al. 2014),
macaque (Harriger et al. 2012), cat (Zamora-Lopez et al.
2009, 2010, 2011; de Reus and van den Heuvel 2013),
avian (Shanahan et al. 2013) and mouse brain (van den
Heuvel and de Reus 2014), as well as for the neural sys-
tems of nematodes (Towlson et al. 2010). A network is said
to show a rich club organization if, for a range of degree k,
the density of connections between the subset of nodes
with a degree higher than k is higher than in comparable
random networks (Colizza et al. 2006). For each level of
degree k, the subgraph Sy consisting of N-y nodes that
displayed a combined in- and out-degree higher than k
were selected, with the rich club coefficient ®(k) computed
as the ratio between the number of connections E- present
in subgraph S; and the total number of possibly occurring
connections in S; (Colizza et al. 2006; van den Heuvel and
Sporns 2011). To compensate for the effect of higher de-
gree nodes in randomized networks to also show a higher
probability of being connected, ®(k) is typically compared
to the average rich club coefficient ®,,,q0om(k) of a set of
randomized graphs with the same degree distribution (i.e.
with the same number of nodes and connections and the
same degree sequence, but now with an otherwise ran-
domized connectivity structure) (Colizza et al. 2006). A set
of 1,000 random graphs was formed, randomly rewiring the
connections of the rat connectome, while preserving the in-
and out-degree of each node i in the network (Maslov and
Sneppen 2002). The rich club coefficients of these random
graphs formed a null-distribution of the level of connec-
tivity appearing among nodes with degree >k under the
null-hypothesis. Based on this null-distribution, for each
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level of k, ®(k) was assigned a p value as the percentage of
the null-distribution that exceeded the value of ®(k). A rich
club organization can thus be noted when, for a range of k,
®(k) significantly exceeds the average random rich club
coefficient @ ,,q0m(k), or put differently when the ratio
D, orm(k) between ®O(k) and Dp,ngom(k) exceeds 1 (Colizza
et al. 2006; van den Heuvel and Sporns 2011).

Rich club selection After establishing the existence of a
rich club organization, the rich club of the rat connectome
was selected as the set of high degree and highly central
nodes H (see paragraph above). The rich club coefficient
®(H) of this set of hub nodes was computed as the ratio
between the number of existing edges and the total num-
ber of possible edges between them, which amounts to
replacing S~ by the set of rich club nodes H. Similarly,
D, o:m(H) was computed by comparing ®(H) to Dpangom(H) as
computed in a set of randomized networks (1,000 random
networks examined).

Connection classes

Intra vs. intermodular character Connections were
categorized according to the position they occupied in the
network. A connection was labeled intramodular if it
connected two nodes that participated in the same module,
and intermodular if it connected nodes of different
modules.

Rich club, feeder, local In addition to this classification,
network edges were labeled as rich club connections if they
interlinked two rich club hub nodes, labeled feeder-in if
they projected from a non-hub to a hub node, feeder-out if
they projected from a hub node to a non-hub node and local
if they connected two non-hub peripheral nodes.

Directionality A connection projecting from node i to
node j was labeled bidirectional if there was also a pro-
jection from node j to node i present, and unidirectional
when no such connection was present.

Edge metrics

To examine the role of different connection classes in the
network, the importance of each individual connection for
several network metrics was estimated by computing net-
work metrics both before and after the removal of a con-
nection (de Reus et al. 2014; de Reus and van den Heuvel
2014). The percentage of change resulting from the re-
moval of a connection was then taken as an indication of
the relevance of that connection for the examined network
metrics. Four metrics were considered, being the impact of

a connection on (1) the characteristic path length, (2) the
global clustering coefficient, (3) the average (i.e., global)
communicability between all nodes of the network and (4)
the local communicability between the endpoints of the
connection. The communicability measure is a weighted
sum (computed as the matrix exponent of A) that includes
paths of all possible lengths between nodes i and j in the
network, assigning higher weight to shorter paths, and is
indicative of the level of theoretical network communica-
tion between network nodes (Estrada and Hatano 2008; de
Reus and van den Heuvel 2014).

Edge module diversity The edge module diversity (EMD)
of connection c interlinking nodes i and j was defined as the
product p;p; (de Reus and van den Heuvel 2013), with
module diversity p; of node i representing the fraction of
modules that node i connected to. As such, high levels of
EMD indicate edge ¢ to span between two nodes with
access to many different types of information. In contrast, a
low EMD expresses connection c to facilitate information
transfer between nodes that process more unimodal
information.

Topological organization of connectivity strength

To examine the existence of a potential organizational
difference between the network’s weak and strong con-
nections, we investigated the topological network organi-
zation of each strength class separately, by examining
graph characteristics of the subgraph AY = (V, E = w)
with connectivity matrix:

u 0 otherwise

with A being the adjacency matrix representing the con-
nections of the rat connectome and w ranging between 1
and 7. Although general caution is needed when inter-
preting subnetworks A" as independent neural networks
with metrics of organization now computed and analyzed
in isolation of other connections, this type of analysis could
provide further insight into the global distribution of con-
nections of a certain connectivity strength across the total
network. Examined metrics of organization of the AY
subnetworks included (1) global clustering C and mod-
ularity Q, providing information on the potential local or-
ganization of a connectivity strength class, and (2) the
global efficiency (inverse of the harmonic mean topo-
logical distance over all node pairs; used instead of path
length to avoid effects of disconnected nodes) (Latora and
Marchiori 2001) and diameter (being the maximum topo-
logical distance over all node pairs) of A%, providing in-
sight into the global connectivity organization of all AY.
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Results

In what follows we first describe the results of the analysis
of relatively commonly examined network attributes of the
mammalian brain, reporting on a small-world, modular and
rich club organization (part I), followed by a description of
the results of the primary analysis of this study examining
the organization and distribution of the projection strength
of the connections of the rat connectome (part II).

Part I: connectome descriptives
Clustering, path length, small-world

Consistent with previous reports on connectome organi-
zation of the mammalian brain, the reconstructed rat con-
nectome (Fig. 1) revealed a density of 31.6 %, a right-
tailed degree distribution, above random levels of cluster-
ing (binary network: 1.18x more than random; weighted
network: 1.21x more; 1,000 random networks), a short
path length (binary: 1.02x longer than random; weighted:
1.05x longer; 1,000 random networks) and a small-world
index larger than 1 (binary: SW = 1.16; weighted:
SW = 1.15). The rat connectome revealed a modular
structure (binary: Q 2.57x higher than in random net-
works; weighted: Q 2.11x higher; 1,000 random net-
works). Modularity analysis further revealed a hierarchical
modular organization with a top split of the network into 3
modules, which themselves consisted of respectively 1, 2
and 3 submodules (Fig. 2).

Rich club organization and hubs

The rat connectome revealed a rich club organization.
Across the range 50 < k < 52, ®(k) significantly exceeded
Dingom®) (G.e. Dpom(k) > 1, p <0.01, 1,000 random
networks examined, Fig. 3a), an observation consistent
with the findings of previous reports on rich club organi-
zation in other species.

Hubs Hubs taken on the basis of a cumulative hub-score
computed as the number of times a node ranked among the
30 % highest ranking nodes on five nodal centrality metrics
(see Materials and Methods), revealed the existence of 14
potential hub nodes, all showing a cumulative hub-score of
>4 (Fig. 3b). This set included regions MOs (secondary
motor cortex), ILA (infralimbic area), PIR (piriform area),
ACAd (dorsal part of the anterior cingulate area), PL
(prelimbic area), ORBm (medial orbital area), Alp (pos-
terior agranular insular cortex), TEa (temporal association
areas), ECT (ectorhinal area), PERI (perirhinal area), ENTI
(entorhinal area, lateral part), ENTm (entorhinal area,
medial part, dorsal zone), LA (lateral amygdalar nucleus)
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and BLAp (basolateral amygdalar nucleus, posterior part)
(Fig. 3c). This set of hub nodes formed a significant rich
club with ®(H) being significantly higher than

(I)random(H) (P - 00010)

Rich club and modules

Rich club nodes showed a significantly higher participation
coefficient P; as compared to peripheral nodes (1.20x
higher, p < 0.001, 10,000 permutations). Moreover, rich
club hubs were found to be present in 5 out of 6 2-step
modules, underscoring the importance of rich club hub
nodes in interlinking modules.

Edge statistics

Rich club, feeder and local 11 % of the network edges
involved rich club connections, 27 % involved feeder-out,
24 % involved feeder-in and 38 % involved local
connections.

Intermodular vs. intramodular connections 75 % of all
rich club connections were intermodular, compared to 72,
76 and 53 % of all feeder-out, feeder-in and local con-
nections respectively. Thus, only 25 % of rich club edges
were intramodular connections, in contrast to 47 % of all
local connections. Furthermore, rich club connections in-
cluded 13 % of all intermodular edges of the network,
being 1.14x their overall share. Feeder-out connections
and feeder-in connections included respectively 29 and
27 % of all intermodular connections (1.09 and 1.13x their
overall share). In contrast, local connections were found to
be less involved in interlinking different modules (39 %,
0.80x their overall share) and to be more present among
intramodular connections (52 %, 1.38x their overall
share). Rich club, feeder-out and feeder-in connections
included respectively 8, 21 and 17 % of all intramodular
connections.

Projection distance Rich club connections spanned sig-
nificantly longer distances (as estimated by the computed
Euclidean distances between the estimated center of mass
of all connected region pairs) as compared to local (1.25x
longer, p < 0.001) and feeder connections (compared to
feeder-out: p = 0.002; compared to feeder-in:
p = 0.00246). Furthermore, also feeder-out (1.10x,
p < 0.001) and feeder-in connections (1.12x, p < 0.001)
were found to be (on average) longer than local
connections.

Wiring cost Rich club connections were found to display
a significantly higher cost (computed as physical distance
times connectivity strength) than local connections (1.65x
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structural modules

module | module 2 module 4
I module3 ] module5
B module 6

Fig. 2 Figure shows the module partitioning of the rat brain in three
main modules (yellow, green and blue) and six submodules (respec-
tively 1, 2, and 3 submodules indicated by color shades varying from

higher, p < 0.001, 10,000 permutations), as well as than
feeder-out (1.36x, p < 0.001) and feeder-in (1.22x,
p = 0.004) connections. These findings underscore an av-
erage high wiring cost of rich club edges in the brain
network.

Directionality 62 % of all connections were found to be
bidirectional, 38 % consisted of unidirectional pathways.
In addition, 56 % of all intermodular connections were
found to be bidirectional (44 % thus being unidirectional).
In contrast, the majority of intramodular connections
(75 %) were found to be bidirectional (25 % being unidi-
rectional). Rich club connections were found to include
predominantly connections of bidirectional nature (94 %,
with intermodular connections being 92 % bidirectional
and intramodular connections 97 % bidirectional), a per-
centage significantly higher than expected in random
graphs (p < 0.001, 1,000 random graphs), with feeder-in

light to dark). Lateral, medial and dorsal views are artist renderings of
figures presented in (Palomero-Gallagher and Zilles 2004); coronal
slices are adapted from (Swanson 1992)

(70 %, with intermodular feeder-in connections being
60 % bidirectional) in second place. Feeder-out connec-
tions were found to include slightly fewer bidirectional
projections (62 %, with intermodular feeder-out connec-
tions being 57 % bidirectional), with local projections in-
cluding 49 % bidirectional projections (with intermodular
local connections being just 35 % bidirectional). These
findings further converge on the notion of the rich club and
rich club edges to form an infrastructure for rich complex
neural interactions with an overrepresentation of reciprocal
projections (de Reus and van den Heuvel 2013; van den
Heuvel and de Reus 2014; Scholtens et al. 2014; Harriger
et al. 2012).

Edge module diversity Rich club edges were found to
display a higher edge module diversity than local connec-
tions (1.26x higher, p < 0.001 as compared to the class of
local connections, 10,000 permutations), with feeder-out
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Fig. 3 Panel A reflects the rich
club curve of the rat
connectome. The x-axis shows
the binary number of degree

k and the y-axis shows the
normalized rich club coefficient
for each set of >k. Rich club
organization is found to be
present for several levels of &, as
indicated by a normalized rich
club coefficient of >1. Panel B
shows for each brain region the
centrality scores ranging from 0
(non-central) to 5 (highly
central). Panel C hub nodes
were taken to be nodes with a
centrality score of 4 or more.
Hub nodes are depicted in red,
non-hub nodes are depicted in

gray
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(1.12x p < 0.001) and feeder-in edges (1.09x, p < 0.001)
coming in second and third place.

Neural sinks and sources

The ratio between nodal out-degree and in-degree displayed
a right-tailed distribution (Fig. 4a), with the majority of
nodes showing a ratio around ~1 (73 % between 0.5 and
1.5), suggesting a relative overall balance in the number of
efferent and afferent connections of cortical regions. Only a
small set of nodes revealed an imbalance, showing more
afferent than efferent connections (thus forming “neural
sinks”, ratio <0.5, regions: VISII (laterolateral visual area),
ORBVI (ventrolateral orbital area), PTLp (posterior parietal
association areas), ENTmv (entorhinal area, medial part,
ventral zone), PRE (presubiculum), PAR (parasubiculum),

Fig. 4 Panel A shows the ratio A
out-degree/in-degree between
nodal out-degree and nodal in-
degree. Nodes with a low out-
degree/in-degree ratio indicate
neural sinks (having more
incoming connections than
having outgoing connections);
nodes with a high out-degree/in-
degree ratio indicate neural
sources, reflecting nodes with
more outgoing connections than
incoming connections. Panel B
Out-degree/in-degree ratio
correlated significantly with
total network degree, Hub nodes
(red points) appear to be an
outlier to this relationship

EPv (endopiriform nucleus, ventral part), yellow colored
regions in Fig. 4a) or more efferent than afferent connections
(thus forming “neural sources”, ratio >1.5, regions: SSs
(secondary somatosensory cortex), VISC (visceral area), TR
(postpiriform transition area), ACAv (ventral part of the
anterior cingulte area), CA1 (hippocampal region CA1), LA
(lateral amygdalar nucleus), BMAp (basomedial amygdalar
nucleus, posterior part), PA (posterior amygdalar nucleus),
magenta colored regions in Fig. 4a).

Correlation to total degree Out-degree/in-degree ratio
was positively correlated to total nodal degree of a region
(Fig. 4b), indicating that regions with a higher total number
of pathways on average show a higher number of efferent
connections than afferent connections (linear regression,
r = 0.40, p = 0.007).

out-degree in-degree ratio

B 250

2
=)
£ 200
]
2 150

. ®
E .: b
g 1.00 s oo o
5 {
i
5 050
o

0.00

0 24 48 72 9 120

total degree

@ Springer



1728

Brain Struct Funct (2016) 221:1719-1736

Hub nodes are noted to form potential outliers to this
organizational rule (red nodes in Fig. 4b), showing a
relatively balanced number of afferent and efferent con-
nections (out-degree/in-degree ratio mean/std: 1.14/0.29,
not different than the ratio of peripheral nodes, p = 0.22,
10,000 permutations), likely due to the strong bidirectional
character of most of their pathways.

Part II: topological organization of connectivity
strength

Relationship between network role of edges
and connectivity strength

Intermodular vs. intramodular Intramodular connections
involved significantly higher connectivity weights (mean/
std: 4.57/1.58) than intermodular connections (3.87/1.66,
p = 0.002, 10,000 permutations).

Rich club vs. feeder vs. local The class of rich club
connections was found to show a higher average connec-
tivity strength than the other classes, 1.18 x higher than the
class of local (p < 0.001), 1.23x higher than the class of
feeder-out (p < 0.001) and 1.16x higher than the class of
feeder-in connections (p < 0.001). Figure 5a shows the
strength distributions of the class of rich club, feeder-out,
feeder-in and local connections.

Further categorizing the connections of the network in
intermodular and intramodular connections (Fig. 5b), in-
termodular rich club connections were found to display a
significantly higher connectivity strength (mean/std: 4.73/
1.50) as compared to the class of intermodular feeder-out
(3.3.59/1.79, p < 0.001), feeder-in (4.09/1.55, p = 0.002)
and local connections (3.56/1.52, p < 0.001, 10,000 per-
mutations). Moreover, of all strong connections (i.e. weight
>6) 16 % was found to involve a rich club connection,
being 1.46x their overall share, with in contrast 34 % in-
volving local connections (0.89x their share). Further-
more, of all strong intermodular connections (i.e.
connections of weight >6 spanning between modules),
22 % involved rich club connections (1.96x their overall
share), in contrast to only 19 % local connections (0.49x
their overall share). For the class of very strong inter-
modular connections (i.e. weight of 7) these proportions
were even bigger, with 40 % being intermodular rich club
connections (3.47x) and only 14 % involving local edges
(0.37x their share).

Short vs. long connections ~ Short connections (i.e. bottom
10 % of all connections) were found to show stronger
projection strengths (mean/std: 4.95/1.64) than long con-
nections (top 10 % of all connections, mean/std: 3.88/1.50,
p < 0.001, Fig. 5c). Furthermore, also a general correlation
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between projection length and connectivity strength
(r = —0.21, p < 0.001, linear regression) was observed.

Relating to the three different classes of rich club,
feeder and local connections (Fig. 5d), exclusively look-
ing at the subset of the top 10 % longest connections, rich
club edges were found to display a trend-level higher
connectivity strength (mean/std: 4.29/1.41) as compared
to local edges (mean/std: 3.41/1.56, p = 0.0318) [similar
results were found when selecting the top 15 % or top
20 %].

Connectivity strength and topological role of nodes

Degree Examining per network node (i.e. brain region)
its ratio HL of high strength (>4) versus low strength (<4)
connections (HL ratio) revealed a significant association
between HL and a node’s binary degree (p = 0.0056,
r = 0.33), suggesting that nodes with a high binary high
degree (i.e. nodes that display a high number of network
edges) show on average more high strength connections
than low strength connections (and nodes with a low de-
gree show more low strength edges than high strength
edges). Also the inverse of the average path length L of a
node (computed on the basis of the binary network) cor-
related significantly with the HL ratio (p = 0.0357,
r = 0.26).

Topological organization of connectivity strength classes

Next, we examined the topological organization of the
connections within each weight class. The percentage of
edges included in each strength class (ranging from 1 (very
weak) to 7 (very strong)) is shown in Fig. 6, with the
subgraph of very weak (6.5 % of total number of connec-
tions) and very strong edges (6.2 %) including the smallest
group of edges, and edges of moderate strength including
the largest set (26.4 %) (Fig. 6a). As a result, density of the
selected weight subgraphs varied between 2 % and 8 %
(Fig. 6b). The different subgraphs were found to show
distinct topological network features. First, examining
metrics of modular organization and clustering, weak edges
(strength 1-2) were found to show low levels of normal-
ized clustering C (strength 1: 0.8, strength 2: 1.00, nor-
malized to 1,000 random networks) and modularity Q (raw
0.37, 0.39; 1.04, 1.10 when normalized to random net-
works), indicating relatively low local connectivity
(Fig. 7). This in contrast to the strong edges of the network
(strength 6-7), which show high levels of normalized
clustering C (strength 6: 2.1, strength 7: 5.3, normalized to
1,000 random networks) and high modularity Q (1.59x,
1.21x higher than random). Further examining metrics of
global organization, the subgraphs of weak and moderate/
strong edges (in particular class 2-6) revealed relatively
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Fig. 5 Panel A illustrates the average high connectivity weight of the
class of rich club connections (red) as compared to feeder (feeder-out:
dark orange, feeder-in: light orange) and local edges (yellow). Panel
B illustrates a further subdivision of the class of rich club, feeder and
local network edges in intermodular and intramodular connections,
showing that rich club edges display the highest connectivity strength
of all connections in both classes. Panel C shows the average edge
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weights of the 10 % longest (dark blue) and 10 % shortest (light blue)
connections (as estimated on the basis of Euclidean distance) of the
rat connectome. Consistent with previous observations, short con-
nections have a higher average connectivity strength than long
connections. Panel D illustrates that of the top 10 % longest network
connections, rich club connections show the highest connectivity
weight, higher than both feeder and local edges

Fig. 6 Panel A shows the 9 i i 9 .
Demsantage of the total number A percentage of total edges % B density of weight subgraph % weight class
of edges in the rat connectome 30 10 . 7
dataset belonging to weight

class 1 (very weak connections) 25 8 6
to 7 (very strong). Percentage of 5
edges per class varied between 20 6

6 % (class 1 and 7) and 26 % 15 4
(class 4). Density values (panel 4

B) for each of the selected 10 3
connection weight subgraphs

varied between 2 % (very weak 5 2 . 2
and very strong) and 8 % (class . |
o 0 0

weight class

short communication paths (global efficiency 0.86 to
0.94x that of randomized networks of equal density and
equal degree sequence, reflecting a relatively globally
oriented organization), while the subgraph of very strong
connections showed relatively long communication paths
(global efficiency 0.55x that of randomized networks, re-
flecting a more local and less global organized subnet-
work). Consistent with this observation, the subgraph
diameter (reflecting the longest path length present, ig-
noring non-reachable nodes) was found to be relatively
small for very weak and weak connections (<1x random

weight class

level) and relatively large (1.28x random level) for very
strong connections (Fig. 7).

Edge perturbation

Further underscoring a topologically different role in the
network of edges of different weight classes, individual
(i.e. 1-by-1) removal of strong edges (weight >6) was
found to have a significantly higher impact (1.16x more)
on in particular binary global communicability as com-
pared to the individual removal of weak connections
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Fig. 7 Figure shows the values
of descriptive graph metrics
computed per weight class. For
each weight class, graph metrics
were computed for the binary
subnetwork of edges. Panels
show for each of the seven
weight classes (depicted in
different colors corresponding
to Fig. 1) the normalized
clustering (as compared to 1,000
randomized networks),
normalized path length,
normalized modularity and 0
normalized diameter. Figure

illustrates different topological

structures for different weight

classes

N W A U1 O

weight class

1.6
1.2
0.8
0.4

weight class

(weight 2-3) (p = 0.0014, 10,000 permutations, Fig. 8).
Interestingly, weight class 1 appeared to be an outlier to
this relationship, suggesting a rather random layout of
these connections. Dividing the connections in inter-
modular vs. intramodular connections, the impact on
global communicability was found to be higher for in-
termodular connections as compared to intramodular
connections (1.10, p < 0.001, 10,000 permutations. Fur-
thermore, removal of a rich club connection had on av-
erage a 4.76x stronger effect on reducing binary global
communicability than removal of a local edge in the
network, findings consistent with those observed in the
human connectome (de Reus and van den Heuvel 2014),
underscoring the importance of rich club connections in
global network communication (van den Heuvel et al.
2012). Moreover, removal of an intermodular rich club
connection had on average a 5.30x stronger impact than
removal of an intermodular local edge on global com-
munication. Consistent with previous investigations on
edge perturbations (de Reus and van den Heuvel 2014),
less pronounced effects were observed on characteristic
path length. Notably, the strongest increases in path length
were found in the lower weight classes (class 1-3), un-
derscoring a relatively random distribution of these edges,
acting as randomly placed global shortcuts in the overall
network.
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Discussion

Our findings corroborate on the notion of an organized
topological architecture of the macroscale mammalian
connectome. Examining a detailed anatomical wiring dia-
gram of the rat brain including a high parcellation of the
cerebrum and subcortical nuclei (Bota and Swanson 2007)
revealed several topological organizational features of
neural network architecture. Supporting findings of previ-
ous studies on macroscale connectome organization of
other mammalian and non-mammalian species, the rat
brain network showed a small-world hierarchical network
organization, together with the existence of a small number
of high degree, and high strength connected hub regions.
Extending previous observations of mammalian connec-
tome organization, our findings now reveal a potential
topological organization of connectivity strength across
network connections.

First, concerning general descriptives of neural network
organization our findings report on several attributes of an
efficient processing and communication architecture of the
rat brain. Consistent with previous observations on struc-
tural and functional connectivity in the rat brain (Liang
et al. 2011; Schmitt et al. 2012) and with observations in
other mammalian species (e.g. (Salvador et al. 2005;
Hagmann et al. 2008; Kaiser and Hilgetag 2006; Stephan
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Fig. 8 Figure summarizes edge removal statistics for each of the
connectivity weight classes. Figure shows the effect of removing an
edge of each class (as tested by removing each edge one-by-one and
evaluating the effect on the graph metric of interest, with class values
reflecting the average over all edges in a class) on binary global
clustering, global path length, global communicability and local
communicability. Effects are presented as percentage of change
(resulting from removal) with respect to the values observed in the
original non-damaged network. Note that effects on path length are
positive (i.e. reflecting an increase in path length after removal of an

et al. 2000; Chatterjee and Sinha 2008; Sporns et al. 2007,
van den Heuvel and de Reus 2014), the examined rat
connectome showed above random levels of clustering and
community structure, indicating the formation of anato-
mical communities that show overlap with known func-
tional domains in the rat brain (e.g. visual, motor, auditory,
frontal networks). In addition to the formation of clustered
communities, the network showed the existence of
relatively short communication pathways with node pairs
from different communities no further apart than three
consecutive steps, together indicative of an efficient small-
world modular organization. Moreover, again confirming
several previous observations, the rat neural network re-
vealed the existence of a set of high degree, highly central
hub nodes forming a densely connected rich club (e.g. van

weight class

edge), while effects on clustering, global and local communicability
are negative (i.e. reflecting a decrease in metric after removal of an
edge). Note that all metrics were computed on the binary rat network
(i.e. with reported effects reflecting the difference between before and
after the removal of a single connection of a specific weight class,
averaged over all connections in each class), suggesting that the
reported effects are related to the impact on the topological
organization of the network, with the weight of edges only used to
categorize network connections into the different connection classes

den Heuvel and Sporns 2011; Sporns et al. 2007; Towlson
et al. 2010; Harriger et al. 2012; Collin et al. 2013; Grayson
et al. 2014; Zamora-Lopez et al. 2009). Rich club hub
nodes were found to be highly spatially distributed across
the brain and to include cortical areas in the far majority of
observed communities (Grayson et al. 2014; de Reus and
van den Heuvel 2013; van den Heuvel and Sporns 2013a).
Validating previous observations in the human connectome
-based on in vivo diffusion weighted imaging- connections
spanning between rich club nodes revealed several distinct
properties as compared to the other classes of connections.
Rich club connections (purely selected on basis of topo-
logical properties of their connecting nodes) spanned sig-
nificantly longer physical distances than connections
spanning between peripheral nodes, involved a large
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proportion of the total macroscale wiring cost, were most
often intermodular of character, and involved significantly
more bidirectional projections than pathways linking pe-
ripheral nodes. Notably, the class of rich club connections
showed significantly higher connectivity strength than the
class of feeder and local projections, an effect not just
driven by strong short-range connections, as also in par-
ticular the subclass of long-range (e.g. top 10 % of longest
connections) rich club connections revealed significantly
stronger connections than local connections. Further
categorizing the edges of the network on basis of whether
they spanned between nodes of the same or spanned be-
tween nodes of different modules, revealed a strong con-
tribution of rich club edges to the class of intermodular
edges, underscoring the rich club’s role in intermodular
communication (Zamora-Lopez et al. 2010; van den Heu-
vel and Sporns 2013b).

Second, extending previously reported findings on
global network features of mammalian neural networks,
our findings show evidence of a non-uniform distribution
of connectivity strength across the rat brain network.
Subclasses of edges based on projection strength are found
to show different topological properties, with edges of low
strength (the class of weak connections) showing pre-
dominantly low levels of clustering, low community
structure and to form relatively short communication paths.
In contrast, high strength connections (the class of strong
and very strong connections) showed high levels of clus-
tering, strong community formation and relatively large
subgraph paths. In addition, the weakest class of connec-
tions was found to have a relative high impact on (binary
measured) global communication paths together with a
relative low impact on global network clustering, sug-
gesting a relative widespread and relative unique distribu-
tion of these connections across the network (Fig. 8).
Speculating on these findings, such a distribution suggest a
potential random organization of weaker neural pathways
and a relatively ordered organization of stronger connec-
tions in the mammalian brain (de Lange et al. 2014). These
findings coincide with observations from developmental
studies, noting widespread—possibly somewhat random-
termination zones of long-range corpus callosal tracts at
birth (day 4, as observed in the visual system of the cat),
followed by a relatively short period (~days to weeks) in
which rapid spatial specialization of cortico-cortical tracts
and their termination zones occurs (Huttenlocher and
Dabholkar 1997). Such an initial overgrowth of macro-
scopic connectivity in the pre-term developing brain is
supported by empirical observations in the young rhesus
monkey, revealing the highest axonal connection count of
corpus callosal fibers at birth, followed by a decrease (up to
70 %) in axonal number in the first postnatal weeks
(LaMantia and Rakic 1994). In context of these
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developmental findings, a speculative hypothesis on the
basis our current observations of weak macroscale pro-
jections in the adult mammalian brain showing a wide-
spread and relatively random organization may include the
notion that the class of weak connections are somewhat
‘left-over’ —and thus potentially non- or less functional—
pathways from a macroscale pruning period during brain
development (van den Heuvel et al. 2014; Collin and van
den Heuvel 2013). Following this hypothesis, potentially
the strongest connections, as observed in the rat brain, are
the pathways that have been subject to strong activation
and activity during later development, strengthening their
functional role in the total system and potentially leading to
stronger anatomical pathways in the adult brain.

With their central embedding in brain networks, neural
rich club hub nodes have been suggested to play an im-
portant role in shaping and routing global processes in
neural systems (van den Heuvel et al. 2012; Zamora-Lopez
et al. 2010). Their dense level of mutual connectivity has
lead to the hypothesis that high degree regions do not work
in isolation, but rather form a central anatomical infras-
tructure for neural communication and information inte-
gration, and thus potentially form an anatomical substrate
of a neural ‘global workspace’ (Dehaene et al. 1998;
Harriger et al. 2012; van den Heuvel and Sporns 2013a).
Also in the current study of the rat connectome the neural
rich club is found to stand out as an ideal candidate for
such a central backbone for global integrative neural
processes.

In addition, extending observations of hub and rich club
formation in mammalian cortical brain networks (Zamora-
Lopez et al. 2009; de Reus and van den Heuvel 2013;
Sporns et al. 2007; Harriger et al. 2012; van den Heuvel
and de Reus 2014), the rat connectome dataset now also
includes information on anatomical connectivity of deeper
gray matter structures, revealing an above average number
of connections of hippocampal (CA1, centrality score of 3)
and amygdala nuclei (LA, BMAp, centrality score of 3;
BLADp, centrality score of 4). These findings provide tract-
based support for preliminary observations of rich club
formation in the human brain based on in vivo diffusion
imaging data, suggesting a high number of macroscale
connections of subcortical structures such as the amygdala,
hippocampus and thalamus. A participation of subcortical
regions in a high degree club of regions is of course con-
sistent with numerous reports of these regions to form
critical brain areas involved in memory and global infor-
mation relaying.

As mentioned, imaging derived estimates of aspects
related to ‘cost of wiring’ in human brain networks have
suggested that hub regions and their connections may form
a high cost neural structure, involving a large proportion of
long-range projections, as well as pathways of high
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connectivity strength, high white matter volume, and high
levels of microstructure (van den Heuvel et al. 2012; Collin
et al. 2013). These observations have primarily been made
on the basis of in vivo imaging-based markers which can at
best, as noted (see for example for review Jones 2008;
Johansen-Berg and Rushworth 2009; Jbabdi and Johansen-
Berg 2011) only provide a crude estimate of the connec-
tivity strength of white matter pathways. The current tract
tracing based findings in the rat connectome are however in
clear support of these earlier diffusion based observations:
white matter pathways between rich club regions are again
found to display on average a significantly higher con-
nectivity strength as compared to other white matter
pathways, to be most often bidirectional, and to span longer
physical distances. Our findings thus provide important
tract tracing validation of earlier neuroimaging-based ob-
servations, suggesting that neural hubs and their connec-
tions form a high cost feature of brain architecture (van den
Heuvel et al. 2012; Bullmore and Sporns 2012). A high
cost character of neural hubs and their connections may
lead to the hypothesis of a —to some extend- potential
concentration of connectivity to central regions in neural
systems. In the rat dataset, the number of low versus high
strength connections of nodes are observed to significantly
correlate with the total number of nodal connections, with
high degree regions showing (on average) more high-
strength connections than low-strength connections. Across
all individual connections the connectivity strength of
pathways is observed to increase with the combined degree
of the target and source regions of a connection, suggesting
that pathways that span between higher degree regions also
have a higher probability of displaying stronger axonal
pathways. These findings thus suggest that neural hubs and
their connections are not only ‘rich’ in term of their number
of pathways, but also in terms of above average projection
strength of their connections.

Studies have reported on an efficient communication
architecture of the neural systems of several mammalian
species, including the mouse, cat, macaque, chimpanzee
and human brain. While general caution is warranted when
assuming homology across species (Sereno and Tootell
2005), studies have consistently reported on a consistent
modular structure of mammalian neural systems (e.g.
Hagmann et al. 2008; Stephan et al. 2000; Salvador et al.
2005; Damoiseaux et al. 2006; van den Heuvel et al.
2008a), as well as reported on the formation of neural hubs
with relative large overlap in both their spatial and their
topological position in the overall network (e.g. Sporns
et al. 2007; Bullmore and Sporns 2012; Tomasi and
Volkow 2010). Furthermore, comparing macroscale neural
networks across mammalian species has revealed consid-
erable overlap in their global architecture (e.g.Goulas et al.
2014; van den Heuvel and Sporns 2013b) which, together

with the current observations, tends to suggest the exis-
tence of a set of biological rules that influence the global
organization of macroscale wiring of neural systems and
potentially a common mode of functioning of neural sys-
tems across (mammalian) species. However, the apparent
overlap in global wiring pattern also brings up the question
of potential differences in more fine-grained aspects of
brain connectivity. Besides overlap, studies have noted
across-species differences in the connectivity profiles of
specific regions (e.g. Li et al. 2013; Neubert et al. 2014),
showing for example clear differences in the connectivity
fingerprints of frontal regions of the human and macaque
brain. Future studies expanding such investigations, fo-
cusing on potential differences in the global wiring archi-
tecture of neural systems between human and other species
are of particular interest.

Some points should be taken into consideration when
interpreting the findings of this study. First, the BAMS rat
brain dataset -similar to other pioneering endeavors to map
the connectomes of the cat, macaque, mouse brain and
nervous system of the C Elegans- comprises the recon-
struction of a connectome based on the aggregation of data
from a large number injection experiments and does not
involve the reconstruction of a macroscale connectome of a
single specimen (van den Heuvel and de Reus 2014;
Scannell et al. 1995; Stephan et al. 2001). The examined
connectome dataset thus does not provide information on
individual variation of brain wiring. In addition, the
BAMS-II database does not yet include information on
connectivity (or absence of connectivity) on all region-to-
region pairs, and database updates incorporating informa-
tion on more and more connection pairs are thus regularly
made (Bota et al. 2012; Bota and Swanson 2007). Second,
it is important to note that the examined rat connectome
dataset (that is, how we used it) only represents information
on intra-hemispheric connectivity (with tract-tracing data
across the left and right hemisphere combined), and the
absence of information on corpus callosal tracts is likely to
influence the graph theoretical analysis. Callosal tracts are
known to involve a large proportion of all white matter
tracts (Schamahmann and Pandya 2006) and to play an
important role in interhemispheric functional connectivity
and communication (e.g. (LaMantia and Rakic 1990; Lowe
et al. 2008; Pandya et al. 1971; Wahl et al. 2007; Verstraete
et al. 2011; van den Heuvel and Hulshoff Pol 2010b).
Notably, a recent tract tracing study in the adult mouse
brain revealed an intriguingly high level of inter-hemi-
spheric connectivity as well as a potential non-trivial or-
ganization of these projections (Oh et al. 2014),
highlighting an important role for these connections in
global connectome structure.

Further corroborating on emerging evidence of an effi-
cient communication architecture of neural systems, our
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findings suggest a non-uniform distribution of the con-
nectivity strength across white matter pathways in neural
systems, with weak connections showing a predominantly
random-like organization and strong connections showing
high levels of local organization. Anatomical connections
between high degree hub nodes are observed to show on
average a higher connectivity strength as compared to other
types of connection pathways, further extending the notion
of neural hubs to form a high cost, high capacity infras-
tructure in the mammalian brain. Future studies examining
whether and if so to what extent weak and strong pathways
differ in their macroscale neuroarchitectonics might pro-
vide important insights into the hypothesized dispropor-
tionally high vulnerability of high degree regions and their
connections in disease processes (van den Heuvel and
Sporns 2013b; Crossley et al. 2013, 2014).
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