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Background
Plankton refers to organisms that are living in water bodies (such as oceans, lakes, riv-
ers and ponds) freely drifting and weakly mobile (Abdllaoui et  al. 2002; Odum 1971). 
Plant forms of plankton community are known as phytoplankton, they serve as the 
basic food source and occupy the first trophic level of all aquatic food chains. Animals 
in the plankton community are known as zooplankton. They consume phytoplankton 
which are their most favourable food source. Phytoplankton are not only the basis for 
all aquatic food chains, but also they do huge services for our earth by supplying the 
essential oxygen and absorbing the harmful carbon dioxide which contributes to global 
warming (Odum 1971). In addition to these benefits phytoplankton act as the biological 
indicators of water quality. Excess blooming of the phytoplankton will deteriorate the 
water quality. For example, increase of phytoplankton population in lakes (reservoirs), 
especially the extension of the growing season and over growing of the cyanobacteria are 
important causes for eutrophication in lakes. Eutrophication refers to the enrichment 
of an ecosystem with chemical nutrients such as nitrogen, phosphate and so on, lead-
ing to the over growth of biomass and their rapid reproduction in water bodies. This 
leads to the decrease of dissolved oxygen in water, which in turn results in the death of 
aquatic organisms. These dead aquatic organisms get settled at the bottom of the lake 
and then decomposed by microorganisms which once again consume a large amount 
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of dissolved oxygen. Consequently, the dissolved oxygen content of the water body is 
further reduced and the water quality deteriorates further. This process affects the sur-
vival of aquatic organism and greatly accelerates the process of eutrophication in water 
bodies. The occurrence of the eutrophication, because of a large amount of reproduction 
of plankton, often makes the water bodies appear in different colors such as blue, red, 
brown, white, and so on. This phenomenon occurring in water bodies is called “algae 
bloom” and “red tide” in sea. These algae are foul smelling, poisonous and can’t be eaten 
by fish. And also they prevent sunlight from reaching the submerged plants and leading 
to their death by hindering their photosynthesis. These dead submerged plants releasing 
nitrogen, phosphorus and other nutrients after decaying and then the algae use these 
nutrients. Because of the high biomass accumulation or the presence of toxicity, some 
of these blooms, more adequately called “harmful algal blooms” (Smayda 1997), are nox-
ious to marine ecosystems or to human health and can produce great socioeconomic 
damage. Therefore, the study of marine plankton ecology is an important consideration 
for the survival of our earth.

Due to the difficulty of measuring plankton biomass, mathematical modeling of plank-
ton population is an important alternative method of improving our knowledge of the 
physical and biological processes relating to plankton ecology (Edwards and Brindley 
1999). The problems of zooplankton–phytoplankton systems have been discussed by 
many authors (Rose 2012; Saha and Bandyopadhyay 2009; Chakraborty and Dasb 2015; 
Yunfei et  al. 2014; Rehim and Imran 2012; Ruan 1995) in resent years. These systems 
can exhibit rich dynamic behavior, such as stability of equilibria, Hopf bifurcation, global 
stability, global Hopf bifurcation and so on. However, the importance of nutrients to 
the growth of plankton leads to explicit incorporation of nutrients concentrations in 
the phytoplankton–zooplankton models. Therefore, a better understanding of mecha-
nisms that determine the plankton is to consider plankton–nutrient interaction mod-
els. Recently, a nutrient–plankton model system for a water ecosystem is proposed by 
Fan et al. (2013) and its global dynamics behavior under different levels of nutrient has 
been studied. He and Ruan (1998), Zhang and Wang (2012), Pardo (2000) studied nutri-
ent–phytoplankton interaction model and observed the global behavior of the system. 
Huppert et  al. (2004) studied a simple nutrient–phytoplankton model to explore the 
dynamics of phytoplankton bloom. Huppert et al. (2004) provided a full mathematical 
investigation of the effects of three different features in an excitable system framework.

The understanding of the dynamic of plankton–nutrient system becomes complex 
when additional effects of toxicity (caused due to the release of toxin substances by 
some phytoplankton species known as harmful phytoplankton) are considered. The role 
of toxin and nutrient on the plankton system have been discussed by many researchers 
(Chakarborty et al. 2008; Pal et al. 2007; Khare et al. 2010; Jang et al. 2006; Chowdhury 
et al. 2008; Upadhyay and Chattopadhyay 2005; Chatterjee et al. 2011).

Time delays of one type or another have been incorporated into biological models 
by many researchers (Aiello and Freedman 1990; Chen et  al. 2007; Cooke and Gross-
man 1982; Hassard et al. 1981; Song et al. 2004). In general, delay differential equations 
exhibit much more complicated dynamics than ordinary differential equations since 
a time delay could cause a stable equilibrium to become unstable and induce oscilla-
tions and periodic solutions. Therefore, more realistic models of population interactions 
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should take into account the effect of time delays. The interaction of plankton–nutri-
ent model with delay due to gestation and nutrient recycling has been studied by Ruan 
(1995) and Das and Ray (2008). Chattopadhyay et  al. (2002) proposed and analysed a 
mathematical model of toxic phytoplankton–zooplankton interaction and assumed that 
the liberation of toxic substances by the phytoplankton species is not an instantaneous 
process but is mediated by some time lag required for maturity of species. Extending the 
work of Chattopadhyay et  al. (2002), Saha and Bandyopadhyay (2009) and Rehim and 
Imran (2012) have studied the global stability of the toxin producing phytoplankton–
zooplankton system.

The effect of nutrient recycling on food chain dynamics has been extensively studied. 
Nisbet et al. (1983), Ruan (1993), Angelis (1992) and Ghosh and Sarkar (1998) studied 
the effect of nutrient recycling for ecosystem. In their model the nutrient recycling is 
considered as an instantaneous process and the time required to regenerate nutrient 
from dead organic is neglected. Beretta et al. (1990), Bischi (1992) and Ruan (2001) stud-
ied nutrient recycling model with time delay. They have performed a stability and bifur-
cation analysis of the system and estimated an interval of recycling delay that preserves 
the stability switch for the model.

In the present paper, motivated by the above work, a model for the nutrient–plankton 
consists of dissolved nutrient (N), phytoplankton (p) and herbivorous zooplankton (z) is 
considered. We assume that the functional form of biomass conversion by the zooplank-
ton is Holling type-II and the predator is obligated that is they dose not take nutrient 
directly. The toxic substance term which induces extra mortality in zooplankton is also 
expressed by Holling type II functional form.

In order to account for the time needed by the phytoplankton to mature after which 
they can release toxins, a discrete time delay is incorporated into the system. Moreover, 
the discrete delays also indicate the partially recycled nutrient decomposed by bacteria 
after the death of biomass. The models in Fan et al. (2013)and Das and Ray (2008), time 
required to regenerate nutrient from dead organisms is neglected. Also the term of toxin 
liberation has not take into their model. But these are one of the most important features 
in the real ecosystem (Sarkara et al. 2005; Chattopadhayay et al. 2002; Mukhopadhyay 
and Bhattacharyya 2010). In comparison with literature (Fan et  al. 2013; Das and Ray 
2008), the model proposed in this paper is more general and realistic.

The organization of the paper is as follows. In next section, a nutrient–plankton delay 
differential equations with delay will be proposed and its boundedness criteria will be 
established. In “Equilibria and its stability” section, we analyze the dynamical properties 
such as existence of the equilibria and its stability, possible bifurcations with variation of 
the parameters. In “Numerical simulation” section, numerical studies of the models are 
performed to support our analytical results. Discussion are drawn in the final section.

The model
Let N(t), p(t) and z(t) are the concentration of nutrient, phytoplankton and zooplankton 
population at time t, respectively. Let N0 be the constant input of nutrient concentration 
and D be the washout rates for nutrient, phytoplankton and zooplankton, respectively. 
The constant delay parameter τ1, τ2 and τ3 are considered in the decomposition of phyto-
plankton population, zooplankton population and the discrete time period required for 
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the maturity of toxic-phytoplankton, respectively. With these assumptions, we write the 
following system of delay differential equations describing nutrient–plankton interaction

We assume that all parameters are non-negative and are interpreted as follows:

α—nutrient uptake rate for the phytoplankton
β—the maximum zooplankton ingestion rate
d1—the natural death rate of phytoplankton
d2—the natural death rate of zooplankton
m1—the nutrient recycle rate after the death of phytoplankton population 0 < m1 < 1

m2—the nutrient recycle rate after the death of zooplankton population 0 < m2 < 1

k1—the conversion factor from nutrient to phytoplankton 0 < k1 < 1

k2—the conversion factor from phytoplankton to zooplankton 0 < k2 < 1

k3—the rate of toxic substances produced by per unit biomass of phytoplankton
a—the half saturation constant
υ—the intra-specific competition coefficient or the density dependent mortality rate of 
phytoplankton population.

  • As pointed out by Holling (1965), Ma (1996) and Das and Ray (2008), the functional 
response of Holling type I is applied to lower organisms, for example, alga and uni-
cellular organism. Therefore, in this paper we let the functional response of phyto-
plankton to nutrient be Holling type I.

  • As phytoplankton is the most favorable food source for zooplankton within aquatic 
environments and the Holling type-II functional form is a reasonable assumption to 
describe the law of predation (Chattopadhyay et  al. 2002; Ludwig et  al. 1978; Das 
and Ray 2008). It is quite reasonable to assume that the law of grazing must be same 
whether it contributes toward the growth of zooplankton species or it suppresses the 
rate of grazing due to presence of toxic substances.

  • In fact, the liberation of toxic substance by phytoplankton is not an instantaneous 
phenomenon, since it must be mediated by some time lag which is required for the 
maturity of toxic-phytoplankton. However, the liberation of toxic substance at the 
time t depends on the population size of toxic phytoplankton species at time t − τ3 . 
So, the zooplankton mortality due to the toxic phytoplankton is described by the 
term p(t − τ3)z(t). In model (1), the term ρp(t−τ3)z(t)

a+p(t−τ3)
 describe the distribution of 

toxic substance which ultimately contributes to the death of zooplankton popula-
tions.

  • Our model consider that the phytoplankton have competition among themselves for 
their survival (Barton and Dutkiewicz 2010; Jana et al. 2012; Ruan et al. 2007; Wang 
et al. 2014). υp2 is the reduction term for the phytoplankton population.

(1)































dN

dt
= D(N0 − N (t))− αN (t)p(t)+m1d1p(t − τ1)+m2d2z(t − τ2),

dp

dt
= k1αN (t)p(t)− (D + d1)p(t)−

βp(t)z(t)

a+ p(t)
− υp2(t),

dz

dt
=

k2βp(t)z(t)

a+ p(t)
− (D + d2)z(t)−

k3βp(t − τ3)z(t)

a+ p(t − τ3)
.
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Here we observe that, if there is no delay (i.e., τi = 0 ) and k2 < k3, then ż < 0. If k2 > k3 
and β(k2 − k3)− (D + d2) < 0, then we also get ż < 0. Hence, throughout our analysis, 
we assume that

From the standpoint of biology, we are only interested in the dynamics of model (1) in 
the closed first octant R3

+.
In accordance with the biological meaning, the initial conditions of the system (1) are 

taken as follows

where τ = max{τ1, τ2, τ3}.
Regarding the positivity and boundedness of the solution for the system (1) we state 

the following theorem.

Theorem  1 All solutions of system (1) with initial conditions (2) are positive and 
bounded.

Proof The proof of positivity of the solutions of system (1) is easy, so we omit it here. 
As for boundedness of the solutions of (1), we define function

Derivative of X(t) with respect to system (1), we obtain

Therefore, X < N0 + ǫ for all large t, where ǫ is an arbitrarily small positive constant. 
Thus, N(t), p(t) and z(t) are ultimately bounded by some positive constant.  �

Equilibria and its stability
Equilibria

System (1) possesses three possible nonnegative equilibria, namely the extinction equi-
librium E0(N0, 0, 0), the zooplankton-eradication equilibrium E1(N ∗

1 , p
∗
1, 0) and the 

coexistence equilibrium E∗(N ∗, p∗, z∗). For the zooplankton-eradication equilibrium 
E1(N

∗
1 , p

∗
1, 0), the N ∗

1  and p∗1 satisfy the following equation:

From first equation of system (3) we have

β(k2 − k3)− (D + d2) > 0.

(2)N (0) ≥ 0, p(θ) ≥ 0, z(θ) ≥ 0 for θ ∈ [−τ , 0].

X(t) = N (t)+
p(t)

k1
+

z(t)

k1(k2 − k3)
.

X
′
(t) = D

(

N0 − N −
p(t)

k1
−

z(t)

k1(k2 − k3)

)

−
υ

k1
p2 −

d1(1−m1k1)

k1
p

−
d2(1−m2k1(k2 − k3))

k1(k2 − k3)
z < D(N0 − X).

(3)

{

DN0 − DN − αNp+m1d1p = 0,

k1αN − (D + d1)− υp = 0.

(4)N =
DN0 +m1d1p

D + αp
.
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On substituting (4) into second equation of (3) we derive that

If N0 >
D+d1
k1α

, then Eq. (5) has exactly one positive real root

where � = [Dυ + α(D + d1)− k1αm1d1]2 − 4αυD(D + d1 − k1αN0).
For the coexistence equilibrium E∗(N ∗, p∗, z∗), the N ∗, p∗ and z∗ satisfy the following 

equation:

From third equation of system (6) we have

Again from first and second equations we have

Let f (p) = αυp2 + [Dυ + α(D + d1)− k1αm1d1]p+ D(D + d1 − k1αN0). If N0 >
D+d1
k1α

, 
ak1αm2d2

β
< D < aα and 0 < p∗ < p∗1, then k1αm2d2 − β(D+αp∗)

a+p∗ < 0 and f (p∗) < 0. Thus

From above analysis we obtain the following theorem.

Theorem 2 The extinction equilibrium E0(N0, 0, 0) always exists. Furthermore, suppose 
that N0 >

D+d1
k1α

. Then the zooplankton-eradication equilibrium E1(N ∗
1 , p

∗
1, 0) exists, and 

the unique coexistence equilibrium E∗(N ∗, p∗, z∗) exists only if ak1αm2d2
β

< D < aα and 
0 < p∗ < p∗1.

In what follows, we will analysis the stability of the system (1) around different 
equilibria.

Model (1) without delay

In this subsection, we give the basic dynamical behavior of system (1) without delay.

(5)
1

D + αp

[

αυp2 + (Dυ + α(D + d1)− k1αm1d1)p+ D(D + d1 − k1αN0)

]

= 0.

p∗1 =
−[Dυ + α(D + d1)− k1αm1d1] +

√
�

2αυ
> 0,

(6)



















DN0 − DN − αNp+m1d1p+m2d2z = 0,

k1αN − (D + d1)−
βz

a+ p
− υp = 0,

(k2 − k3)βp

a+ p
− (D + d2) = 0.

p∗ =
a(D + d2)

β(k2 − k3)− (D + d2)
> 0.

(

k1αm2d2 −
β(D + αp)

a+ p

)

z = αυp2 + [Dυ + α(D + d1)− k1αm1d1]p

+ D(D + d1 − k1αN0).

z∗ =
a(k2 − k3)

(k2 − k3)(ak1αm2d2 − Dβ)+ (D + d2)(D − aα)
f (p∗) > 0,

N ∗ =
DN0 +m1d1p

∗ +m2d2z
∗

D + αp∗
> 0.
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Theorem 3  

(i)  If N0 <
D+d1
k1α

, then the extinction equilibrium E0(N0, 0, 0) is locally asymptoti-
cally stable and E0 unstable if N0 >

D+d1
k1α

.
(ii)  Suppose that N0 >

D+d1
k1α

. If p∗1 <
a(D+d2)

(k2−k3)β−(D+d2)
, then the zooplankton-eradica-

tion equilibrium E1(N ∗
1 , p

∗
1, 0) is locally asymptotically stable and E1 unstable if 

p∗1 >
a(D+d2)

(k2−k3)β−(D+d2)
.

(iii)  Suppose that the coexistence equilibrium E∗(N ∗, p∗, z∗) exists. Then it is locally 
asymptotically stable if the following inequality hold

Proof The characteristic equation about E0(N0, 0, 0) is given by

It is clear that Eq.  (8) has negative root �1 = −D < 0 and �2 = −(D + d2) < 0. So, if 
N0 <

D+d1
k1α

, then

From this we have that the extinction equilibrium E0(N0, 0, 0) is locally asymptotically 
stable. If N0 >

D+d1
k1α

 , then E0 is unstable.

The characteristic equation about E1(N
∗
1 , p

∗
1, 0) is [�− (

(k2−k3)βp
∗
1

a+p∗
1

− (D + d2))]  
[�2 − (k1αN

∗
1
− (D + d1)− 2υp∗

1
− D − αp∗

1
)�− (D + αp∗

1
)(k1αN

∗
1
− (D + d1)  

−2υp∗
1
)+ k1αp

∗
1
(αN ∗

1
−m1d1)] = 0 . If p∗1 <

a(D+d2)
(k2−k3)β−(D+d2)

, then �1 =
(k2−k3)βp

∗
1

a+p∗
1

 

−(D + d2) < 0. Further, �2�3 = 2αυp∗
2

1 + D(α + υ)p∗1 + d1αp
∗
1(1− k1m1) > 0 and 

�2 + �3 = k1αN
∗
1 − (D + d1)− 2υp∗1 − D − αp∗1 = −υp∗1 − D − αp∗1 < 0. Which 

implies that �2 < 0 and �3 < 0. Therefore, if p∗1 <
a(D+d2)

(k2−k3)β−(D+d2)
, then the zooplank-

ton-eradication equilibrium E1(N ∗
1 , p

∗
1, 0) is locally asymptotically stable and E1 unsta-

ble if p∗1 >
a(D+d2)

(k2−k3)β−(D+d2)
.

The characteristic equation about E∗(N ∗, p∗, z∗) is given by

where

(7)υ >
βz∗

(a+ p∗)2
, αN ∗ −m1d1 > 0 and

β(D + αp∗)

a+ p∗
> k1αm2d2,

(8)(�+ D)(�− k1αN0 + (D + d1))(�+ D + d2) = 0.

�3 = k1αN0 − (D + d1) < 0.

(9)�
3 + A�2 + B�+ C = 0,

A = (υ + α)p∗ + D − βp∗z∗

(a+p∗)2
,

B = k1αp
∗(αN ∗ −m1d1)− (D + αp∗)

(

βp∗z∗

(a+p∗)2
− υp∗

)

+ a(k2−k3)β
2p∗z∗

(a+p∗)3
,

C = a(k2−k3)βz
∗

(a+p∗)2

[

βp∗

a+p∗ (D + αp∗)− k1αm2d2p
∗
]

.
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If υ >
βz∗

(a+p∗)2
, αN ∗ −m1d1 > 0 and β(D+αp∗)

a+p∗ > k1αm2d2, then

Therefore, all roots of (9) have negative real parts. By the Routh–Hurwitz criterion we 
obtain that the coexistence equilibrium E∗(N ∗, p∗, z∗) is locally asymptotically stable. �

Remark 1 From above analysis we see that the input concentration of the nutrient, 
density dependent mortality rate of phytoplankton population and the death rate of the 
plankton play an important role in controlling the dynamics of the system.

After studying the local stability behavior we perform a global analysis around the 
equilibrium point.

Theorem 4 If k1 ≤ min{D+d1
m1d1

, D+d2
(k2−k3)m2d2

}, then the extinction equilibrium E0(N0, 0, 0) 
is globally asymptotically stable.

Proof Define a positive definite function

Calculating the derivative of V0 along the positive solution of system (1) we have

A = (υ + α)p∗ + D −
βp∗z∗

(a+ p∗)2
> 0;

B = k1αp
∗(αN ∗ −m1d1)− (D + αp∗)

(

βp∗z∗

(a+ p∗)2
− υp∗

)

+
a(k2 − k3)β

2p∗z∗

(a+ p∗)3
> 0;

C =
a(k2 − k3)βz

∗

(a+ p∗)2

[

βp∗

a+ p∗
(D + αp∗)− k1αm2d2p

∗
]

> 0.

AB− C =
[

(υ + α)p∗ + D −
βp∗z∗

(a+ p∗)2

][

k1αp
∗(αN ∗ −m1d1)− (D + αp∗)

(

βp∗z∗

(a+ p∗)2
− υp∗

)

+
a(k2 − k3)β

2p∗z∗

(a+ p∗)3

]

−
a(k2 − k3)βz

∗

(a+ p∗)2

[

βp∗

a+ p∗
(D + αp∗)− k1αm2d2p

∗
]

= k1αp
∗(αN ∗ −m1d1)(D + αp∗)+ (D + αp∗)2

(

υp∗ −
βp∗z∗

(a+ p∗)2

)

+
(

υp∗ −
βp∗z∗

(a+ p∗)2

)

k1αp
∗(αN ∗ −m1d1)+ (D + αp∗)

(

βp∗z∗

(a+ p∗)2
− υp∗

)2

+
(

υp∗ −
βp∗z∗

(a+ p∗)2

)

a(k2 − k3)β
2p∗z∗

(a+ p∗)3
+

a(k2 − k3)k1αβm2d2p
∗z∗

(a+ p∗)2

> 0.

V0 = N − N0 − N0 ln
N

N0
+

1

k1
p+

1

k1(k2 − k3)
z.

dV0

dt

∣

∣

∣

(1)
=

N − N0

N
Ṅ +

1

k1
ṗ+

1

k1(k2 − k3)
ż

= −
D(N − N0)

2

N
−

υ

k1
p2 +

(

m1d1 −
D + d1)

k1

)

p−
N0m1d1

N
p

+
(

m2d2 −
D + d2

k1(k2 − k3)

)

z −
N0m2d2

N
z.
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Since N(t), p(t) and z(t) are positive, if k1 ≤ min{D+d1
m1d1

, D+d2
(k2−k3)m2d2

}, then dV0
dt

∣

∣

∣

(1)
≤ 0. 

dV0
dt

∣

∣

∣

(1)
= 0 if and only if (N , p, z) = (N0, 0, 0). Thus E0 is globally asymptotically stable by 

Lyapunov–LaSalle invariance principle.  �

Remark 2 Theorem 4 shows that too low of the conversion rate of the plankton will 
cause species extinction. This is consistent with the real ecosystem.

For the globally asymptotically stability of the equilibrium E1(N ∗
1 , p

∗
1, 0), we first con-

sider the transformations N = N ∗
1 + N1, p = p∗1 + p1, z = z1. With these transforma-

tions, the model (1) reduces to

Then, (0, 0, 0) is an equilibrium point of (10). Define a positive function

where σ1 > 0, σ2 > 0 are to be chosen. Now, calculating the derivative of V1 along the 
positive solution of system (10) we have

Using the inequality

we have

(10)



























dN1

dt
= −DN1 − α(N1p1 + N ∗

1 p1 + N1p
∗
1)+m1d1p1 +m2d2z1,

dp1

dt
= k1α(N1p1 + N ∗

1 p1 + N1p
∗
1)− (D + d1)p1 −

aβp1z1

(a+ p∗1)
2
−

βp∗1z1
a+ p∗1

− 2υp∗1p1,

dz1

dt
=

(k2 − k3)βp
∗
1z1

a+ p∗1
+

(k2 − k3)aβp1z1

(a+ p∗1)
2

− (D + d2)z1.

V1 =
1

2
N 2
1 +

σ1

2
p21 +

σ2

2
z21 � 0,

dV1

dt

∣

∣

∣

(10)
= N1Ṅ1 + σ1p1ṗ1 + σ2z1ż1

= N 2
1 (−D − αp∗1 − αp1)+ σ1p

2
1

[

k1α(N
∗
1 + N1)− (D + d1)−

aβz1

(a+ p∗
1
)2

− 2υp∗1

]

+ σ2z
2
1

(

(k2 − k3)βp
∗
1

a+ p∗
1

+
(k2 − k3)aβp1

(a+ p∗
1
)2

− (D + d2)

)

+ N1p1
(

−αN ∗
1 +m1d1 + k1ασ1p

∗
1

)

−
σ1βp

∗
1

a+ p∗
1

p1z1 +m2d2N1z1.

N1p1 �
1

2
µ1N

2
1 +

1

2µ1
p21, p1z1 �

1

2
µ2p

2
1 +

1

2µ2
z21, N1z1 �

1

2
µ3z

2
1 +

1

2µ3
N 2
1 ,

dV1

dt

∣

∣

∣

(10)
�N 2

1

[

−D − αp∗1 − αp1 +
µ1

2

(

−αN ∗
1 +m1d1 + k1ασ1p

∗
1

)

+
m2d2

2µ3

]

+ p21
[

σ1k1α(N
∗
1 + N1)

− σ1(D + d1)−
aσ1βz1

(a+ p∗
1
)2

− 2σ1υp
∗
1 +

1

2µ1

(−αN ∗
1 +m1d1 + k1ασ1p

∗
1)−

µ2

2

σ1βp
∗
1

a+ p∗
1

]

+ z21

[

σ2(k2 − k3)βp
∗
1

a+ p∗
1

+
σ2(k2 − k3)aβp1

(a+ p∗
1
)2

− σ2(D + d2)−
1

2µ2

σ1βp
∗
1

a+ p∗
1

+
µ3

2
m2d2

]

.
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Set

with η1 > 0, η2 > 0. By choosing η1, η2 properly it is possible to set σ1 and σ2 such that 
dV1
dt

∣

∣

∣

(10)
� 0, that is , we can choose η1 and η2 such that

So, if (12) holds, dV1
dt

∣

∣

∣

(10)
� 0. dV1

dt

∣

∣

∣

(10)
= 0 if and only if (N1, p1, z1) = (0, 0, 0). Thus by 

Lyapunov–LaSalle invariance principle we obtain the following theorem

Theorem 5 Suppose that the equilibrium point E1(N ∗
1 , p

∗
1, 0) of system (1) exists. Then 

it is globally asymptotically stable if (12) holds, where σ1, σ2, µ1, µ2, µ3 are given by (11).

Let us consider the transformations N = N ∗ + N2, p = p∗ + p2, z = z∗ + z2. With 
these transformations, the model system (1) reduces to

Then, (0, 0, 0) is an equilibrium point of (13). Define a positive function

where δ1 > 0, δ2 > 0 are to be chosen. Now, calculating the derivative of V2 along the 
positive solution of system (13) we have

Using the inequality

(11)



















































σ1 =
αN ∗

1 −m1d1

k1αp
∗
1

− η1,

µ1 =
αN ∗

1 −m1d1 − k1ασ1p
∗
1

2σ1k1α(N
∗
1 + N1)

,

µ2 = 1,

µ3 =
m2d2

2D
,

σ2 =
σ1p

∗
1(a+ p∗1)

2aµ2(k2 − k3)p1
− η2.

(12)αN ∗
1 −m1d1 > 0,

σ2(k2 − k3)βp
∗
1

a+ p∗1
− σ2(D + d2)+

µ3

2
m2d2 < 0.

(13)



































dN2

dt
= −DN2 − α(N2p2 + N ∗p2 + N2p

∗)+m1d1p2 +m2d2z2,

dp2

dt
= k1α(N2p2 + N ∗p2 + N2p

∗)− (D + d1)p2 −
aβp2z2

(a+ p∗)2
−

aβz∗p2
(a+ p∗)2

−
βp∗z2
a+ p∗

− 2υp∗p2,

dz2

dt
=

(k2 − k3)βp
∗z2

a+ p∗
+

(k2 − k3)aβp2z2

(a+ p∗)2
+

(k2 − k3)aβz
∗p2

(a+ p∗)2
− (D + d2)z2.

V2 =
1

2
N 2
2 +

δ1

2
p22 +

δ2

2
z22 � 0,

dV2

dt

∣

∣

∣

(13)
= N2Ṅ2 + δ1p2ṗ2 + δ2z2ż2

= N 2
2 (−D − αp∗ − αp2)+ δ1p

2
2

[

k1α(N
∗ + N2)− (D + d1)−

aβz2

(a+ p∗)2
−

aβz∗

(a+ p∗)2

− 2υp∗
]

+ δ2z
2
2

(

(k2 − k3)βp
∗

a+ p∗
+

(k2 − k3)aβp2

(a+ p∗)2
− (D + d2)

)

+ N2p2
(

−αN ∗ +m1d1

+ k1αδ1p
∗)+ p2z2

(

δ2(k2 − k3)aβz
∗

(a+ p∗)2
−

δ1βp
∗

a+ p∗

)

+m2d2N2z2.

N2p2 �
1

2
ν1N

2
2 +

1

2ν1
p22, p2z2 �

1

2
ν2p

2
2 +

1

2ν2
z22, N2z2 �

1

2
ν3z

2
2 +

1

2ν3
N 2
2 ,
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we have

Set

with ζ1 > 0, ζ2 > 0. By choosing ζ1, ζ2 properly it is possible to set δ1 and δ2 such that 
dV2
dt

∣

∣

∣

(13)
� 0, that is, we can choose ζ1 and ζ2 such that

So, if (15) holds, dV2
dt

∣

∣

∣

(13)
� 0. dV2

dt

∣

∣

∣

(13)
= 0 if and only if (N2, p2, z2) = (0, 0, 0). Thus by 

Lyapunov–LaSalle invariance principle we obtain the following theorem.

Theorem 6 Suppose that the equilibrium point E∗(N ∗, p∗, z∗) of system (1) exists. Then 
it is globally asymptotically stable if condition (15) hold, where δ1, δ2, ν1, ν2, ν3 are given by 
(14).

Model (1) with delay

In this section, we discuss the asymptotic stability of coexistence equilibrium and the 
existence of Hopf bifurcations of the delayed model (1). To simplify the analysis, it is 
assumed that all the delays are of equal magnitude, i.e. τ = τ1 = τ2 = τ3, and m2 = 0, 
namely reconversion of dead zooplankton biomass into nutrient is ignored.

We need the following result which was proved in Ruan and Wei (2003) by using 
Rouches theorem and it is a generalization of the lemma in Dieudonne (1960).

Lemma 1 Consider the exponential polynomial

dV2

dt

∣

∣

∣

(13)
�N 2

2

[

−D − αp∗ − αp2 +
ν1

2

(

−αN ∗ +m1d1 + k1αδ1p
∗)+

m2d2

2ν3

]

+ p22
[

δ1k1α(N
∗ + N2)

− δ1(D + d1)−
aδ1βz2

(a+ p∗)2
−

aδ1βz
∗

(a+ p∗)2
− 2δ1υp

∗ +
1

2ν1
(−αN ∗ +m1d1 + k1αδ1p

∗)

+
ν1

2

(

δ2(k2 − k3)aβz
∗

(a+ p∗)2
−

δ1βp
∗

a+ p∗

)]

+ z22

[

δ2(k2 − k3)βp
∗

a+ p∗
+

δ2(k2 − k3)aβp2

(a+ p∗)2
− δ2(D + d2)

+
1

2ν2

(

δ2(k2 − k3)aβz
∗

(a+ p∗)2
−

δ1βp
∗

a+ p∗

)

+
ν3

2
m2d2

]

.

(14)



















































δ1 =
αN ∗ −m1d1

k1αp∗
− ζ1,

ν1 =
αN ∗ −m1d1 − k1αδ1p

∗

2δ1k1α(N ∗ + N2)
,

ν2 = 1,

ν3 =
m2d2

2D
,

δ2 =
δ1p

∗(a+ p∗)

a(k2 − k3)z∗
− ζ2.

(15)

αN ∗ −m1d1 > 0,
δ2(k2 − k3)β(ap3 + ap∗ + p∗2)

(a+ p∗)2
− δ2(D + d2)+

ν3

2
m2d2 < 0.

P(�, e−�τ1 , e−�τ2 , . . . , e−�τm) = �
n + p

(0)
1 �

n−1 + p
(0)
2 �

n−2 + · · · + p(0)n

+ (p
(1)
1 �

n−1 + p
(1)
2 �

n−2 + · · · + p(1)n )e−�τ1 + · · ·

+ (p
(m−1)
1 �

n−1 + p
(m−1)
2 �

n−2 + · · · + p(m−1)
n )e−�τm ,
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where τi ≥ 0(i = 1, 2, . . . ,m) and p(i)j (i = 0, 1, . . . ,m− 1, j = 1, 2, . . . , n) are constants. 
As (τ1, τ2, . . . , τm) vary, the sum of the orders of the zeros of P(�, e−�τ1 , e−�τ2 , . . . , e−�τm) 
on the open right half plane can change only if a zero appears on or crosses the imaginary 
axis.

From “Model (1) without delay” section 3.2 we know that the coexistence equilibrium 
E∗(N ∗, p∗, z∗) is locally asymptotically stable for τ = 0 if (7) holds. For τ �= 0, the lineari-
zation of system (1) at E∗(N ∗, p∗, z∗) is

Then the associated characteristic equation of (16) is

where a1 = D + αp∗ − βp∗z∗

(a+p∗)2
+ υp∗, a2 = k1α

2N ∗p∗ − (D + αp∗)( βp∗z∗

(a+p∗)2
− υp∗)+

ak2β
2p∗z∗

(a+p∗)3
, a3 = (D + αp∗) ak2β

2p∗z∗

(a+p∗)3
, a4 = −(

ak3β
2p∗z∗

(a+p∗)3
+ k1αm1d1p

∗), a5 = −(D + αp∗)

ak3β
2p∗z∗

(a+p∗)3
.

In the following, we study the Hopf bifurcation of the coexistence equilibrium. Now 
for τ �= 0, if � = iω(ω > 0) is a root of G(�, τ ) = 0, then we have

Separating the real and imaginary parts, we have

Adding up the squares of both equations, we obtain

Denot r = ω2, then (19) becomes

where b1 = a21 − 2a2, b2 = a22 − 2a1a3 − a24 and b3 = a23 − a25 > 0. Let

By the ideal of Li and Wei (2005), Ruan and Wei (2001), Song and Wei (2004), in what 
follows, we study the distribution of the zeros of (20). From g(0) = b3 = a23 − a25 > 0 we 
can easily get the following lemma.

Lemma 2 Equation (20) has at least one negative real root.

Lemma 3 If � = b21 − 3b2 ≤ 0, then Eq. (20) has no positive roots.

(16)































dN

dt
= (−D − αp∗)N (t)− αN ∗p(t)+m1d1p(t − τ ),

dp

dt
= k1αp

∗N (t)+
�

βp∗z∗

(a+ p∗)2
− υp∗

�

p(t)−
βp∗

a+ p∗
z(t),

dz

dt
=

ak2βz
∗

(a+ p∗)2
p(t)−

ak3βz
∗

(a+ p∗)2
p(t − τ ).

(17)G(�, τ ) = �
3 + a1�

2 + a2�+ a3 + e−�τ (a4�+ a5) = 0,

−iω3 − a1ω
2 + a2ωi + a3 + [cos(ωτ)− i sin(ωτ)](a4ωi + a5) = 0.

(18)

{

a5 cos(ωτ)+ a4ω sin(ωτ) = a1ω
2 − a3,

a4ω cos(ωτ)− a5 sin(ωτ) = ω3 − a2ω.

(19)ω6 + (a21 − 2a2)ω
4 + (a22 − 2a1a3 − a24)ω

2 + a23 − a25 = 0.

(20)r3 + b1r
2 + b2r + b3 = 0,

(21)g(r) = r3 + b1r
2 + b2r + b3.
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Proof From (21) we have dg(r)
dr

= 3r2 + 2b1r + b2. Set

Then the roots of Eq. (22) can be expressed as

If � ≤ 0, then (22) has no real roots or exists one root. So the function g(r) is monotone 
increasing with r. Therefore, Eq. (20) has no positive real roots due to g(0) = b3 > 0 . �

Obviously, if � > 0, then r1 = −b1+
√
�

3  is the local minimum of g(r). Thus, we get the 
following result.

Lemma 4 Equation (20) has positive roots if and only if r1 > 0 and g(r1) ≤ 0.

Proof The sufficiency is obvious. We only need to prove the necessity. Otherwise, we 
assume that either r1 ≤ 0 or r1 > 0 and g(r1) > 0. Since g(r) is increasing for r ≥ r1 
and g(0) = b3 > 0, g(r) has no positive real zeros for r1 ≤ 0. If r1 > 0 and g(r1) > 0 , 
since r2 = −b1−

√
�

3  is the local maximum value, it gives that g(r1) < g(r2). Hence, by 
g(0) = b3 > 0 we obtain that g(r) has no positive real zeros. This completes the proof. �

From above discussion, we get the following lammas.

Lemma 5 Suppose that r1 is defined by (23). 

(a)  Eq. (20) has at least one negative real root.
(b)  If � = b21 − 3b2 ≤ 0, then Eq. (20) has no positive roots.
(c)  Eq. (20) has positive roots if and only if r1 > 0 and g(r1) ≤ 0.

Assume that Eq. (20) has positive roots. Without loss of generality, we suppose that it 
has two positive roots, denoted by u1, u2, respectively. Then (19) has two positive roots, 
say

By (18) we have

Let

where k = 1, 2; j = 0, 1, 2, ....

(22)3r2 + 2b1r + b2 = 0.

(23)r1,2 =
−2b1 ±

√

4b21 − 12b2

6
=

−b1 ±
√

b21 − 3b2

3
=

−b1 ±
√
�

3
.

ω1 =
√
u1, ω2 =

√
u2.

cos(ωkτ ) =
a4ω

4
k + (a1a5 − a2a4)ω

2
k − a3a5

a24ω
2
k + a22

, k = 1, 2.

τ
j
k =















1
ωk

�

arccos

�

a4ω
4
k+(a1a5−a2a4)ω

2
k−a3a5

a24ω
2
k+a22

�

+ 2jπ

�

for sin
�

ωkτ
j
k

�

> 0,

1
ωk

�

2π − arccos

�

a4ω
4
k+(a1a5−a2a4)ω

2
k−a3a5

a24ω
2
k+a22

�

+ 2jπ

�

for sin
�

ωkτ
j
k

�

< 0,
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Then ±iωk is a pair of purely imaginary roots of (17), τ = τ
j
k. define

Therefore, applying Lemmas 1 and 5 to (17), we obtain the following lemma.

Lemma 6 Suppose that the inequality (7) holds. Then we have

(a)  If � = b21 − 3b2 ≤ 0, then all roots of equation (17) have negative real parts 
for all τ ≥ 0.

(b)  If � = b21 − 3b2 > 0, r1 > 0 and g(r1) ≤ 0, then Eq. (17) has a pair of imagi-
nary roots ±iω0. Furthermore, if τ ∈ [0, τ0), then all roots of equation (17) 
have negative real parts.

Let �(τ ) = ξ(τ )+ iω(τ) be the root of (17) near τ = τ0 satisfying ξ(τ0) = 0, 
ω(τ0) = ω0 . Let r0 = ω2

0. Then we have the following transversality condition.

Lemma 7 Suppose g ′(r0) �= 0. If the conditions of Lemma  6 (b) are satisfied, then 
dRe�(τ0)

dτ
�= 0, dRe�(τ0)

dτ
 and g ′(r0) have the same sign.

Proof Differentiating (17) with respect to τ, we obtain

It follows that

Then

From (19), we have

τ0 = τ 0ko = min
k∈1,2

{τ 0k },ω0 = ωk0 .

d�

dτ

[

3�2 + 2a1�+ a2 − τ (a4�+ a5)e
−�τ + a4e

−�τ
]

− e−�τ
�(a4�+ a5) = 0.

d�

dτ
=

e−�τ
�(a4�+ a5)

3�2 + 2a1�+ a2 − τ (a4�+ a5)e−�τ + a4e−�τ
.

[

d�

dτ

]−1

=
(3�2 + 2a1�+ a2)e

�τ + a4

(a4�+ a5)�
−

τ

�
.

Re

[

(

d�

dτ

)−1
]

τ=τ0

= Re

[

(

d�

dτ

)−1
]

�=iω0

= Re

[

(

3(iω0)
2 + 2a1iω0 + a2

)

eiω0τ + a4

(a4iω0 + a5)iω0

]

=
ω2
0

a24ω
4
0 + a25ω

2
0

[

3ω4
0 + (2a21 − 4a2)ω

2
0 + a22 − 2a1a3 − a24

]

=
1

a24ω
2
0 + a25

g
′
(r0).
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Thus, we have

Since 1
a24ω

2
0+a25

> 0, we conclude that dRe�(τ0)
dτ

�= 0, dRe�(τ0)
dτ

 and g ′
(r0) have the same sign. 

This completes the proof.  �

Theorem 7 Suppose that the inequality (7) holds.

(a)  If � = b21 − 3b2 ≤ 0, then the coexistence equilibrium E∗ of system (1) is 
asymptotically stable for all τ ≥ 0.

(b)  If � = b21 − 3b2 > 0, r1 = −b1+
√
�

3 > 0 and g ′(r0) < 0 hold, then system (1) at 
the equilibrium E∗ is asymptotically stable for τ ∈ [0, τ0), and unstable when 
τ > τ0. System (1) undergoes a Hopf bifurcation at E∗ when τ = τ0.

Numerical simulation
To substantiate analytical findings a set of hypothetical parameter values have been con-
sidered for numerical simulation (see Table 1). Most of the parameters in Table 1 used 
by authors in Chattopadhayay et al. (2002) and Fan et al. (2013).

First, we consider the special case of system (1), that is, τ1 = τ2 = τ3 = τ and 
m2 = 0. In order to verify the results of Theorem  7, we consider τ as bifurca-
tion parameter and for case (a) taken parameters in Table  1. It is easy to compute 
that � = −159.1443 < 0. Our numerical simulations show that for all τ ≥ 0, inte-
rior equilibrium E∗(3.696, 5.6566, 19.3071) is stable. Figure  1 shows the simulation 
result for the system (1) with τ = 1. For case (b) of Theorem 7, we take parameters as 
D = 0.3(1 day−1) , N0 = 26.4mg dm−1, a = 1.5mg dm−1 and other parameters the same 
as that in Table 1. A direct computation gives � = 4.5990121 > 0, r1 = 2.07198534 > 0 

sign

[

dRe�(τ0)

dτ

]

= sign

[

dRe�(τ0)

dτ

]−1

= sign

[

1

a24ω
2
0 + a25

g
′
(r0)

]

.

Table 1 Parameter values used in numerical simulation

Parameters Symbols Values

Dilution rate D 0.4 (1 day−1)

Constant input of nutrient concentration N0 40 (mg dm−1 )

Nutrient uptake rate for the phytoplankton α 0.7 (1 day−1)

Maximum zooplankton ingestion rate β 0.6 (1 day−1)

Conversion factor from death phytoplankton m1 0.8

Conversion factor from death zooplankton m2 0.5

Natural death rate of phytoplankton d1 0.025 (day−1)

Natural death rate of zooplankton d2 0.02 (day−1)

Conversion factor from nutrient to phytoplankton k1 0.9677

Conversion factor from phytoplankton to zooplankton k2 0.9661

Toxin-production rate k3 0.0186 (day−1)

Half-saturation coefficient a 2 (mgdm−1)

Intra-specific competition coefficient υ 0.1
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and g ′
(r0) = −0.0728333887 �= 0 holds. After calculations we find the minimum value 

of the delay parameter ‘τ’ for system (1) for which the stability behaviour changes and 
the first critical values are given by τ0 = 1.7657, such that E∗(5.4818, 1.9173, 14.7487) is 
locally stable for τ ∈ [0, 1.7657) and is unstable for τ > τ0. From our analytical findings 
we have seen that E∗ is locally asymptotically stable for τ < τ0. Figure 2 shows the simu-
lation result for system (1) with τ = 1 < τ0. Interior equilibrium point looses its stability 
as τ passes through its critical value τ = τ0 and a Hopf bifurcation occurs. A periodic 
solution is depicted in Fig. 2d, e.

Next, We present some numerical results on the case of system (1) that τ1 �= τ2 �= τ3 
and m2 �= 0. Take D = 0.381 day−1, N0 = 15mgdm−1, k3 = 0.1 day−1, a = 1mgdm−1 , 
υ = 0.009 and other parameters the same as that in Table  1. With the help of this 
parameter set we obtain the interior equilibrium as E∗(3.7040, 1.8108, 6.8715) . 
Let us fix τ2 = 1, τ3 = 2 and gradually increase the value of τ1. After some calcula-
tions one can find the minimum value of the delay parameter “τ1” for the model sys-
tem (1) for which the stability behaviour changes and the first critical values are 
given by τ 01 = 3.9465, τ 11 = 6.7592 , such that E∗(3.7040, 1.8108, 6.8715) is stable for 
τ1 ∈ [0, 3.9465) and unstable for τ1 ∈ [3.9465, 6.759). Figure  3 shows the simulation 
result for the model system (1) with τ1 = 1 < τ 01 . Interior equilibrium point looses its 
stability as τ1 passes through its critical value τ1 = τ 01  and a Hopf bifurcation occurs, 
a stable Hopf-bifurcating periodic solution is depicted in Fig.  3d, e. The equilibrium 
point E∗(3.7040, 1.8108, 6.8715) remains locally asymptotically stable whenever the 
delay parameter lies in the range (6.759, 10.6156). E∗(3.7040, 1.8108, 6.8715) again 
switches from stability to instability as τ1 passes through τ1 = 10.6156 and an unsta-
ble solution for the model system (1) is shown in Fig. 4. The numerical simulations we 
have done here illustrate the stable periodic solution arising from Hopf bifurcation at 
τ 01 = 3.9465, τ 11 = 6.759 and τ 21 = 10.6156, respectively, and the switching of stability 
that occurs as the magnitude of the delay parameter increases gradually. For the above 
set of parameter values, when fixing τ1, τ3 and varying the value of τ2 or fixing τ1, τ2 and 
varying τ3 , the dynamical behavior of the system (1) explored by numerical simulation 
are the same as above, so we omit it here.
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Conclusions and discussion
In the present analysis, we have proposed and analyzed a three component model con-
sisting of nutrient, phytoplankton and zooplankton. It is assumed that the grazing on 
phytoplankton , zooplankton growth rate and the zooplankton mortality due to the toxin 
phytoplankton are Holling type II forms. According to the facts that reconversion of 
dead biomass into nutrient is not an instantaneous process, but is mediated by some 
time lag required, and the toxin liberation by the phytoplankton species also need time 
period, our model in present paper incorporate delayed nutrient recycling and delayed 
toxic liberation. In comparison with literatures (Fan et al. 2013; Das and Ray 2008), the 
model (1) in this paper is more general and realistic.

In the absence of the time delay, the dynamical behavior of system (1) was studied 
extensively around all feasible equilibria. Conditions were also derived both for the local 
and global stability of the system at all possible equilibria. Theorem 4 indicates that if 
the conversion rate from nutrient to phytoplankton and phytoplankton to zooplankton 
lower than certain values, then plankton will extinct. This result is consistent with real 
ecosystem. Theorem 5 shows that a high concentration of the input nutrient (together 
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with a high mortality rate of the zooplankton population) will cause eradication of the 
zooplankton. Theorem  6 reveals that low values of mortality rate of the both phyto-
plankton and zooplankton population ensures coexistence of the plankton. Thus, the 
concentration of the input nutrient, the mortality rate of the plankton plays a major role 
in controlling the local and global dynamics of the basic model around the various sta-
tionary states.

Next we have studied the model with discrete delay in the term modeling plankton 
recycling and the term of toxin liberation. Numerically it is shown that the behav-
ior of the system around the interior equilibrium depends on the time delay. When 
we fix time delay τi, τj and gradually increase the value of τl (i �= j �= l, i.j.l = 1, 2, 3) , 
the numerical simulations which we have performed show that there are thresh-
old limit τ kl (l = 1, 2, 3, k = 1, 2, . . .) such that as the time delay crosses the threshold 
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value τ kl , the delayed nutrient–plankton system enters into a Hopf bifurcation and 
we have a periodic orbit around the coexisting equilibrium point E∗. The interior 
equilibrium point E∗ is stable whenever τ ∈ [0, τ 1l ) ∪ [τ 2l , τ

3
l ) ∪ · · · and unstable for 

τ ∈ [τ 1l , τ
2
l ) ∪ [τ 3l , τ

4
l , ) ∪ · · · , l = 1, 2, 3. This phenomenon is known as switching of sta-

bility which arises for our model system. The most interesting as well as mathematically 
important results we have presented in this paper is the stability criteria for the Hopf-
bifurcating periodic solution by considering the discrete time lag τ as bifurcation param-
eter. These findings demonstrate the delayed effect of plankton and the cyclic nature of 
blooms in this nutrient–plankton system. This is one of the most important findings 
of our analysis. In their analysis, Fan et al. (2013) and Das and Ray (2008) were unable 
to exhibit the periodic nature of blooms by considering non-delayed nutrient–plank-
ton system. From Figs. 3c and 4c we find the solutions oscillate around E∗. Figures 3c 
and 4c show that the plankton system can occurs the peak phenomenon, which corre-
sponds to blooms, and also occurs the valley effect, which corresponds the low values of 
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phytoplankton. Our mathematical and numerical results provide certain threshold val-
ues for the delay parameters for which we can maintain a stable situation for all the spe-
cies and can control bloom dynamics.

Now let us make a comparison with result of previous studies and present study. Fan 
et al. (2013) investigated a nutrient–plankton system with nutrient recycling from dead 
plankton, but the time required to regenerate nutrient from dead organic is neglected. 
Besides, the effects of the toxin which produced by phytoplankton did not take account 
into their model. Sharma et  al. (2014) studied a nutrient–toxin phytoplankton–zoo-
plankton model with nutrient recycling, but there is only nutrient recycling from dead 
phytoplankton and the recycling assumed to be instantaneous. The model studied by Fan 
et al. (2013) has an unique interior equilibrium E2 under the condition N0 > N1 + N̄  , 
which also ensures local asymptotic stability of the interior equilibrium E2. Our results 
shows that conditions ak1αm2d2

β
< D < aα and 0 < p∗ < p∗1 ensure the existence of the 

interior equilibrium E∗. But for locally asymptotically stability of the E∗, we need con-
dition (7). Therefore, here the coexistence equilibrium in this setting possesses more 
restrictive existence and stability condition, since they involve the intra-specific com-
petition parameter υ and toxin liberation parameter k3, see Theorems 2 and 3. The local 
and global stability of the interior equilibrium have not studied by Sharma et al. (2014). 
While the globally asymptotically stability of the interior equilibrium E2 have been 
proved by Fan et al. (2013) only for the special case of model (1) (with mi = 0, i = 1, 2) . 
In this paper, we obtained sufficient conditions which ensures for the interior equilib-
rium of the model (1.2) to be globally asymptotically stable. This can be seen as one of 
the novelty of this paper. Moreover, the results obtained by Fan et  al. (2013) indicate 
that the concentration of the input nutrient N0 and the initial conditions of the nutri-
ent–plankton model are the two important factors on the dynamics of the system behav-
ior. But here, our results obtained in this paper indicate that except for concentration 
of the input nutrient and initial values of the system (1.2), the intra-specific parameter 
and toxin liberation parameter also affect the dynamical properties of the model (1.2). 
Comparing with paper (Sharma et al. 2014), a Hopf-bifurcation arises also at the interior 
equilibrium, but the conditions for its occurrence here at E∗ are more restrictive, involv-
ing also the intra-specific competition, recycling of the zooplankton and toxin liberation. 
Besides, differently from literatures (Fan et al. 2013; Sharma et al. 2014), our numerical 
investigations show that the nutrient recycling delays can induce stability switches, such 
that the interior equilibrium switches from stable coexistence equilibrium to stale peri-
odic orbits, to stable coexistence equilibrium again and so on(see Figs. 3, 4). This phe-
nomenon is ecologically important and especially can lead to potentially dramatic shifts 
to the system dynamics. In biological terms, our finding has ecological significance in 
the estuarine system. There are jungles and forest adjacent to the estuary, which are the 
main source of productivity. The nutrients come from the litterfall which can be decom-
posed after a period of time. The tide not only collects the nutrient from the litters but 
also mixes them into the estuarine water (Wang and Wang (2007)). Our research indi-
cates that delays in the decomposition of litterfall cause destabilization of this system.

Unfortunately, we cannot give a complete mathematical analysis of the asymptotic sta-
bility of the positive equilibrium E∗ for model (1) with different delay, i.e., τ1 �= τ2 �= τ3, 
and m2 �= 0. We shall leave the problems as future work.
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