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Progressive reduction in glutamatergic transmission has 
been proposed as an important component of the illness 
trajectory of schizophrenia. Despite its popularity, to date, 
this notion has not been convincingly tested in patients in 
early stages of schizophrenia. In a longitudinal 7T mag-
netic resonance spectroscopy (1H-MRS), we quantified 
glutamate at the dorsal anterior cingulate cortex in 21 
participants with a median lifetime antipsychotic exposure 
of less than 3 days and followed them up after 6 months 
of treatment. Ten healthy controls were also scanned at 2 
time points. While patients had significantly lower overall 
glutamate levels than healthy controls (F(1,27)  =  5.23, 
P = .03), we did not observe a progressive change of gluta-
mate concentration in patients (F(1,18) = 0.47, P = .50), 
and the group by time interaction was not significant 
(F(1,27)  =  0.86, P  =  .36). On average, patients with 
early psychosis receiving treatment showed a 0.02  mM/y 
increase, while healthy controls showed a 0.06  mM/y re-
duction of MRS glutamate levels. Bayesian analysis of 
our observations does not support early, post-onset gluta-
mate loss in schizophrenia. Interestingly, it provides evi-
dence in favor of a lack of progressive glutamate change in 
our schizophrenia sample—indicating that the glutamate 
level at the onset of illness was the best predictor of the 
levels 6 months after treatment. A more nuanced view of 
glutamatergic physiology, linked to early cortical matura-
tion, may be required to understand glutamate-mediated 
dynamics in schizophrenia.
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resonance spectroscopy/Bayesian

Introduction

Glutamatergic disruption is implicated in the wide range 
of symptoms observed in schizophrenia.1–3 Specifically, 
disinhibition of the excitatory glutamatergic outputs of 
the prefrontal cortex is thought to disrupt dopaminergic 
signaling in the striatum4,5 resulting in acute psychotic 
symptoms. However, sustained disinhibition of pre-
frontal glutamatergic neurons might lead to excitotoxic 
damage with subsequent reduction in glutamate, with 
greater reductions occurring in patients with more severe 
forms of schizophrenia.6 Magnetic resonance spectros-
copy (MRS) studies in schizophrenia report higher gluta-
mate levels in younger patients at early stages while lower 
glutamate levels in older patients at later stages of illness, 
when compared to healthy controls (HC).7

A progressive pathology defined by gray matter 
changes,8–10 ventricular enlargement,11–15 and network-
level dysconnectivity16,17 is thought to be the basis of the 
longitudinal trajectory of schizophrenia. It is posited 
that glutamatergic dendritic spine reduction triggered 
by early excitotoxic processes lies at the center of such 
morphological changes.18,19 The progressive pathology 
of schizophrenia is likely limited to certain hubs of the 
brain,16 with the anterior cingulate cortex (ACC) being 
a prominent region where both structural, functional,20 
and neurochemical deficits21–24 have been consistently 
demonstrated in schizophrenia. Nevertheless, longitu-
dinal MRS studies investigating progressive glutamate 
changes in the ACC are limited.

Using 1.5T in patients at various stages of 
schizophrenia, Choe et  al25 reported a notable 

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://orcid.org/0000-0002-4838-9567
http://orcid.org/0000-0003-1640-7182
mailto:lpalaniy@uwo.ca?subject=


Page 2 of 9

P. Jeon et al

reduction in prefrontal Glx (glutamate + glutamine) 
signal 1–6 months after treatment. Théberge et al10 and 
Bustillo et al26 demonstrated static glutamate levels in 
the ACC using 4T. Merritt et  al27 also failed to see a 
progressive reduction in Glx using 3T in schizophrenia. 
When using 7T MRS, with superior specificity for glu-
tamate quantification,28 a cross-sectional association 
of  decreasing ACC glutamate with increasing age 
was observed in schizophrenia29 at an accelerated rate 
compared to healthy young adults.30 Nevertheless, to 
date, longitudinal 7T MRS studies have not been re-
ported in schizophrenia.

In this study, we tested if  (1) glutamate-mediated deficit 
indexed by ACC MRS measure of glutamate is present 
in early stages of psychosis, (2) whether this deficit pro-
gressively worsens in the first 6 months of treatment, and 
(3) if  patients show an exaggerated longitudinal decline 
compared to HC. To our knowledge, this is the first lon-
gitudinal report of 7T MRS in schizophrenia.

Methods

Participants

We recruited 21 first-episode schizophrenia (FES) 
volunteers with inclusion criteria of lifetime antipsy-
chotic exposure being less than 14  days along with 10 
healthy control volunteers, group-matched for age, 
gender, and parental socio-economic status. Patient 
volunteers were recruited from the referrals received 
by the PEPP (Prevention and Early Intervention for 
Psychosis Program) at London Health Sciences Center. 
All patients had established consensus diagnosis after 
6 months of FES by 3 psychiatrists (L.P., K.D., and pri-
mary treatment provider at PEPP) based on the DSM-5 
criteria.31 Participants whose 6-month diagnoses were bi-
polar or major depressive disorder with psychoses as well 
as suspected drug-induced psychoses were excluded from 
the study. Healthy control volunteers had no personal 
history of mental illness and no family history of psy-
chotic disorder. All participants were screened to exclude 
significant head injury, major medical illness, or MRI 
contraindications and provided written, informed con-
sent according to the guidelines of the Human Research 
Ethics Board for Health Sciences at Western University, 
London, Ontario.

MRS Acquisition and Analysis

MRS measurements were acquired using a Siemens 
MAGNETOM 7T head-only MRI scanner (Siemens, 
Erlangen, Germany) and a site-built head coil (8-channel 
transmit, 32-channel receive) at the Centre for Functional 
and Metabolic Mapping of Western University (London, 
Ontario). A 2-dimensional sagittal anatomical image (37 
slices, TR = 8000 ms, TE = 70 ms, flip-angle (α) = 120°, 
thickness  =  3.5  mm, field of view  =  240  × 191  mm) 

was used as reference to prescribe a 2.0 × 2.0 × 2.0 cm 
(8  cm3) 1H-MRS voxel on the bilateral dorsal ACC 
(figure 1). Voxel positioning was set by having the pos-
terior end of the voxel coinciding with the precentral 
gyrus and the caudal face of the voxel coinciding with 
the most caudal positioning that was not part of the 
corpus callosum. Voxel angle was set to be tangential to 
the corpus callosum. A semi-LASER 1H-MRS sequence 
(TR  =  7500  ms, TE  =  100  ms, bandwidth  =  6000 Hz, 
N  =  2048) was used to acquire 32 channel-combined, 
VAPOR32 water-suppressed spectra as well as a water-
unsuppressed spectrum to be used for spectral editing 
and quantification. During scan, participants were asked 
to rest by fixing their gaze on a white cross on a 50% gray 
background.

Using the tools outlined in Near et al,33 the 32 spectra 
were phase and frequency corrected before being 
averaged into a single spectrum to be used for all sub-
sequent analyses. QUECC34 and HSVD35 were applied 
to the spectrum for lineshape deconvolution and removal 
of residual water signal, respectively. Spectral fitting was 
done using fitMAN,36 a time-domain fitting algorithm 
that uses a nonlinear, iterative Levenberg-Marquardt 
minimization algorithm to estimate the chemical shift, 
amplitude, linewidth and phase of echo time-specific 
prior knowledge templates. The metabolite fitting tem-
plate included 17 brain metabolites: alanine, aspartate, 
choline, creatine, γ-aminobutyric acid (GABA), glucose, 
glutamate, glutamine, glutathione, glycine, lactate, myo-
inositol, N-acetyl aspartate, N-acetyl aspartyl glutamate, 
phosphorylethanolamine, scyllo-inositol, and taurine. 
No significant macromolecule contribution was expected 
due to the long echo time and hence was omitted from 
the metabolite template. Metabolite quantification was 
then performed using Barstool37 with corrections made 
for tissue-specific (gray matter, white matter, CSF) T1 
and T2 relaxations through partial volume segmentation 
calculations of voxels mapped onto T1-weighted images 
acquired using a 0.75 mm isotropic MP2RAGE sequence 
(TR = 6000 ms, TI1 = 800 ms, TI2 = 2700 ms, flip-angle 1 
(α1) = 4°, flip-angle 2 (α2) = 5°, FOV = 350 mm × 263 mm 
× 350 mm, Tacq = 9 min 38 s, iPATPE = 3 and 6/8 partial 
k-space). All spectral fit underwent visual quality inspec-
tion as well as Cramer-Rao lower bounds (CRLB) assess-
ment for each metabolite and fit parameter.

Clinical Assessments

Symptom severity was measured using PANSS-838 scale, 
on the same day as the first scan as well as the follow-up 
scan. We also quantified the overall social and occupa-
tional functioning at the time of first presentation using 
SOFAS,39 also administered on both baseline and fol-
low-up scan days. We assessed Duration of Untreated 
Psychosis (DUP) based on multiple sources of informa-
tion provided by the patient, the referring sources, and 
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caregivers as well as by reviewing clinical charts. We used 
the first emergence of positive psychotic symptoms as the 
starting point for calculating the DUP, in line with prior 
work in this regard.40

To determine cannabis use in the past 6  months, the 
Cannabis Abuse Screening Test (CAST) was used.41 The 
CAST is a 6-item Likert-scale self-report questionnaire 
which asks the participant about cannabis use and how it 
effects their daily activities and relationships. Scores range 
from 6 to 30, with higher scores indicating more cannabis 
use. To determine alcohol use in the past 6 months, the 
Alcohol Use Disorders Identification Test (AUDIT-C)42 
was used. The AUDIT-C is a 3-item Likert-scale self-re-
port questionnaire that asks the participant about al-
cohol use frequency and quantity. Scores range from 0 
to 12, with higher scores indicating more alcohol use. 
Alcohol users and nonusers were classified by AUDIT-C 
scores of 4 or more and less than 4, respectively. Lastly, 
nicotine use in the past 6 months was determined by the 
single item Fagerström Test for Nicotine Dependence 
and smoking index.43 The Fagerström test indicates 
time to the first cigarette after waking, and the smoking 
index is calculated by the number of years regularly 

smoking × the number of cigarettes per day, divided by 
20, to determine packs per year. A lower Fagerström test 
value indicates more nicotine dependence, and a higher 
smoking index indicates more nicotine use. The 10-item 
Drug Abuse Screening Test (DAST-10)44 was also em-
ployed for substances other than cannabis, alcohol and 
nicotine, though our cohort did not endorse any such use.

Statistical Analyses

All frequentist statistical tests were computed using 
IBM SPSS Statistics version 26.45 Group demographic 
differences were calculated using t tests and chi-square 
tests for continuous and dichotomous variables, re-
spectively. Repeated measure ANOVA was used to as-
sess group × time interaction (primary hypothesis), as 
well as group effect and time effect, with parameter 
estimates examined to test individual group effects. 
As age and gender are known modifiers of  glutamate 
levels, they were entered as covariates in the ANOVA 
model. Lastly, Pearson correlation was used to explore 
the correlation of  annualized, baseline-adjusted glu-
tamate change to DUP, SOFAS, as well as symptom 

Fig. 1.  (A) Axial, (B) coronal, and (C) sagittal views of MRS voxel (red square) in the dorsolateral anterior cingulate cortex (ACC) for 
glutamate measurement. (D) Sample fitted spectrum of a single participant. Fit spectrum (bolded) is overlaid on the raw spectrum with 
the residual spectrum displayed above. Individual component spectra of all 17 template-included metabolites are displayed below.
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severity at first presentation and follow-up, measured 
using PANSS-8 total score at respective time points 
in patients. Correlations between defined daily dose 
(DDD) and annualized, baseline-adjusted glutamate 
change and follow-up glutamate concentrations were 
also examined.

To investigate relationships of annualized glutamate 
with cannabis and nicotine, Pearson correlations were 
used. Glutamate change was analyzed with total CAST 
to determine relationships with cannabis, along with 
smoking index and Fagerström scores to determine nic-
otine use. To determine alcohol use, a t-test was used to 
compare glutamate change values between alcohol users 
and nonusers.

We performed a (Bayesian) hierarchical generaliza-
tion of an analysis of covariance (Bayesian ANCOVA) 
to evaluate whether there is a between-group difference 
of the effect of time on the follow-up measurement of 
glutamate concentration. We decided to use a Bayesian 
approach as an alternative to traditional frequentist test 
because it allows us to weigh the evidence in support of 
our main hypothesis relative to the evidence in support of 
the null hypothesis. We achieved this via model compar-
ison and Bayes factors (BF).46,47

We fit one saturated ANCOVA model and all possible 
reduced models comprising follow-up glutamate concen-
tration ([Glu]follow-up) as a dependent variable, Group as 
factor, and baseline glutamate concentration ([Glu]baseline) 
and Interval (days) as covariates. We compared the ev-
idence supporting this (saturated) model with the evi-
dence supporting the reduced models (including the null 
model). We relied on the largest BF10 relative to the null 

model to select the winning model. Note that we included 
[Glu]baseline as a covariate of no interest. Therefore, our 
main hypothesis was represented by the triple-interaction 
model (Group × [Glu]baseline × Interval).

In all models, the posterior distributions over 
parameters were estimated using the “generaltestBF” 
function in the “R Bayes Factor” package.48 In this data 
set, the small number of subjects in each group might 
cause the posterior distribution to be strongly influenced 
by the prior distribution. Therefore, we used informed 
“wide” priors scaled to the observed data (r-scale for each 
effect = 0.5). We report the mean and standard deviation 
for each estimate obtained from the relevant posterior 
distribution (10 000 samples) along with the 95% highest 
density interval (HDI).

Results

Demographic Data

Demographic and clinical data of subjects are shown in 
table 1. Our patient sample had a mean DUP of 29.38 
weeks (SD = 26.65 wk) and a mean antipsychotic dura-
tion of 2.95  days (SD  =  3.11 d) prior to the first scan 
session. Patient and healthy control SOFAS scores were 
significantly different (t(29)  =  12.466, P < .001). The 
time in between baseline and follow-up (FUP) scan was 
5.93  months (SD  =  1.25) for patients and 7.25  months 
(SD = 1.90) for HC.

CRLB values indicating the quality of glutamate meas-
urement was quantified for both groups. For HC glutamate 
CRLB were 3.41% (SD = 1.27%) and 3.55 % (SD = 0.89%) 
for baseline and FUP, respectively. For FES glutamate 

Table 1.  Demographic and Clinical Characteristics

Characteristic Patient Group (N = 21) Healthy Controls (N = 10) t/χ 2 P

Gender (male/female) 16/5 5/5 2.13 0.145
Marital status (Mar/S) 1/20 1/9 0.31 0.58
Inpatient at baseline (Y/N) 11/10    
Family Hx (Y/N/DN) 10/6/5    
AP exposure at baseline (M/SD; days) 2.95/3.11    
Total DDD-days at baseline scan (M/SD) 2.25/4.74    
Total DDD-days at FUP scan (M/SD) 145.68/97.56    
DUP (M/SD/median; wk) 29.38/26.65/18    
Ethnicity (Black/White/Other) 2/18/1 0/5/5 4.51 0.034a

Age (M/SD) 22.33/5.29 21.60/3.37 −0.47 0.645
SOFAS at baseline scan (M/SD) 42.33/12.84 83.70/5.62 12.47 0.000
SOFAS at FUP scan (M/SD) 61.25/9.85 85.10/3.21 9.83 0.000
PANSS-8 total at baseline scan (M/SD) 24.67/5.30    
PANSS-8 total at FUP scan (M/SD) 14.35/4.77    
Smoker (yes/no) 6/15 0/10 3.54 0.060
Cannabis user (yes/no) 13/8 0/10 10.66 0.001
Time between scans (M/SD; mo) 5.93/1.25 7.67/1.90 2.63 0.021

Note: Mar, married; S, single; Y, yes; N, no; Hx, history; DN, don’t know; AP, antipsychotic; M, mean; DDD, defined daily dose; FUP, 
follow-up; DUP, duration untreated psychosis. P values for differences between groups were calculated using chi-square analyses for cate-
gorical variables and independent t tests for continuous variables.
aWhite vs non-White comparison.
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quantification, CRLB values were 3.52% (SD = 1.20%) and 
3.96% (SD  =  1.12%) for baseline and FUP, respectively. 
Thus the 2 groups had acceptable qualitative metrics for 
glutamate estimation at both time points. A sample of fitted 
spectrum is presented in figure 1. We present the concentra-
tion and CRLB of metabolites other than glutamate in the 
Supplementary Material.

Longitudinal Glutamate

Repeated measures ANOVA revealed a group effect 
(F(1,27) = 5.23, P = .03, Cohen’s d = 0.90) between FES 
(M = 6.43 mM, SD = 0.84 mM) and HC (M = 7.20 mM, 
SD  =  0.86  mM) but no effect on time (F(1,27)  =  1.21, 
P  =  .28) or group × time interaction (F(1,27)  =  0.86, 
P =  .36). Parameter estimates revealed that at baseline, 
FES had lower glutamate than HC (t(29) = 2.83, P = .009, 
Cohen’s d = 1.11), but this difference was not present at fol-
low-up (t(29) = 1.20, P = .24, Cohen’s d = 0.41). A simple 
contrast of time in each group revealed no significant 
effect in both the healthy control group (F(1,7) = 0.25, 
P = .63, Cohen’s d = 0.41) and in patients (F(1,18) = 0.47, 
P = .50, Cohen’s d = .003) (figure 2).

Annualized glutamate concentration values were 
not significantly different between the 2 groups 
(t(29)  =  −0.813, P  =  .423) and indicated a 0.02  mM/y 
(SD = 0.33 mM) increase in patients and a 0.06 mM/y 
(SD = 0.19) reduction in healthy controls, with the dif-
ference amounting to a small to moderate sized effect 
(Cohen’s d  =  0.26). Lastly, the time interval between 
scans in months was not related to glutamate concentra-
tion differences (FUP – baseline) in either group (HC: 
r = −.23, P = .52; FES: r = −.41, P = .06).

Glutamate vs Clinical Measures

There was no significant correlation between annualized 
glutamate concentration changes and DUP (r  =  −.07, 
P = .77), SOFAS at baseline (r = −.09, P = .70), PANSS-8 

total at baseline (r = .25, P = .28), SOFAS at follow-up 
(r = .36, P = .12), or PANSS-8 total at follow-up (r = .05, 
P  =  .84). We also did not see any correlation between 
baseline (unadjusted) glutamate concentration and DUP 
(r = .03, P = .91), SOFAS (r = −.38, P = .09), or PANSS-8 
total (r = .31, P = .17).

Across all participants, there was no significant dif-
ference in annualized glutamate change between alcohol 
users (n = 23) and nonusers (n = 6) (t(27) = 1.89, P = .07). 
No significant difference was found between alcohol users 
and nonusers when FES was considered (t(17)  =  1.37, 
P = .19) separately. No significant difference was found 
in annualized glutamate change between smokers and 
non-smokers among the FES patients (t(20)  =  −.72, 
P  =  0.63). Across all participants, there was no signifi-
cant correlation between total CAST scores (n = 28) and 
annualized glutamate change (r = −.08, P = .75). Lastly, 
there was a significant correlation between DDD at base-
line (n = 21) and annualized glutamate change (r = −.44, 
P  =  .04). There was no significant correlation between 
DDD at baseline and baseline glutamate concentration 
(r = .11, P = .64), between DDD at follow-up (n = 21) and 
follow-up glutamate concentration (r = −.16, P = .50), as 
well as between DDD at follow-up and annualized gluta-
mate change (r = −.16, P = .48).

Bayesian Statistical Analysis

After controlling for baseline values, the [Glu]follow-up in 
the FEP group was the same as in the HC group. The 
Bayesian ANCOVA model revealed that the triple inter-
action (Group × [Glu]baseline × Interval) did not perform 
better than the null model (table 2). This means that, in 

Fig. 2.  Means of glutamate concentration [mM] for healthy 
controls (HC, blue) and patients (FES, red) at baseline and 
follow-up scan sessions. Subject-level glutamate changes are 
shown in light blue for healthy controls and pink for patients. 
Asterisk denotes significant difference between means (Note: 
y-axis values do not begin at 0 for graphical purposes).

Table 2.  Bayesian Model Comparison

Model BF10

N 1.000
G 0.465
B 4.080
G + B 1.547
G + B + G × B 1.732
I 0.351
G + I 0.201
B + I 3.126
G + B + I 1.451
G + B + G × B + I 1.828
G + I + G × I 0.155
G + B + I + G × I 0.905
G + B + G × B + I + G × I 1.929
B + I + B × I 3.164
G + B + I + B × I 1.448
G + B + G × B + I + B × I 0.980
G + B + I + G × I + B × I 2.855
G + B + G × B + I + G × I + B × I 1.814
G + B + G × B + I + G × I + B × I + G × B × I 0.960

Note: BF10 is computed relative to null model. N null, B baseline, I 
interval, G group.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizbullopen/sgaa072#supplementary-data
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practice, the longitudinal change in glutamate concentra-
tion of both groups are alike.

Table  2 also shows that a model including only the 
[Glu]baseline, a model including both [Glu]baseline and Interval, 
and a model including its interaction outperformed 
the null model (BF10 > 3). However, the more complex 
models underperformed the “[Glu]baseline” model (the best 
model). This suggests that, with moderate evidence (10 > 
BF10 > 3),47 [Glu]baseline is the best predictor of [Glu]follow-up 
regardless of both follow-up measurement time and 
Group. Table  3 shows the relevant parameter estimates 
along with the 95% interval of most credible values.

Discussion

We report longitudinal 7T MRS glutamate measurements 
in FES patients who were medication-naïve at baseline. 
Although baseline glutamate concentrations were lower 
in FES compared to HC, follow-up measurements re-
vealed no difference in glutamate concentration between 
the 2 groups. Our current work supports the lower glu-
tamate concentration observed in FES compared to HC 
at baseline as reported in current literature.49 Annualized 
glutamate concentration changes also showed no differ-
ence between FES and HC. Bayesian statistical approach 
also provided evidence in favor of a lack of progressive 
glutamate change in our FES sample, indicating that 
the glutamate-mediated level at the onset of illness was 
the best predictor of the levels 6 months after treatment. 
Taken together, our results indicate that early in the illness, 
patients with schizophrenia already show abnormalities 
in ACC glutamate (baseline), which may implicate low 
glutamatergic synapse density, reduced neuroexcitatory 
transmission, or imbalance of glutamatergic activity,49 
and do not show evidence for a progressive deterioration 
in glutamate-mediated status within the first 6 months.

We observed a reduction in glutamate in the un-
treated, acute stage of schizophrenia. While Meritt 
and colleagues showed no elevation of medial frontal 
glutamate+glutamine (Glx signal) in schizophrenia,2 
Sydnor and colleagues reported a reduction in glutamate 
signal from 7T MRS49 studies in patients compared 
to controls. While these findings are somewhat coun-
terintuitive to the prevailing notion of glutamatergic 
excitotoxicity in acute psychosis, there are at least 3 pos-
sible explanations. Firstly, it is possible that glutamatergic 
excess predates acute psychosis, and is short-lived as 
compensatory metabolic pathways reset the imbalance 
by the time the first clinical presentation occurs. This is 
supported by meta-analytic observations that medial pre-
frontal Glx is higher in high-risk subjects.2,50 Secondly, it 
is possible that the excitotoxity is spatially constrained 
to regions other than the medial prefrontal cortex (eg, 
hippocampus or thalamus) though MRS studies have so 
far failed to show a consistent elevation of glutamate in 
these regions across various stages of schizophrenia.24,50–52 
Finally, it is possible that the resting-state level of MRS 
glutamate or glutamine (as shown in Supplementary 
Materials) do not capture the suspected excitotoxic 
process; dynamic measures of glutamate response for 
task-related demands (as in fMRS) may be required for a 
more complete picture.

Prior longitudinal studies at lower field strengths have 
been equivocal on the issue of  progressive glutamatergic 
reduction in schizophrenia.7 Synthesizing this longitu-
dinal literature, Egerton et  al53 noted an almost even 
split between studies that reported significant gluta-
mate decrease in at least one brain region and studies 
reported no glutamate reduction, with at least 3 fur-
ther studies showing no longitudinal glutamate reduc-
tion in the ACC after 6 weeks,27,54,55 4  months,54 and 
9  months.27 Our findings are more aligned with these 

Table 3.  Model Averaged Posterior Summary

Parameter Mean SD

95% HDI

Lower Upper

Intercept 6.617 0.205 6.209 7.020
FEP −0.074 0.178 −0.434 0.270
HC 0.074 0.178 −0.270 0.434
Baseline 0.511 0.247 0.048 1.007
Interval −0.004 0.004 −0.012 0.003
FEP × [Glu]baseline 0.149 0.225 −0.288 0.595
HC × [Glu]baseline −0.149 0.225 −0.595 0.288
FEP × Interval −0.006 0.004 −0.014 0.001
HC × Interval 0.006 0.004 −0.001 0.014
[Glu]baseline × Interval −0.005 0.006 −0.016 0.006
FEP × Interval × [Glu]baseline −0.002 0.005 −0.013 0.009
HC × Interval × [Glu]baseline 0.002 0.005 −0.009 0.013
σ2 0.964 0.276 0.560 1.626

Note: Only the Intercept, [Glu]baseline, and sig2 parameters (bolded) were granted with PP > 0.95. σ2 posterior variance of the “deflection 
parameters”, PP posterior probability.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizbullopen/sgaa072#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizbullopen/sgaa072#supplementary-data
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recent studies as well as the lack of  progressive ACC 
glutamate change reported by Bustillo et al26 (at 1, 6, 
12 months) and Théberge et al10 (10 months) at 4T. In 
contrast, Egerton et al56 observed a reduction in gluta-
mate to creatine ratios at 3T in the ACC after 4 weeks of 
antipsychotic treatment, though 2 of  the 3 sites in this 
multi-site study did not show the same effect. Kubota 
and colleagues57 recently synthesized the longitudinal 
MRS studies (1.5, 3, and 4T) in schizophrenia and re-
ported no significant glutamate (or glutamine) reduc-
tion over a median of  3.8 months, but the composite 
Glx signal decreased over time when the data from all 
frontal regions (white and gray matter, medial and lat-
eral) were combined. Most of  the ACC-focused studies 
in Kubota and colleagues’ meta-analysis comprised of 
cohorts with chronic schizophrenia. It is possible that 
patients with chronic illness are more likely to have 
glutamatergic deficits in the ACC compared to an unbi-
ased sample of  first-episode patients followed up over 
time, as in our sample. In summary, our current study 
supports the extant literature on the lack of  progressive 
glutamate changes in the ACC during the early course 
of  treatment in schizophrenia.

Our study has a number of  strengths, including the 
use of  7T scanner, and recruiting highly symptomatic, 
mostly drug-naïve individuals. Several limitations 
should also be considered when interpreting the results. 
We chose a single voxel (dorsal ACC) for the current 
6-month follow-up study. We cannot exclude the pos-
sibility of  progressive glutamate changes in different 
brain regions (as shown by Théberge et al10 and Goto 
et al58 in thalamus and basal ganglia) or in ACC over a 
longer time scale with multiple time points. MRS glu-
tamine signal is considered to reflect the synaptic pool 
of  glutamate due to the glial glutamine synthesis in re-
sponse to synaptic release of  glutamate. Our acquisi-
tion was not optimized for quantifying glutamine; we 
had high CRLB values (23.70  ± 15.93% and 26.83  ± 
12.06% for baseline and follow-up, respectively) for glu-
tamine quantification. Nevertheless, we did not see pro-
gressive glutamine changes in patients (Supplementary 
Materials), in keeping with our glutamate results.

Although we had sufficient power to detect if  paired 
differences were present in the patient group, any interac-
tion is likely underpowered. We observed a small gluta-
mate decrease in healthy control (0.06 mM/y), comparable 
to the effect size observed in Birur et al54 with 16 patients 
and 14 HC. Bayesian statistical approaches are based on 
an expected prior distribution and not influenced by the 
central limit of sample size placed on conventional sta-
tistics. Bayesian approach also confirmed the evidence 
in favor of a lack of progressive glutamate-mediated 
changes in schizophrenia. We acknowledge that the ex-
posure to treatment over 6  months period might have 
annulled a likely progressive glutamatergic reduction in 
patients. For obvious ethical reasons, we lacked a patient 

group that remained untreated for 6 months to parse the 
effects of treatment from illness stage. Finally, we noted a 
trend towards higher glutamate reduction with longer in-
terval between the scans in patients, but not in the healthy 
control group. The possibility of a delayed deficit effect 
(ie, exaggerated glutamate reduction over a longer period 
of time in patients compared to controls) requires further 
investigation in long-term follow-up studies.

In summary, this longitudinal 7T MRS study of ACC 
found a stable glutamatergic deficit that does not pro-
gressively worsen in the early stages of schizophrenia. 
This supports the possibility that the putative excitotoxic 
processes predate the first presentation of psychosis, ei-
ther in the prodromal stages or more distally during early 
development. Further, this also challenges the notion of a 
relentlessly progressive glutamate-mediated dysfunction 
in patients receiving treatment.

Supplementary Material

Supplementary data are available at Schizophrenia 
Bulletin Open online.
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