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Huntington’s disease (HD) is an autosomal dominant inherited neurodegenerative disease
characterized by progressive motor, psychiatric, and cognitive abnormalities. The antidiabetic
drug liraglutide possesses a neuroprotective potential against several neurodegenerative
disorders; however, its role in Huntington’s disease (HD) and the possible mechanisms/
trajectories remain elusive, which is the aim of this work. Liraglutide (200 μg/kg, s.c) was
administered to rats intoxicated with 3-nitropropionic acid (3-NP) for 4weeks post HD model
induction. Liraglutide abated the 3-NP-induced neurobehavioral deficits (open field and
elevated plus maze tests) and histopathological changes. Liraglutide downregulated the
striatal mRNA expression of HSP 27, PBR, and GFAP, while it upregulated that of
DARPP32. On the molecular level, liraglutide enhanced striatal miR-130a gene expression
and TrKB protein expression and its ligand BDNF, while it reduced the striatal protein content
and mRNA expression of the death receptors sortilin and p75NTR, respectively. It enhanced
the neuroprotective molecules cAMP, p-PI3K, p-Akt, and p-CREB, besides modulating the
p-GSK-3β/p-β-catenin axis. Liraglutide enhanced the antioxidant transcription factor Nrf2,
abrogated TBARS, upregulated both Bcl2 and Bcl-XL, and downregulated Bax along with
decreasing caspase-3 activity. Therefore, liraglutide exerts a neurotherapeutic effect on 3-NP-
treated rats that is, besides the upturn of behavioral and structural findings, it at least partially,
increased miR-130a and modulated PI3K/Akt/CREB/BDNF/TrKB, sortilin, and p75NTR, and
Akt/GSK-3β/p-β-catenin trajectories besides its capacity to decrease apoptosis and oxidative
stress, as well as its neurotrophic activity.
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1 INTRODUCTION

Huntington’s disease (HD) is an autosomal dominant, progressive, and devastating neurodegenerative
disorder caused by a polyglutamine expansion in exon 1 of the huntingtin gene (Htt) with the primary
site of neuron loss is at the striatal part of the basal ganglia (Agrawal and Fox, 2019; Lallani et al., 2019).
HD is a rare disease that mainly affects 5–7 individuals per 100,000 population associated with
significant morbidity and mortality (Bruzelius et al., 2019). The hallmark features of HD are the
presence of abnormal involuntary jerking and writhing movements (progressive chorea) accompanied
by cognitive decline. As a consequence, HD patients are burdened with uncontrolled motor deficits,
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cognitive impairments, and neuropsychiatric symptoms (Huguet
et al., 2019). Altered delivery of brain-derived neurotrophic factor
(BDNF) to the striatum and consequently its diminished striatal
levels are believed to underlie the high vulnerability of the striatum
to neuronal loss in HD (Suelves et al., 2019).

3-Nitropropionic acid (3-NP) is a mitochondrial toxin used to
induce HD-like symptoms in rats. This toxin irreversibly inhibits
the enzyme succinate dehydrogenase (complex II) of the electron
transport chain and Kreb’s cycle leading to selective massive loss of
GABAergic medium-sized spiny neurons (MSNs) of the striatum,
i.e., the typical pathology observed in HD (Cirillo et al., 2019).
Despite previous studies, Durães et al., (2018) and Barker and
Mason (2019) have stated that HD is still incurable with very
limited therapies that target the symptoms only, and the available
medications can only lessen somemotor, cognitive, and psychiatric
symptoms. Another work (Tabrizi et al., 2019) has recounted that
strategies that aim at decreasing huntingtin are able to modify HD,
a notion that emphasizes the importance of treating the causes of
HD rather than mitigating only its symptoms.

Incretin hormones are a group of metabolic hormones, which
are rapidly inactivated by dipeptidyl peptidase-4 (DPP-4). One
incretin of particular concern is the glucagon-like peptide-1 (GLP-
1) that can primarily cross the blood–brain barrier (BBB) to
influence quite a lot of cellular pathways within the central
nervous system (CNS). Existing research recognizes the critical
neurotrophic and neuroprotective effects of GLP-1 on increasing
the level of the BDNF in the cortex, hippocampus, and striatum to
protect against neuronal apoptosis and improve the neuronal
differentiation (Bomba et al., 2018). Hence, the implication of
GLP-1 receptors (GLP-1Rs) may afford a promising target for the
treatment of HD disease (Yang et al., 2017a).

To overcome the drawback of the short half-life of endogenous
GLP-1, several DPP-4 resistant GLP-1 analogs were developed
including liraglutide (Lira). Lira is an analog of the endogenous
humanGLP-1 with 97% of sequence homology (Sharma et al., 2018).
Lira is an approved antidiabetic drug that acts as an incretin mimetic
GLP-1R agonist and is increasingly used to improve glycemic control,
reduce the risk of heart attack, stroke, and cardiovascular death in
adults with type 2 diabetes mellitus (T2DM) (Marso et al., 2016).
Besides its documented antidiabetic effect, Lira possesses an
extrapancreatic neuroprotective potential against models of
Parkinson’s disease (Badawi et al., 2017), Alzheimer’s disease
(Zhang et al., 2019a), stroke (Zhao et al., 2018), and diabetes-
associated neurodegeneration (Filchenko et al., 2018); however, its
possible role in HD models has yet to be determined.

Based on the aforementioned data, we attempt to assess the
effect of Lira on the 3-NP-induced HD-like mode through its
ability to recover altered cognition and behavior, to restore
striatal morphology, and explore some trajectories that can be
involved in its therapeutic effect.

2 MATERIALS AND METHODS

2.1 Animals
Adult male Wistar rats weighing 250 ± 20 g were obtained from
the National Research Centre (NRC, Giza, Egypt) and were

allowed to acclimatize in the animal facility of the Faculty of
Pharmacy (Cairo University) for a week prior to starting any
experimental procedure. Rats were housed under controlled
environmental conditions of constant temperature (25 ± 2°C),
on a 12/12-h light/dark cycle. Rats were permitted free access to
standard food and water ad libitum, and all behavioral tests were
carried out in a sound isolated laboratory. The protocols used in
this study complied with “The Guide for Care and Use of
Laboratory Animals” published by the US National Institutes
of Health (NIH publication no. 85–23, revised 2011) and were
approved by the Ethics Committee for Animal Experimentation
at Faculty of Pharmacy, Cairo University (permit number: PT
2099). All efforts were made to minimize animal suffering and to
reduce the number of animals used.

2.2 Drugs and Chemicals
3-NP was purchased from Sigma-Aldrich (St. Louis, MO, USA),
freshly prepared daily in normal saline, and neutralized to pH
7.4 with NaOH. It was administered through intraperitoneal
(i.p.) route to each animal at a dose of 10 mg/kg body weight.
The selection of dose and duration of 3-NP administration was
based on published studies (El-Abhar et al., 2018). Liraglutide
(Lira) was purchased as a raw material from Sigma-Aldrich
Chemical Co. (St. Louis, MO, USA), and the dose was chosen
after performing a pilot study in which three different dose
levels (50, 100, and 200 μg/kg/day) were injected
subcutaneously (s.c.) for 4 weeks (Dong et al., 2017), and
different parameters were assessed to aid in dose selection;
viz., neurocognitive behavioral tests, body weight,
histopathological changes, and striatal contents of
phosphorylated cAMP response element-binding protein
(p-CREB) and BDNF. Since BDNF can be detected in several
brain regions, namely, the cortex, striatum, and hippocampus,
the content of BDNF was assessed in these areas in the different
groups. According to the results of the pilot study (data not
shown) a dose of 200 μg/kg and the striatal area were used for
the core study parameters. The concentration of the drugs in the
prepared solutions was adjusted, so that the required dose for
each 200 g rat was found in 2 ml. All other reagents used were of
analytical grade.

2.3 Experimental Design
As depicted in Figure 1, 60 rats were randomly allocated into one
of four treatment groups (n � 15) by a technical assistant who was
not involved in the analysis. Animals in groups 1 and 2 were
injected with normal saline (i.p.) for 14 days, this was followed by
s.c administration of saline or Lira, respectively, for another
28 days. In groups 3 and 4, rats received 3-NP (10 mg/kg
dissolved in 0.9% saline; i.p.) for 14 days, followed by an s.c
injection of either normal saline or Lira for another 28 days. At
the end of the study period, all animals were subjected to
behavioral tests that were arranged from the least stressful
(open-field test; OFT) to the more stressful (elevated plus
maze test; EPM) test with a 2-h rest period between the two
tests. All behavioral tests were carried out in an attenuated sound
testing room with dim light starting at 6.00 p.m., during the light
cycle of the animal.
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Afterward, the rats in each group were divided into three
subsets and then euthanized by an overdose of thiopental
(100 mg/kg). The brains were then rapidly harvested, and the
striata were dissected out and stored at −80°C until analysis using
ELISA (n � 6), Western blot (n � 3), and RT-qPCR (n � 3). For
the histopathological study, the whole brains of the other three
representative animals were fixed in 10% (v/v) formalin.

2.4 Assessment of Parameters
2.4.1 Body Weight
The body weight was measured on the first and last days of the
experiment, and the percentage change was calculated in
comparison with the initial measurement on the first day as
follows:

% Change in body weight � [(weight on day 42 − initial weight)/ initial weight] × 100

2.4.2 Behavioral Assessments
2.4.2.1 Open Field test
The spontaneous locomotor behaviors were assessed using the
OFT in which each rat was placed individually into the center of
the open field apparatus composed of a square black wooden box
(80 × 80 × 40 cm) with smooth polished floor divided into 16
squares 4 × 4 by yellow lines. Summarily, each animal was gently
placed in the center of the open field and remote monitored using
an overhead camera for 5 min. The apparatus floor and walls were
wiped and cleaned after each tested animal with a wet sponge and
a dry paper towel to eliminate possible bias due to odors left by
previous rats. During the 5-min period, the latency in leaving the
starting square and the ambulation (number of squares crossed),
grooming, and rearing (number of attempts the animal stretched
on its hind limbs with or without forelimb support) frequencies
were measured. A line crossing was counted when all four paws
crossed over the line (Thangarajan et al., 2016).

2.4.2.2 Elevated Plus Maze Test
Rats were subjected to the EPM using the method described by
Kumar et al. (2017) to assess memory retention and cognitive
function of the animals. The apparatus consisted of two opposite

open arms (50 × 10 cm), crossed with two closed arms of the same
dimensions with 40-cm-high walls, connected by a central square
(10 × 10 cm); the maze was elevated to a height of 50 cm from the
floor. On the first day, each rat was placed individually at one end
of an open arm, and the time taken by the rat to move from the
open arm to one of the closed arms was recorded as the initial
transfer latency (ITL). The rat was allowed to explore themaze for
30 s before being returned to its home cage. In case the animal
failed to enter the closed arm within 90 s, the animal was gently
pushed into the closed arm, and the ITL for that animal was
assigned as 90 s. The retention latency was noted again on the
following day, and the percent retention of memory was
calculated by the following formula:

[Transfer latency(day 42 − day 43)/Transfer latency(day 42)] × 100

2.4.3 Biochemical Measurements
2.4.3.1 Parameters Assessed by ELISA
The ELISA kits purchased from MyBiosource, Inc. (Southern
California, San Diego, CA, United States) were used for
estimating the striatal contents of cyclic adenosine
monophosphate (cAMP; cat#: MBS018906), BDNF (cat#:
MBS355345), and nuclear factor E2-related factor 2 (Nrf-2;
cat#: MBS752046), whereas striatal content of thiobarbituric
acid reactive substances (TBARS) was measured using a rat
ELISA kit (cat#:MD 25 28) purchased from Bio-Diagnostics
(Worcestershire, UK). For the determination of caspase-3
activity (cat# ab39401), the corresponding ELISA kit was
purchased from Abcam (Cambridge, UK). For all parameters,
the assays were performed according to the protocol of the
manufacturer. The protein content was quantified according to
the method described by Bradford (Camby et al., 2002).

2.4.3.2 Quantitative Real-Time Polymerase Chain Reaction
Total RNA was extracted and purified from the homogenized rat
striatal tissue using Qiagen tissue extraction kit (Qiagen, USA),
and the purity (A260/A280 ratio) and the concentration of RNA
were obtained using spectrophotometry (dual wavelength
Beckman, Spectrophotometer, USA). The total RNA (0.5–2 μg)

FIGURE 1 | Schematic presentation of the experimental design. The 3-nitropropionic acid (3-NP) (10 mg/kg, i.p.) was injected daily for 14 days, followed by
4 weeks of daily administration of liraglutide (200 μg/kg, s.c.). On days 42 and 43, animals were subjected to behavioral tests and killed on day 43.
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was used for cDNA conversion using high-capacity cDNA reverse
transcription kit (Fermentas, USA) according to the instructions
of the manufacturer. Quantitative RT-PCR was performed to
assess the gene expression of the glial fibrillary acidic protein
(GFAP), heat shock protein 27 (HSP27), dopamine- and cAMP-
regulated phosphoprotein (DARPP-32), peripheral
benzodiazepine receptor (PBR), p75 neurotrophin receptor
(p75NTR), BCL2-associated X (Bax), B-cell lymphoma 2
(Bcl2), B-cell lymphoma-extra large (Bcl-XL), and miR-130a
using SYBR Green I. The qPCR amplification and analysis
were performed using an Applied Biosystem with software
version 3.1 (StepOne™, USA) according to the instructions of
the manufacturer. Briefly, 3 μl of random primers (Table 1) were
added to the 10 μl of RNA, which was denatured for 5 min at 65°C
in the thermal cycler. The RNA primer mixture was cooled to 4°C,
and the cDNA master mix was prepared according to the kit
instructions and added (19 μl) to each sample; this was added to
the 13 μl of RNA-primer mixture resulting in 50 μl of cDNA. The
last mixture was incubated in the programmed thermal cycler for
1 h at 37°C followed by inactivation of enzymes at 95°C for 10 min
and finally cooled at 4°C, then RNA was changed into cDNA. The
converted cDNA was stored at −20°C. The relative quantitation
(RQ) of the target genes was calculated using the 2−ΔΔCt formula
(Livak and Schmittgen, 2001). All values were normalized to the
housekeeping gene β-actin, except for miR-130a that was
normalized to U6, and presented as fold changes.

2.4.3.3 Western Blot Analysis
After proteins were extracted from striatal tissues using RIPA lysis
buffer PL005, equal amounts of the samples were loaded onto 8%
sodium dodecyl sulfate-polyacrylamide gels. A sample was separated
on a polyacrylamide gel; the procedure was abbreviated as SDS-
PAGE (for sodium dodecyl sulfate polyacrylamide gel

electrophoresis) according to the molecular weights. Following
electrophoresis, parameters were transferred to nitrocellulose
membranes (Amersham Bioscience, Piscataway, NJ, USA) using a
semidry transfer apparatus (Bio-Rad, Hercules, CA, USA). The
membrane was blocked with 5% (w/v) nonfat dry milk in tris-
buffered saline with Tween 20 (TBST) buffer and 3% bovine serum
albumin (BSA) at room temperature for 1 h to block non-specific
binding sites. Subsequently, membranes were incubated with a 1:
1,000 dilution of antibodies from Thermo Fisher Scientific, Inc.
(Rockford, IL, USA) against rat tropomyosin receptor kinase B
(TrKB; cat.# PA5-86241), sortilin (cat.# PA1-18312), phospho-
phosphatidylinositol 3-kinase (pTyr458-PI3Kp85; cat.# PA5-
17387), total PI3K (T-PI3K; cat.# PA5-38904), phosphor-protein
kinase B (pS473-Akt; cat.# PA5-85513), T-Akt (cat.# PA5-29169),
pS133-CREB (cat.# PA1-851B), and T-CREB (cat.# PA1-850), from
Abcam (Cambridge, UK), phospho-glycogen synthase kinase (pS9-
GSK-3β; cat.# ab131097), and T-GSK-3β (cat.#ab131356), and from
Santa Cruz (CA, USA), pS33β-catenin (cat.# sc-57535) and T-β-
catenin (cat.# sc-7963) for 1 h at room temperature with constant
shaking. Next, membranes were probed with horseradish
peroxidase-conjugated goat anti-mouse immunoglobulins (1:2000;
Fluka, St. Louis, MO, USA). Eventually, the band intensity was read
and analyzed using a ChemiDoc™ imaging system with Image
Lab™ software version 5.1 (Bio-Rad Laboratories, Inc., Hercules,
CA, USA). The results are displayed as arbitrary unit (AU) after
normalization to levels of the β-actin protein.

2.4.4 Histopathological Examination
Brains were carefully removed from three representative animals
in different groups, rinsed with ice-cold saline, and immediately
fixed with 10% formalin for 24 h. Samples were dehydrated by
incubations in serial dilutions of alcohol, cleared with xylene, and
embedded in paraffin at 56°C in a hot air oven for 24 h. Coronal

TABLE 1 | The primer sequences used for RT-qPCR.

Gene Primer sequence (59–39)

miR-130a Forward: 5′-ACACTCCAGCTGGGGCTCTTTTCACATTGT-3′
Reverse: 5′-CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAGTAGCAC-3′

U6 Forward: 5′-CTCGCTTCGGCAGCACA-3′
Reverse: 5′-AACGCTTCACGAATTTGCGT-3′

Glial fibrillary acidic protein (GFAP) Forward: 5′- GCTAATGACTATCGCCGCCAACT-3′
Reverse: 5′-CTCCTTAATGACCTCGCCATCCC-3′

Heat shock protein 27 (HSP27) Forward: 5′-ACGAAGAAAGGCAGGATGAA-3′
Reverse: 5′-GCTCCAGACTGTTCCGACTC-3′

Dopamine- and cAMP-regulated phosphoprotein (DARPP-32) Forward: 5′-AGTTAGGGGAGCTTCG-3′
Reverse: 5′-AGTTTCCATCTCTCTGGG-3′

Peripheral benzodiazepine receptor (PBR_ Forward: 5′-TCCTGCTTTCATGACCATTGGGC-3′
Reverse: 5′-ACAACTGTCCCCGCATGGGACTTAG-3′

p75 neurotrophin receptor (p75NTR) Forward: 5′-AGGGATGGCGTGACTTTC-3′
Reverse: 5′-GTTGGCTTCAGGCTTATGC-3′

B-cell lymphoma 2-associated X protein (Bax) Forward: 5′-CCCTGTGCACTAAAGTGCCCC-3′
Reverse: 5′-GTCAGATGGACACATGGTG-3′

B-cell lymphoma 2 (Bcl2) Forward: 5′-CTACGAGTGGGATGCTGGAGG-3′
Reverse: 5′-GTCAGATGGACACATGGTG-3′

B-cell lymphoma-extra large (Bcl-XL) Forward: 5′-GATCCCCATGGCAGCAGTAAAGCAAG-3′
Reverse: 5′- CCCCATCCCGGAAGAGTTCATTCACT-3′

β-Actin Forward: 5′-GGTCGGTGTGAACGGATTTGG-3′
Reverse: 5′-ATGTAGGCCATGAGGTCCACC-3′
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brain sections of 4-μm thickness were processed using sledge
microtome. Sections were then stained with hematoxylin and
eosin (H&E) and examined under a light electric microscope
(Olympus CX21, Tokyo, Japan).

2.5 Statistical Analysis
Data are expressed as means ± SD. Statistical analysis and
graphical presentations were performed using GraphPad prism
software, version 6 (GraphPad Software, Inc., San Diego, CA,
USA). One-way ANOVA followed by the Tukey’s multiple
comparison test was used for statistical evaluation of the
difference among means, and the level of significance was set
at p < 0.05. Data are considered outliers if the data points failed
the Dixon test (Dixon, 1954) or if they exceeded four standard
deviations of the mean. To ensure sample size sufficiency to
establish a statistically significant difference, Mead’s “Resource
Equation” was used (Mead, 1988).

3 RESULTS

Noteworthy, normal group treated with Lira (NC + Lira) showed
no significant changes from the normal control (NC) group in all
the measured parameters; hence, all comparisons were conducted
relative to NC.

3.1 Effect of Lira on Body Weight
One-way ANOVA showed significant differences among groups
on the percent change in body weight (Figure 2). Rats in the NC
and NC + Lira showed a normal increase in body weight in the
42 days of the experiment. The 3-NP insult, however, resulted in a
marked reduction in the final body weight, compared with the
NC group. Treatment with Lira bolstered the body weight and
obviously raised it, compared with that of 3-NP.

3.2 Effect of Lira on Locomotor Activity
Using the Open Field Test
As depicted in Figure 3, the OFT revealed hypoactivity and gait
abnormalities in 3-NP-untreated rats evidenced by a marked
increase in latency time (Figure 3A) to reach approximately
eightfold that of the NC group. The insult also decreased
ambulation (Figure 3B), grooming (Figure 3C), and rearing
(Figure 3D) frequencies by about 70%, compared with the NC
group. On the other hand, treatment with Lira shortened the
latency time by 92%, along with a marked increase in ambulation,
grooming, and rearing frequencies to reach approximately
threefold the diseased group.

3.3 Effect of Lira on Spatial Long-Term
Memory Using the Elevated Plus Maze Test
Figure 4 shows that 3-NP-induced neurodegeneration entailed
the long-term memory, where it caused a sixfold delay in the
retention transfer latency compared with the vehicle treated
group. In contrast, post-administration of Lira significantly
abridged the retention latencies by 66% compared with the
insult effect. The insult caused a marked reduction in the
percentage of memory retention by 133% compared with the
NC group. Contrariwise, the Lira-treated group displayed about
threefold increment in this assessed parameter when compared
with the 3-NP-insulted rats.

3.4 Lira Augments miR-130a and the Cyclic
AdenosineMonophosphate/Cyclic Adenosine
Monophosphate Response Element-Binding
Protein/Brain-Derived Neurotrophic Factor/
Tropomyosin Receptor Kinase B Trajectory
As illustrated in Figure 5, the 3-NP administration abated the
striatal gene expression of the protective gene miR-130a
(Figure 5A), as well as the content of cAMP (Figure 5B),
p-CREB (Figure 5C), BDNF (Figure 5D), and its receptor
TrKB (Figure 5E) by about 72%, 66%, 76%, 66%, and 80%,
respectively, compared with the 3-NP group. Nevertheless, rats
treated with Lira augmented the neuroprotective gene and trail,
where it upregulated the gene expression of miR-130a and
markedly enhanced the content/protein expression of the
c-AMP/CREB axis and its downstream molecules, when
compared with the 3-NP group.

3.5 Lira Suppressed Death Receptor and
Sortilin
As depicted in Figure 6, the 3-NP insult caused an upsurge in the
mRNA expression of the death receptor, namely, p75NTR
(Figure 6A), as well as the protein expression of its coreceptor
sortilin (Figure 6B), mounted to about seven- and sixfold
elevation, respectively, when compared with normal rats.
However, Lira post-administration has softened the 3-NP
effect and depressed the assessed markers to reach 37% and
45%, respectively, compared with the diseased group.

FIGURE 2 | Effect of Lira treatment on body weight in the 3-NP-treated
rats. Data are presented as mean ± S.D. (n � 15/group). Statistical analysis
was performed using one-way ANOVA followed by Tukey’s multiple
comparison test; compared with (*) NC, (#) 3-NP, and (@) NC + Lira
groups, p < 0.05. ANOVA, analysis of variance; Lira, liraglutide; NC, normal
control; 3-NP, 3-nitropropionic acid.
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3.6 Lira Modulated the PI3K/Akt/GSK-3β/
β-Catenin Signaling Pathway
In Figure 7, the neurodegenerative effect of 3-NP was accompanied
by a sharp decrease in the protein expression of p-PI3K (Figure 7A)
and its downstream molecule p-Akt (Figure 7B). In turn, 3-NP
activated the injurious marker GSK-3β documented by the depletion
of its inactive/phosphorylated form p-GSK-3β (Figure 7C), with the
subsequent phosphorylation of its downstreammolecule p-β-catenin
(Figure 7D) to be marked for degradation. However, administration
of Lira to intoxicated rats has averted the 3-NP effects, where it turned
on the protective axis and heightened the p-PI3K/p-Akt axis and
inactivated p-GSK-3β by increasing its phosphorylated form, an
effect that was associated by the activation/dephosphorylation of
β-catenin, relative to the 3-NP insult.

3.7 Lira Restored Redox Balance and
Decreased Neuronal Apoptosis
The 3-NP-induced redox imbalance (Figure 8) was evidenced by
the 72% suppression of the antioxidant transcription factor Nrf-2

FIGURE 3 | Effect of Lira treatment on the open field test (OFT) (A) latency, (B) total ambulation, (C) number of grooming, and (D) rearing acts in 3-NP treated rats.
Data are presented as mean ± S.D. (n � 15/group). Statistical analysis was performed using one-way ANOVA followed by Tukey’s multiple comparison test; compared
with (*) NC, (#) 3-NP, and (@) NC + Lira groups, p < 0.05. ANOVA, analysis of variance; Lira, liraglutide; NC, normal control; 3-NP, 3-nitropropionic acid; OFT. open-field
test.

FIGURE 4 | Effect of Lira treatment on the elevated plus maze (EPM).
Data are presented as mean ± S.D. (n � 15/group). Statistical analysis was
performed using one-way ANOVA followed by Tukey’s multiple comparison
test; compared with (*) NC, (#) 3-NP, and (@) NC + Lira groups,
p < 0.05. ANOVA, analysis of variance; EPM, elevated plus maze; Lira,
liraglutide; NC, normal control; 3-NP, 3-nitropropionic acid.
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(Figure 8A) effect that was accompanied by the threefold
elevation of the lipid peroxidation marker TBARS
(Figure 8B) compared with normal animals. Additionally, 3-
NP enhanced cell apoptotic demise indicated by the 72%
reduction in the antiapoptotic marker Bcl-XL (Figure 8C),
with a 49-fold increase in Bax/Bcl-2 ratio (Figure 8D) and a
fourfold increase in caspase-3 activity (Figure 8E), when
compared with the NC group. However, Lira-treated rats
displayed a remarkable antioxidant effect verified by its
ability to boost striatal Nrf-2 (threefold) that was paralleled
by a considerable reduction in striatal TBARS content by 41.5%,
compared with the 3-NP-lesioned rats. Moreover, the
antiapoptotic activity of Lira was evidenced by the reduction
in Bax/Bcl-2 ratio by 95% and caspase-3 activity by 54%
compared with the intoxicated group. Besides, it resulted in a
threefold elevation in Bcl-XL gene expression compared with
the 3-NP rats.

3.8 Lira obliterated Gliosis and Astrocytic
Activation, but Enhanced Mature Medium
Spiny Neurons
As apparent from Figure 9, the 3-NP-intoxicated rats displayed a
robust neuroinflammation, ongoing gliosis, and astrocytic
activation indicated by the upregulation of the mRNA
expression of PBR, HSP27, and GFAP, to about 7.8-, 4.6-, and
5.6-fold, respectively, compared with the NC group. Additionally,
the toxin induced a significant neuronal damage as it caused a
notable downregulation of the most widely used marker of
mature MSNs, DARPP-32, by 73%, when compared with the
NC group. Treatment with Lira diversely impeded the upsurge in
the assessed parameters; PBR, HSP27, and GFAP reached 32%,
36%, and 32%, respectively, compared with the 3-NP group, while
causing an upsurge of the striatal DARPP-32 relative expression
(nearly threefold) compared with the 3-NP-lesioned rats.

FIGURE 5 | Effect of Lira on gene/protein expression and content of (A)miR-130a, (B) cAMP, (C) p-CREB, (D) BDNF, and (E) TrKB in 3-NP-treated rats. Data are
presented as mean ± S.D. (n � 3–6/group). Statistical analysis was performed using one-way ANOVA followed by Tukey’s multiple comparison test; as compared with
(*) NC, (#) 3-NP, and (@) NC + Lira groups, p < 0.05. ANOVA, analysis of variance; cAMP, cyclic adenosine monophosphate; BDNF, brain-derived neurotrophic factor;
p-CREB, phosphor-cAMP response element-binding protein; Lira, liraglutide; miR, micro-RNA; NC, normal control; 3-NP, 3-nitropropionic acid; TrKB.
tropomyosin-related kinase receptor.
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3.9 Lira Improved Structural Alterations
As depicted in Figure 10, photomicrograph sections from NC
(Figures 10A–F) and NC + Lira (Figures 10G–L) reveal normal
histological structures of neurons in the cerebral cortex,
subiculum of the hippocampus, fascia dentate and hilus of the
hippocampus, striatum, cerebellum, and medulla oblongata. In
contrast, sections of 3-NP reveal focal neuronal degeneration with
gliosis in the outer area of the cerebral cortex (Figure 10M), while
the inner deep area shows focal gliosis, while no histopathological
alterations are seen in the subiculum of the hippocampus
(Figure 10N). However, most of the neurons of the fascia
dentate and hilus of the hippocampus show degeneration with
nuclear pyknosis (Figure 10O). Moreover, a section of the
striatum (Figure 10P) reveals multiple focal eosinophilic
plaques along with diffuse gliosis in between nuclear pyknosis
and neuronal degeneration. A section of the cerebellum
(Figure 10Q) shows congested blood vessels; however, a
section of the medulla oblongata (Figure 10R) reveals normal
histological structures of neurons. On the other hand, sections of
the Lira-treated group show normal histological structures of the
six assessed areas (Figures 10S–X).

4 DISCUSSION

The current study highlighted the potential neuro-therapeutic
effect of Lira in a 3-NP-induced HD model. The findings showed
that Lira prominently recovered the 3-NP-induced behavioral
derangements and degeneration of striatal MSNs; the evident

upturn of the neurobehavioral performance was obviously
mirrored on the histopathological findings. These findings
match that of a previous study, where Lira prevented
hippocampal neurodegeneration and cognitive decline
following intracerebroventricular injection of streptozotocin in
Wistar rats (Palleria et al., 2017).

The improved functional tests have been echoed here using the
OFT, which revealed shortened latency time and a noticeable
increase in ambulation, grooming, and rearing frequencies in the
Lira-treated rats, hindering, thus, the 3-NP effect significantly. In
addition, Lira notably abridged the EPM retention latencies that
were markedly delayed in the 3-NP group to display a
considerable increment in the percentage of memory retention,
when compared with that of the insulted rats. The ability of Lira
to improve cognitive function was reported in previous models of
mild traumatic brain injury (mTBI) (Li et al., 2015), Alzheimer’s
disease (McClean and Hölscher, 2014), stroke (Zhu et al., 2016),
and multiple sclerosis (DellaValle et al., 2016). In the current
results, Lira further pinned down its capacity to improve
behavioral functions by upregulating the gene expression of
DARPP-32, which affects striatal function and plasticity as
documented in Parkinson’s disease and schizophrenia (Meyer-
Lindenberg et al., 2007), as well as models of HD. In this ailment,
the protein expression of DARPP-32 was downregulated to mark
the early debility of the MSNs in HD (Bibb et al., 2000; Alpaugh
et al., 2017) and to concur with our results, as well.

Along with the improved behavior, the administration of Lira
also ablated the 3-NP-induced histopathological alterations; the
neuro-restorative impact was reflected on the improved structure

FIGURE 6 | Effect of Lira on gene/protein expression of striatal (A) p75NTR and (B) sortilin in 3-NP-treated rats. Data are presented as mean ± S.D. (n � 3/group).
Statistical analysis was performed using one-way ANOVA followed by Tukey’s multiple comparison test; compared with (*) NC, (#) 3-NP, and (@) NC + Lira groups,
p < 0.05. ANOVA, analysis of variance; p75NTR, p75 neurotrophin receptor; Lira, liraglutide; NC, normal control; 3-NP, 3-nitropropionic acid.
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that revealed normal cortical, striatal, and hippocampal
morphology free of nuclear pyknosis and degeneration.
Indeed, the diffuse gliosis detected in the striatum was among
the alterations detected here in the present HD model to be
further supported by the current augmentation of GFAP that
serves as an excellent index of gliosis during neurodegeneration
being the main intermediary filament of astrocytes (Brahmachari
et al., 2006). However, the post-administration of Lira markedly
downregulated GFAP; besides, it downregulated PBR, a hallmark
of neuroinflammation that is predominantly expressed in glial
cells, including astrocytes and microglia. The aptitude of Lira to
abate these markers explains the inactivation of microglia that
entailed rescuing striatal neurons in the current HD model. As a
support to this notion, a previous study revealed that the use of a
mitochondrial PBR antagonist has enhanced mitochondrial
function, inactivate microglia, and reduced apoptotic neuronal
death and, hence, neuroinflammation in a quinolinic acid-
induced HD rat model (Ryu et al., 2005). A third marker
assessed here was the HSP27, which is among the markers
that increase after brain damage and is also expressed in the
astroglia to indicate their activation (Renkawek et al., 1993). Akin
to the other glial markers, Lira mitigated HSP27 to reach its
normal level and to add to the neurotherapeutic capacity of the
antidiabetic drug. These data concur with the findings of a

previous study in which orphenadrine, the CNS-acting anti-
muscarinic drug, has conferred in vitro and in vivo
neuroprotection against 3-NP-induced neuronal damage, via
reducing the expression of both HSP27 and PBR density in
the striatum of rat brains (Pubill et al., 2001).

On the molecular level, Lira has further signified its
neurotherapeutic effect by turning on the neurotrophic
signaling hub cAMP/CREB/BDNF/TrKB. In the present work,
Lira has enhanced the content of cAMP that was distinctly leveled
off by 3-NP. This effect is a sequel of the activation of the receptor
GLP-1 to concur the results in an mTBI model (Li et al., 2015). As
a downstream to the latter, cAMP stimulates/activates the
transcription factor CREB by phosphorylating it at Ser133
(Wang et al., 2018a) to result in a 10- to 20-fold increase in
the transcriptional activity of CREB (Tanis et al., 2008), findings
that consolidate the present results. In the same context, Lira was
recounted to mediate its neuroprotective effect by enhancing the
GLP-1 receptor-induced activation of the cAMP/CREB hub (Bao
et al., 2015) using primary rat cortical astrocytes.

Upon its translocation to the nucleus, activated CREB
endorses the transcription and expression of its target genes
BDNF and its cognate receptor TrKB (Nair and Vaidya, 2006;
Chou et al., 2020). This verity has been mirrored herein, since
following the activated cAMP/p-CREB axis, Lira succeeded to

FIGURE 7 | Effect of Lira on protein expression of striatal (A) p-PI3K, (B) p-Akt, (C) p-GSK-3β, and (D) p-β-catenin in 3-NP-treated rats. Data are presented as
mean ± S.D. (n � 3/group). Statistical analysis was performed using one-way ANOVA followed by Tukey’s multiple comparison test; as compared with (*) NC, (#) 3-NP,
and (@) NC + Lira groups, p < 0.05. ANOVA, analysis of variance; p-Akt, phosphor-protein kinase B; p-GSK-3β, phosphor�glycogen synthase kinase; Lira, liraglutide;
NC, normal control; 3-NP, 3-nitropropionic acid; p-PI3K. phospho-phosphoinositide 3-kinase.
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oppose the effect of 3-NP and augmented the striatal contents of
BDNF and the protein expression of its receptor TrKB. In turn,
this points for one mechanism by which Lira has mediated its
neurotrophic potential, findings that coincide with those of a
previous study in a brain trauma model (DellaValle et al., 2014).

Mature BDNF (mBDNF), which is the biologically active
form, binds with high affinity to the TrkB receptor and with
lower affinity to the death receptor p75NTR (Kowiański et al.,
2018) to mediate its beneficial effect. Notably, the mBDNF/TrKB
complex is critical for structural (increases in spine density and
size) and functional plasticity (LTP), and have important roles in
learning and memory (De Vincenti et al., 2019). Earlier studies
have highlighted the chief role of the BDNF/TrKB hub in
neurogenesis, gliogenesis, neurite outgrowth, development, and
maintenance of the basal ganglia in addition to promoting
survival and proper function of the striatal neuronal
population (Bath and Lee, 2010; Baydyuk and Xu, 2014). This
pathway, hence, adds to the mechanisms by which Lira recovered
cognitive and behavior functions, as well as antagonizing the 3-
NP insult.

To further confine the role of BDNF in the Lira-mediated
neuroprotection, the present study is the first to show that Lira
has turned off the proBDNF death pathway, where it inhibited the
striatal relative expression levels of the proBDNF receptors, viz.,
p75NTR and sortilin. In agreement with the “yin–yang”
hypothesis, mBDNF and its precursor, proBDNF, have
opposing effects on the cellular physiology (Gibon et al.,

2016). By binding to its pan-neurotrophin receptor, p75NTR,
and the co-receptor, sortilin (Lee et al., 2001), proBDNF
negatively regulates synaptic transmission and plasticity
(Kailainathan et al., 2016). Besides, it inhibits neuronal
regeneration, increases the collapse of neurite growth, and
promotes apoptotic cell death, as documented here and
beforehand (Liu et al., 2018). An earlier study reported that
the distressing effects of proBDNF are dependent on the
cellular co-expression of both p75NTR and sortilin, and
suggested that neurons deficient in p75NTR are resistant to
proBDNF-induced apoptosis (Teng et al., 2005). Hence, these
facts affirm the present data and further explain the mechanism
of Lira and nominate p75NTR to be a valuable therapeutic target
(Meeker andWilliams, 2014) that contributes significantly to HD
progression (Plotkin and Surmeier, 2014).

The binding of mBDNF to its receptor triggers a trail of several
signals that crosstalk to mediate its neurogenic effect. The first is
the PI3K/Akt signaling pathway, which when turned on presents
a central node for complexed functions that modulates diverse
multifaceted events resulting in neuronal survival (Sánchez-
Alegría et al., 2018). However, the dysregulated PI3K/Akt
signaling in neurons has several harmful consequences, such
as increased reactive oxygen species (ROS), membrane
depolarization, mitochondrial fragmentation, as well as
decreased oxidative phosphorylation and ATP production
(Kim et al., 2016). In the current work, Lira has activated
p-PI3K and p-Akt to concur with the findings of Yang et al.

FIGURE 8 | Effect of Lira on protein expression/content of striatal (A) Nrf-2, (B) TBARS, (C) BCL-XL, (D) Bax/Bcl-2 ratio, and (E) caspase-3 in 3-NP-treated rats.
Data are presented as mean ± S.D. (n � 3/group). Statistical analysis was performed using one-way ANOVA followed by Tukey’s multiple comparison test; compared
with (*) NC, (#) 3-NP, and (@) NC + Lira groups, p < 0.05. ANOVA, analysis of variance; Bax, Bcl-2-associated X protein; Bcl-2, B-cell lymphoma 2; BCL-XL, B-cell
lymphoma—extra large; Lira, liraglutide; TBARS, malondialdehyde; NC, normal control; 3-NP, 3-nitropropionic acid; Nrf-2, nuclear factor E2-related factor 2.
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(2018) in a model of type 2 diabetes, where Lira mediated its
neuroprotective effect and improved cognitive function through
triggering the PI3K/Akt hub. In turn, the activated Akt plays a
crucial role being a central key that manipulated several
downstreams and is one of the most multifaceted kinases in
the human kinome (Ahn, 2014) that ensures neuron survival
(Zhang et al., 2016; Mohamed et al., 2019; Xu et al., 2020). One of
the favorable effects of the activated p-Akt is its antioxidant (Ali
et al., 2018; Wen et al., 2018) and antiapoptotic (Matsuzaki et al.,
1999; Pan et al., 2019) potentials, facts that can share a part in
verifying the antioxidant and antiapoptotic capacities of Lira that
were documented herein.

In fact, oxidative stress (OS) and the disruption of redox
homeostasis have long been held as key players in HD
progression and pathogenesis (Kumar and Ratan, 2016; Li et al.,
2019). The antioxidant capability of p-Akt can depend on the
adjustment of its downstream molecules; for instance, p-Akt
induces the expression of Nrf2, a master regulator of cellular
redox homeostasis and facilitates its nuclear translocation through
its tethering to the nuclear antioxidant response element (ARE).
Following this union, a wide array of antioxidant enzymes is
generated (Cui et al., 2016) to guard against OS (Tu et al., 2019).
This has also been confirmed by previous studies that divulged that
activation of the PI3K/Akt pathway induces the expression of Nrf2

to culminate in the decrease of ROS and TBARS levels, as well as
neuronal apoptosis as reported here and hitherto (Ali et al., 2018; Liu
et al., 2019).

Our results also highlight the role of Akt/GSK-3β/p-CREB
and β-catenin signaling, another p-Akt downstream axis that
reinforces its antioxidant and neurotherapeutic effects. In the
Lira-treated group, the activation of Akt was tailed by the
phosphorylation/inactivation of GSK-3β to concur with an
earlier in vitro AD model (Zheng et al., 2019). The p-GSK-3β
is a promiscuous serine-threonine kinase that regulates a wide
variety of cellular functions, and its inactivation protects against
neuronal toxicity (Goodenough et al., 2004). Indeed, OS brings
about GSK-3β overactivation in neuronal cells (Rana and Singh,
2018), while inhibition of the latter is required to control OS in
neuronal hippocampal cell lines (Jaworski et al., 2019).
Moreover, inhibition of GSK-3β attenuates early stroke injury
in a focal ischemic model (Wang et al., 2017). In the same
milieu, Mehrafza and coworkers showed that lithium, a known
GSK-3 inhibitor, has protected neurons against
methamphetamine-induced neurodegeneration via turning on
the Akt-1/GSK3 and CREB-BDNF signaling pathways, where it
was recounted earlier that inactivated GSK-3β endorses the
phosphorylation of CREB at Ser133 (Silva-García et al.,
2018). This, in turn, allows p-CREB to exert its

FIGURE 9 | Effect of Lira on mRNA expression of striatal (A) PBR, (B) HSP27, (C) GFAP, and (D) DARPP-32 in 3-NP-treated rats. Data are presented as
mean ± S.D. (n � 3/group). Statistical analysis was performed using one-way ANOVA followed by Tukey’s multiple comparison test; compared with (*) NC, (#) 3-NP, and
(@) NC + Lira groups, p < 0.05. ANOVA, analysis of variance; DARPP-32, dopamine- and cAMP-regulated phosphoprotein; GFAP, glial fibrillary acidic protein; HSP27,
heat shock protein 27; Lira, liraglutide; NC, normal control; 3-NP, 3-nitropropionic acid; PBR, peripheral benzodiazepine receptor.
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neuroprotective role as stated earlier by heightening the
production of BDNF (Shimizu et al., 2019), which has an
imperative role in promoting neuronal survival and
differentiation by acting through its TrKB receptor. In a
positive uninterrupted loop, BDNF/TrKB reactivates CREB to
bestow high neuronal protection (Kowiański et al., 2018).
Additionally, the crosstalk between CREB and Nrf2 via
CREB-binding protein has been underlined, revealing that
CREB transcription could activate the expression of Nrf2
binding partners via an indirect mechanism (Wang et al.,
2016) to partake in the verification of the antioxidant
capacity of Lira documented herein. These verities
synchronize with the current findings, where 3-NP produced
a significant reduction in p-Akt and, consequently, activated
GSK-3β by suppressing its phosphorylation at Ser9. The
inhibition of p-Akt entailed its downstream trajectory
p-CREB/BDNF/TrKB to verify the role of neuronal OS in the
advancement of 3-NP-induced preferential striatal
degeneration, as declared herein and reported hitherto (El-
Abhar et al., 2018). However, Lira post-administration
resulted in offsetting the effects of 3-NP.

Aside from the GSK-3β/CREB axis, another downstream
target of the GSK-3β is β-catenin, which runs inversely to its
upstream GSK-3β (Huang et al., 2017). β-Catenin is another
molecule that is known to have a dynamic role in synaptic
plasticity and neurogenesis (Zhang et al., 2011; Yang et al.,

2017b). Thus, one can postulate that the antioxidant effect of
Lira that helps in mitigating the 3-NP neurodegenerative effect
hangs on the central hub p-Akt/p-GSK-3β with its two
downstream molecules p-CREB and β-catenin.

The ability of Lira to restore the redox balance aids in
increasing cell survival, where OS is well documented to
partake in apoptotic cell demise, especially the intrinsic
pathway by waning mitochondrial function followed by
activation of caspase-3 (Carvour et al., 2008; Méndez-Armenta
et al., 2014). Besides, the ability of Lira to downregulate the
expression of PBR hinders this pathway too, since as mentioned
before, PBR plays a role in mitochondrial permeability transition
pore formation (Jorda et al., 2005) and its decrease helps in
abrogating cell death (Ryu et al., 2005).

The antiapoptotic potential of Lira also banks on the assessed
pathways; indeed, earlier studies underlined the antiapoptotic
role of Akt per se by phosphorylating the proapoptotic protein
Bad, thereby, inhibiting its proapoptotic function (del Peso et al.,
1997). In addition, activated Akt prohibits neuronal death
effectively by inhibiting the activation of caspase-3 and Bax
expression, but induces that of the antiapoptotic molecule Bcl-
2, effects that were abolished upon using the specific PI3K
inhibitor wortmannin (LY294002) (Matsuzaki et al., 1999). A
more recent study showed that Lira protected against cerebral
focal ischemia by reducing cell apoptosis via activating the PI3K/
Akt pathway (Zhu et al., 2016). These studies harmonize with the

FIGURE 10 | Effect of Lira on 3-NP-induced histologic alterations. Compared with the normal neuronal histological structures seen in (A–F) NC and (G–L) NC +
Lira-treated group, the sections of the 3-NP-intoxicated rats show focal neuronal degeneration with gliosis in (M) cerebral cortex, normal morphology of (N) hippocampal
subiculum, nuclear pyknosis and neuronal degeneration in (O) fascia dentate and hilus of the hippocampus, multiple focal eosinophilic plaques with focal gliosis and
neuronal damage in (P) striatum, congestion of blood vessels in (Q) cerebellum, and normal morphology of (R)medulla oblongata. Sections of (S–X) 3-NP + Lira-
treated group show normal histological structures of all assessed six areas (H&E × 80). Lira, liraglutide; NC, normal control; 3-NP, 3-nitropropionic acid.
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present findings, where Lira heightened p-Akt and, hence,
significantly reduced Bax/Bcl-2 ratio and caspase-3 activity;
besides, it resulted in a substantial elevation of Bcl-XL gene
expression.

Furthermore, the Akt/GSK-3β/β-catenin and CREB axes play
a foremost role in cell survival via regulating apoptosis. The
downregulation of the defense signal Akt/GSK-3β advocates the
neuronal death partially via suppressing CREB activity, which
correlates with the expression of many survival and proliferation
genes (El-Abhar et al., 2018). Moreover, increased CREB activity
supports cell survival by boosting the expression of cell-protective
proteins, such as Bcl-2 (Cheng et al., 2016) and BDNF (Huang
et al., 2015), facts that further back the present findings. Recently,
a study by Zhang et al. (2019b) divulged that Lira possesses an
antiapoptotic effect by enhancing p-CREB and upregulating the
expression of the antiapoptotic Bcl-2 in an experimental diabetes
model. Not only does CREB but also β-catenin represses
apoptosis by inhibiting caspase-3 (Sinha et al., 2015), as well
as Bax (Wang et al., 2009), while augmenting Bcl-2 (Manji et al.,
2000). These data abet the present results regarding the effect of
Lira on the apoptosis-related markers assessed in the
present work.

Ample evidence has proclaimed that the role of miRNAs must
be considered a vital aspect contributing to the pathogenesis of
diverse neurodegenerative diseases as HD through targeting
diverse molecules, such as BDNF (Godlewski et al., 2019). Our
results showed that treatment with Lira has upregulated miR-
130a noticeably, while 3-NP has markedly downregulated it, a
finding that braces the neurotherapeutic effect of Lira. One
clinical study has reported a marked decrease in the plasma
level of miR-130a in acute ischemic stroke patients and was
negatively correlated with disease risk and severity (Jin and Xing,
2018), results that may nominate it as a non-invasive promising
diagnostic and prognostic biomarker (Eyileten et al., 2018).
Meanwhile, the expression of miR-130a was evidently
downregulated in PC12 cells after oxygen–glucose deprivation/
reperfusion (OGDR) and in rats subjected to ischemic stroke and
neurodegeneration. These authors proposed that not only did
miR-130 offer protection against cerebral ischemic injury but also
its overexpression enhanced the survival of PC12 cells, reduced
apoptosis and the overproduction of ROS after OGDR, as well as
the cerebral infarct volume in the stroke model. In the same
setting, another study reported that miR-130a reduces the
blood–brain barrier permeability induced by cerebral ischemia
(Wang et al., 2018b). According to the current findings, a
crosstalk between miR-130a and the assessed signals can be
postulated, a notion that was partly reported in a previous
study. The coresearchers revealed that the re-expression of
miR-130a enhanced the activation of BDNF-mediated PI3K/
Akt signaling pathway by inhibiting PTEN, a mechanism that
underlies the neuroprotection against cerebral
ischemia–reperfusion injury. However, the correlation between
miR-130a and the BDNF/TrKB/PI3K/Akt/GSK-3β/β-catenin/
CREB trajectory, as well as the p75NTR–sortilin receptor
complex along with the redox imbalance and apoptosis has
been reported first in the present work.

In conclusion, the current study has revealed the promising
neurotherapeutic potential of Lira against 3-NP-induced HD via
modulating the crosstalk between cAMP/CREB/BDNF/TrkB,
PI3K/Akt/GSK-3β/β-catenin, and GSK-3β/CREB trajectories.
In addition, Lira upregulated the newly diagnostic non-
invasive promising biomarker, miR-130a, while it curbed the
p75NTR–sortilin receptor complex. Meanwhile, Lira purveyed
pronounced antioxidant and antiapoptotic potentials in 3-NP
model of HD. These mechanisms resulted in an upturn in
behavioral and morphological results.

5 LIMITATIONS AND STRENGTHS

The strength of our work is studying the therapeutic effect of the
antidiabetic drug Lira against 3-NP-induced HD-like model. The
effect was proven through improving cognition andmemory, and
the upturn of the striatal morphological structure that was altered
in the 3-NP-untreated group. On the molecular level, the drug
enhanced several survival pathways and abated others that play a
role in neurodegeneration.

The limitations of the possible repurposing of Lira is using
only one HD model; however, this effect should be attested upon
using other HD models. Also, the study use male rats only, and
the effect of Lira should also be carried out on different species
and genders. Moreover, other signaling pathways have to be
evaluated to unveil more therapeutic mechanisms before
proceeding to the clinical trials.
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